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ABSTRACT
Distributed dataflow systems such as Apache Spark or Apache
Flink enable parallel, in-memory data processing on large clusters
of commodity hardware. Consequently, the appropriate amount of
memory to allocate to the cluster is a crucial consideration.

In this paper, we analyze the challenge of efficient resource
allocation for distributed data processing, focusing on memory.
We emphasize that in-memory processing with in-memory data
processing frameworks can undermine resource efficiency. Based
on the findings of our trace data analysis, we compile require-
ments towards an automated solution for efficient cluster resource
allocation.

CCS CONCEPTS
• Information systems → Data management systems; • Com-
puting methodologies→ Distributed computing methodologies.
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1 INTRODUCTION
Distributed dataflow systems such as Apache Spark [15] andApache
Flink [4] enable parallel data processing on large clusters of com-
modity hardware by facilitating error handling and parallelization.
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However, choosing the appropriate cluster resources to allocate
to such data processing jobs is difficult [8, 9], especially in public
clouds, where the user is virtually unrestricted in the amount of
resources available. Some choices, such as the total number of CPU
cores allocated, generally represent a trade-off between lower cost
or faster execution, which is a matter of user preference. Mean-
while, misallocations of other resources, especially the amount of
memory, can lead to significant bottlenecks or underutilization.
Such inefficiencies can multiply the cost of dataflow jobs executed
on public cloud resources [1–3, 7, 13].

The concepts of the cost-performance trade-off and resource
efficiency are visualized in Figure 1. The example we see is a Spark
join job, executed on clusters ranging from 4 to 48 nodes, consisting
of VMs of one out of nine different Amazon Web Services (AWS)
instance types. The data is from a publicly available trace dataset,
which is described in more detail in Section 2.
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Figure 1: Resource efficiency and cost-performance trade-off.

Many methods for assisting users in resource selection incur
significant overhead to collect training data for performance mod-
els [3, 5, 7, 10–12]. In comparison, several recent approaches em-
ploy lightweight profiling runs on reduced data with reduced hard-
ware to measure the memory footprint of the dataset relative to its
size. [1, 2, 13, 14]. This allows them to predict memory usage in a
full run and then allocate just enough memory to the cluster to facil-
itate in-memory processing. However, these approaches fail when
the cost of allocating enough memory for in-memory processing
outweighs the benefit of avoiding disk I/O operations (from spilling
the cache from memory to disk). They also fail when allocating
enough memory to cache the whole dataset forces public cloud
users to then also allocate more CPU cores that do not increase
performance meaningfully. This depends on the scale-out behavior
of the given job.
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In this paper, we argue that, despite significant progress, im-
portant challenges remain in the allocation of memory and other
resources. We illustrate these challenges with a problem analysis.
Then, we discuss the difficulties of efficiently gathering enough
information to make an informed resource allocation decision, and
finally, we summarize the requirements for a solution.

2 METHODOLOGY
This section formulates our research questions and limits the scope
of the problem by defining the constraints. It then provides an
overview of the trace dataset used for the problem analysis in
Section 3.

2.1 Research Questions
This paper aims to provide preliminary results towards answering
the following research questions:

• RQ1: When is it resource-efficient to allocate enoughmemory
to a cluster to facilitate in-memory processing?

• RQ2: How to design automated resource allocation approaches
that can allocate the right amount of memory and other re-
sources without relying on costly trained models?

2.2 Scope and Limitations
In defining the scope, we set the following constraints:

• C1 - Distributed batch processing:
We limit the scope to distributed batch processing applica-
tions of distributed dataflow systems.

• C2 - Initial configuration:
We only look for a static resource configuration and do not
attempt to change it at runtime.

• C3 - Focus on memory, CPU cores, and scale-out:
We limit the configuration options to a variable number of
VMs with varying amounts of memory and CPU cores.

• C4 - Unlimited resources:
We assume the availability of virtually unlimited resources,
as is realistic in public clouds or large on-premises clusters.

2.3 Trace Dataset
For the problem analysis, we used a popular public trace dataset1
which was introduced by Hsu et al. in Arrow [7]. The dataset con-
tains 1031 unique Spark and Hadoop MapReduce [6] executions,
facilitated by the benchmarking tool HiBench by Intel. There are
eight different underlying algorithms and each job has been exe-
cuted with two different dataset sizes.

The jobs were run on 69 different AWS cluster configurations.
The cluster configurations have scale-outs between 4 and 48 VMs
and these have instance types of classes c,m, and r in the sizes large,
xlarge, and 2xlarge. Virtual machines of type c have less memory
per core than those of type r, while those of type m fall between
the two. The denominations large, xlarge, and 2xlarge refer to the
number of cores per machine. The instance types and their exact
resource configurations are shown in Figure 1, the color coding of
which is used in all subsequent figures.

1github.com/oxhead/scout, accessed in April 2023.

3 PROBLEM ANALYSIS
Towards answering RQ1, this section examines the key determi-
nants that define the correlation between a job’s memory allocation
and the resource efficiency of its execution. Thereby, we explore
the phenomenon of resource-efficient on-disk processing with in-
memory data processing frameworks such as Spark.

3.1 Workload-Dependent Memory Access
One crucial influence on the resource usage patterns of a dataflow
job is the underlying algorithm and its implementation in a dis-
tributed dataflow system.

Some algorithms iterate over a dataset only once and in a pre-
determined order. Such workloads require only small memory al-
locations. This class of workloads can be identified by lightweight
profiling, i.e., running the job on reduced hardware and on only a
sample of the data while measuring resource access patterns [13].

Another class of workloads retains access to random portions of
the entire dataset throughout most of the execution. In this case,
however, the implications for resource efficiency are not straight-
forward. On the one hand, allocating more memory to the cluster
than what is needed to cache the entire dataset constitutes ineffi-
cient overprovisioning. On the other hand, the impact of memory
underprovisioning depends on the cost of allocating enough mem-
ory for in-memory caching relative to the resulting performance
gains. This equation is influenced by a variety of factors, the most
important of which are subsequently explored.

3.2 Job-Input-Dependent Memory Access
Another major influence on resource usage patterns is the job input
in the form of the input dataset and job parameters. The latter can
influence the behavior of the job and thus its data access patterns,
with all the implications as described in the previous subsection.
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Figure 2: Execution cost of K-Means on AWS in relation to
allocated memory and the impact of input dataset sizes.

Key characteristics of the dataset, such as size, can influence how
much processing is done in memory or on disk. Figure 2 shows an
example where the threshold for how much memory is required
for cost-optimal processing shifts as the dataset size increases. This
is because K-Means iterates over a dataset multiple times and can
therefore benefit greatly from fitting the entire dataset into its
combined cluster memory. At each of these iterations, caching
the dataset in memory can reduce the runtime by avoiding disk
I/O operations. This reduces the amount of time that the cluster
resources are reserved, which can lower the cost of the execution.

https://github.com/oxhead/scout
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3.3 Interdependence with Other Resource Types
When discussing resource efficiency, the amount of memory to
allocate cannot be considered in isolation. Resource efficiency is
about increasing performance by adding resources that have the
lowest cost in relation to the lowered execution time.

On the one hand, this depends on the cost model, e.g., the prices
of different resources in a public cloud. On the other hand, it de-
pends on how much the performance can be increased by these
resources, e.g., how much the execution time can be reduced by
adding more CPU cores to the cluster.

3.4 In-Memory vs. On-Disk Processing
Figure 3 summarizes the impact of the factors described in this
problem analysis by illustrating two cases: Memory bottlenecks
due to underallocation versus graceful on-disk processing.
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Figure 3: Cost-optimal in-memory processing vs. cost-
optimal on-disk processing.

Observation 1: From On-Disk Processing to In-Memory Processing
For both jobs, we see that the disk is used when running in clusters
with low total memory. Once enough memory is available, all pro-
cessing is done in memory. For Logistic Regression with a 480 GB
dataset and Join with a 188 GB dataset, this point is reached at
about 170 GB and 300 GB of total cluster RAM, respectively.

While adding more memory reduces the volume of disk accesses
through in-memory caching, adding more CPU cores can increase
the throughput of disk accesses by speeding up the overall exe-
cution. In the case of Join, this results in an increase in data read
from the disk per second until approximately 150 GB of total cluster
RAM is reached. Thereafter, the reduced volume outweighs.
Observation 2: Cost-Effectiveness of In-Memory Processing
For Logistic Regression, the cost optimum is reached when about
120 GB of RAM is allocated to the cluster, at which point the job
performs almost entirely in-memory processing. For Join, the cost
optimum is practically at the lowest memory and CPU allocation,
despite the lack of in-memory caching in this configuration.
For all jobs, the most cost-effective configuration is also resource-
efficient. To improve performance, this cost-effective configuration
can be used as a starting point by adding the resources that accel-
erate the execution the most at the lowest additional cost.

4 DISCUSSION
This section discusses the results of the problem analysis in Sec-
tion 3 in terms of their implications for efficient approaches to
cluster resource allocation (RQ2).

4.1 Memory Allocation
To facilitate in-memory processing, the amount of memory that
is allocated to the job depends on the size of the dataset, which
can vary with each new job submission. There are already meth-
ods that can determine the memory footprint of the dataset using
lightweight profiling [2, 13].

However, whether or not in-memory processing is resource effi-
cient is difficult to determine, since it depends on a number of inter-
dependent factors. While in-memory processing usually increases
performance, a larger performance increase could be achieved by al-
locating other resources at a lower cost. As a result, cluster resource
allocation approaches require knowledge of the cost of increasing
performance for all allocatable resources.

4.2 CPU Allocation and Scaling
Allocating enough memory for in-memory processing becomes
resource-efficient when the same performance gain cannot be
achieved at a lower cost by adding more CPU cores instead. Thus,
eligible resource allocation approaches need to consider the scaling
behavior of the job to make decisions for or against in-memory
processing. As a side benefit, this also allows users to make an
informed cost-performance trade-off with their CPU allocation.

To complicate matters, in environments such as public clouds,
the ratio of gigabytes of RAM to CPU cores is often not freely
configurable, but rather resources are bundled in a VM. Thus, in
order to get more of one resource, the user is forced to also acquire
other types of resources in conjuction, which may be underutilized,
affecting overall resource efficiency.

Finally, there is the decision to scale a job horizontally or ver-
tically, i.e., to scale by adding nodes or increasing node sizes. In
our analyzed dataset, this influence is less significant than the total
amount and ratio of memory and CPU cores, as can be seen in
Figure 1, Figure 2, and in the lower half of Figure 3. If this influence
does not depend on the memory-CPU balance, it may be possible
to address that decision last in a resource allocation approach.

4.3 Efficient Strategies for Resource Allocation
Making an informed decision about resource allocation requires
knowledge of the many factors that influence the cost and perfor-
mance of a distributed dataflow job. However, the cost of gathering
information must not offset the efficiency gains achieved during
execution.

Therefore, all relevant information must be gathered in an effi-
cient manner, e.g., by learning certain job behaviors through light-
weight profiling on reduced hardware and a representative sample
of the dataset. Furthermore, the information gathered from profil-
ing and full executions should be reused in subsequent executions
of similar jobs. This requires an awareness of influences that are
specific to the job itself, as opposed to those that must be adaptively
reconsidered when the execution context changes, such as memory
allocation in relation to the dataset size.
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5 RELATEDWORK
This section discusses existing approaches to cluster resource allo-
cation for efficient distributed data processing and highlights their
main limitations.

5.1 Black-Box Performance Models
Several related works on cluster resource allocation build black-
box performance models to learn the behavior of jobs on different
cluster configurations [3, 5, 7, 10–12, 14].

Some approaches then use these models to predict the runtime
and thereby also the cost of execution on the given cluster, allowing
users to make trade-offs according to their preferences [5, 10–12].
Ernest [12], a prominent example of such approaches, trains a para-
metric model for the scale-out behavior of jobs on the results of
sample runs on reduced input data. This strategy is viable for re-
curring programs that exhibit a rather intuitive scale-out behavior.
The critical drawback of an approach like Ernest is that the used
models require a significant amount of training data to become
viable, the generation of which causes considerable overhead.

Other related work iteratively searches for a configuration for
just the given job, focusing on optimizing for particular metrics
such as low cost or high execution speed [3, 7, 14].
CherryPick [3] attempts to directly predict the cost-optimal cluster
resource configuration that satisfies a given runtime target by uti-
lizing Bayesian optimization. The search process stops when it has
found the optimal configuration with reasonable confidence. Al-
though this process is faster than building a complete performance
model, it still imposes overhead through many executions until it
converges on an optimal solution.

A significant limitation common to both of these general ap-
proaches is that these models must be retrained, at least in part,
whenever the execution context changes. This could be when new
hardware options become available, orwhen the job’s inputs change,
either in the form of parameters or the dataset.

5.2 Memory-usage-aware approaches
Recent approaches that address the limitations of costly trained
performance models treat memory allocation as the key factor
in resource efficiency [1, 2, 13, 14]. These approaches attempt to
determine the memory needs of a job through lightweight profiling
of the job, focusing on facilitating in-memory processing.
Juggler [2] is an example of an approach that selects datasets to be
cached for a job and estimates the cache’s memory requirement
in relation to the dataset size. However, Juggler is only designed
specifically for iterative machine learning jobs in Spark.

The main limitation of all these approaches at the moment is
that they do not attempt to distinguish situations where in-memory
caching is efficient from ones where the cost of allocating enough
memory is not justified by the performance gains realized. This
remains an important problem because the approach of allocating
enough memory for in-memory caching can be inefficient, even for
iterative machine learning jobs. Such situations arise, for example,
when the cost of adding memory for caching is comparatively high
and the cost of adding CPU cores or other resources is compara-
tively low.

6 CONCLUSION
In summary, this paper has explored the key considerations for allo-
cating efficient cluster resources to a distributed dataflow job, with
a focus on memory. The specific challenge we identified is the ques-
tion of when in-memory processing versus on-disk processing is
resource efficient. Finally, in accordance with these preliminary re-
sults, we explored requirements for building an improved resource
allocation solution that does not rely on costly trained models.

In the future, we will work on efficient methods to automatically
evaluate the memory requirements and scaling behavior of jobs.
Moreover, we hope our short paper also inspires further research
by others in the same direction.
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