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Abstract—Distributed dataflow systems like Spark and Flink
enable data-parallel processing of large datasets on clusters
of cloud resources. Yet, selecting appropriate computational
resources for dataflow jobs is often challenging. For efficient
execution, individual resource allocations, such as memory and
CPU cores, must meet the specific resource demands of the job.
Meanwhile, the choices of cloud configurations are often plentiful,
especially in public clouds, and the current cost of the available
resource options can fluctuate.

Addressing this challenge, we present Flora, a low-overhead
approach to cost-optimizing cloud cluster configurations for big
data processing. Flora lets users categorize jobs according to
their data access patterns and derives suitable cluster resource
configurations from executions of test jobs of the same category,
considering current resource costs. In our evaluation on a new
dataset comprising 180 Spark job executions on Google Cloud,
Flora’s cluster resource selections exhibit an average deviation
below 6% from the most cost-optimal solution, with a maximum
deviation below 24%.

Index Terms—Scalable Data Analytics, Distributed Dataflows,
Resource Allocation, Cluster Management, Cloud Computing

I. INTRODUCTION

Large-scale batch data processing has diverse application
areas such as science and commerce. Distributed dataflow
systems like Spark [1] and Flink [2] simplify developing
scalable data-parallel programs, reducing the need to imple-
ment parallelism and fault tolerance while using clusters of
commodity resources. Major cloud providers offer dedicated
services such as Amazon EMR or Google Dataproc, allowing
users to deploy their jobs1 to a cluster.

Yet, configuring a suitable cloud cluster for a given job
is still difficult [3], [4]. At a minimum, it involves selecting
the number of nodes, number of CPU cores per node, and
the amount of memory per node, resulting in many possible
options. Overprovisioning resources can lead to low resource
utilization, unnecessarily increasing cost2 [5]–[8]. Meanwhile,
underprovisioning a type of resource can lead to resource
bottlenecks, resulting in the ensemble of underperforming
cluster resources incurring more cost by being occupied for a
longer period of time [9]–[12]. Conversely, a suitable resource
allocation simultaneously optimizes cost and performance by
allocating resources especially suitable for the given workload.
Meanwhile, performance itself is often not a major concern,

1By job, we mean a data processing algorithm, implemented in a specific
system, and running on a given input dataset.

2“Cost” can manifest as, e.g., monetary cost, capacity consumption, or
carbon emissions.

e.g., in data analytics jobs running over night. Thus, our
primary focus lies in addressing the problem from a cost op-
timization perspective and we treat performance optimization
as only a secondary objective here.

Numerous works have addressed this problem. Several
approaches for automated cluster resource selection rely on
the assumption that jobs are recurring to continuously enhance
performance models with each job execution [4], [13]–[17].
This strategy can also be used in conjuction with infrastructure
profiling [18], [19]. However, these approaches oversimplify
the similarity between recurring jobs by not sufficiently ac-
counting for changes in factors such as updated program code,
framework configuration, and key input dataset characteristics.
Also, these approaches do not address resource configuration
for jobs that are unique.

Other approaches, which do not assume recurrence, in-
stead attempt to learn key behaviors of a given job through
lightweight profiling runs on reduced hardware and dataset
samples [9]–[11], [20]–[22]. While this has shown promise,
it appears that only few runtime behaviors can be reliably
extrapolated, so these approaches are thus far only viable for
specific types of jobs, notably iterative machine learning [9]–
[11]. Furthermore, the approaches do not account for dynamic
changes of resource costs. An example of frequently changing
cost structures is spot instance pricing in public clouds [23].

In this paper, we present Flora, a low-overhead approach for
cost-optimizing data processing cluster configurations. Flora
neither relies on the assumption that a given job is recurring
nor that profiled behavior on samples extrapolates to full
scales. Instead, Flora leverages execution metrics from loosely
similar historical jobs. For this, Flora first lets users categorize
the given job according to its data access patterns as either
memory-demanding or memory-yielding. Flora then ranks
cluster configuration options based on current resource costs,
applied to historical performance of the chosen job category.

Contributions. The contributions of the paper are as follows.
• The Flora approach to selecting cost-optimized cloud

configurations for unique distributed dataflow jobs
• A new trace dataset3 of 180 executions of a diverse set

of Spark jobs4 on the Google Cloud Platform (GCP)
• A prototype implementation and evaluation of Flora³

against baseline approaches, using the new trace dataset.

3github.com/dos-group/flora
4github.com/dos-group/benchspark
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Outline. The remainder of the paper is structured as follows.
Section II presents the approach of the Flora cluster resource
allocator. Section III evaluates Flora. Section IV discusses
related work. Section V summarizes and concludes this paper.

II. APPROACH

This section introduces our low-overhead approach to the
problem of finding a cost-optimized cloud configuration for
a distributed dataflow job. First, we present the general idea
of the method. Then, we explain in detail how infrastructure
profiling, classification of jobs” data access patterns, and
ranking of cloud configuration options can help us select
suitable cloud resources.

A. Overview

Figure 1 shows an overview of our approach Flora, broken
down into steps. These steps are as follows:

Step 0: Infrastructure Profiling

Step 1: Job Classification

Diverse test jobs Cloud configuration options Measured runtimes

Given job

Step 2: Ranking Cloud Configurations

~
User annotation based
on data access patterns

Class of similar test jobs

.
Current hourly cost of
configuration options

Past runtimes of
similar test jobs

> > >

$/  

$/  $/  

$/  

 $   $   $   $ 

Approximated execution cost
ranking for the given job

Class of dissimilar test jobs

Predicted cost-optimal

×

Step done just once for all infrastructure users.

~

Fig. 1. The steps in predicting a cost-optimized cloud resource configuration
for a given job using Flora.

Step 0: Infrastructure Profiling. A diverse set of test jobs,
including different algorithms and input datasets, are run
to explore the available resource configuration options. The
resulting runtimes are recorded and shared among all users of
the infrastructure.

Step 1: Job Classification. Upon submission of a job, the user
labels it as either memory-demanding or memory-yielding,
based on the data access patterns of the job. Jobs within
these two classes share similar preferences for cluster resource
allocation from a resource efficiency perspective.

Step 2: Ranking Cloud Configurations. We rank each available
cluster configuration option by the predicted execution cost
for the given job class and identify the most cost-optimal
option. This ranking is computed by applying the current
hourly resource costs to the profiling executions of the given
job’s class.

In the following, these steps will be explained in detail.

B. Infrastructure Profiling

Initially, a set of test jobs is executed on each available clus-
ter resource configuration option and the resulting runtimes
are recorded. To account for runtime variations due to shared
tenancy in public clouds or possible partial node failures, each
job’s execution should be repeated and a median runtime value
should be used.

The profiling explores all of the dimensions of the chosen
configuration space at once. In public and private clouds, a
user can typically configure the number nodes in the cluster,
the number of CPU cores per node, and the amount of memory
per node. Other configuration options, such as CPU architec-
ture, network bandwidth and latency, and I/O bandwidth and
latency, are typically less configurable, with only a few options
available at most.

The test jobs should include diverse underlying algorithms
from various domains, such as text processing, vector pro-
cessing, and tabular data processing. Similarly, the test jobs
should feature different input dataset characteristics where
such characteristics meaningfully influence the job’s runtime
behavior, like dataset size and data distribution. The profiling
step only needs to be repeated partially every time the resource
offerings of the cloud change significantly, such as when
new types of virtual machine become available. The recorded
runtimes for the test jobs can then be reused between users of
the same infrastructure, avoiding any overhead for additional
users of the profiling data. This is especially useful when using
public cloud infrastructures, since each of those is typically
used by a large number of users worldwide.

C. Job Classification

For the purpose of cost-optimal cluster resource allocation,
our approach focuses on appropriate memory allocation, as this
has been shown to have a major impact on resource efficiency
and therefore cost efficiency [9], [11], [12]. For this, Flora
classifies jobs according to their data access patterns, which
in turn drives memory allocation.

In the following, we describe the job classes and explain
how to determine the class of a given job.

Classes of Jobs.
At the most basic level, the Flora approach distinguishes two
main classes of jobs by their data access patterns:

A: Repeated Specific Data Loading (Memory-Demanding)
Here, the job accesses specific dataset samples based on the
present program state, i.e. influenced by previously seen data
samples, or the data is accessed in several repetitions, as for
instance in iterative machine learning.



B: Single Parallelisable Data Loading (Memory-Yielding)
Here, the job loads dataset samples just once or at most a few
times and the program can access the data in arbitrary order,
allowing for parallel data loading and processing in batches.
Examples include scans and row-by-row transformations.

We practically distinguish between jobs that gain a large
overall performance benefit from low-latency random access
to cached data points and jobs that do not benefit significantly
from retaining large parts of the input dataset in memory.
Jobs of class A will see a continuous performance increase
from additional memory until the program can cache all the
data it is trying to cache. Meanwhile, jobs of class B see
only a limited performance benefit from an increased memory
allocation, making allocations cost-inefficient if memory is not
free of cost.

Class Assignment.
Upon submission of a new job, the job needs to be labeled
class A or class B. This is done by user annotation. The limita-
tion of this is that it requires the users to have an expectation
about the data access of any job they are submitting. Since
this approach does not necessarily lead to correct classes in
every case, we evaluate the robustness of our approach against
misclassification in III-E.

Jobs that contain multiple stages with different data access
patterns are categorized based on their most significant stage.
We note, however, that for the purpose of resource efficiency,
jobs with significant different stages should be split into sepa-
rate jobs, so that specifically appropriate resource allocations
can be made for each stage of multi-stage data processing
pipelines.

Most recurring jobs should have the same classification,
regardless of input dataset. Conceptually, for jobs which we
deem to be recurring, we could thus conduct full executions
assuming a different classification for each (exploration) and
starting from the third execution go with the option that turned
out more suitable (exploitation).

In special cases, e.g., the characteristics of the input dataset
can skew the proportion of A-syle and B-style processing
within the job. An example is select-where-order-by, where the
select-where is B and the order-by is A. Here the classification
depends on how many hits the scan has. As previously
explained however, such challenges could be circumvented by
treating both of these stages as separate jobs and allocating
different resources for each stage individually.

D. Ranking Cloud Configurations

Once a given job has been filed under either class A or B,
we calculate an approximated cost ranking of the available
cloud resource options for an execution of the given job.

First, we calculate what each test job would cost on each
cloud configuration, based on previously measured runtimes
yet current hourly resource costs. Then, we normalize the
cost values per test job so that 1.0 represents the lowest
achieved cost for that test job by any configuration. Finally, we
rank the configuration options by the sum of their associated

normalized costs. The normalization step ensures that each test
job’s contribution to the ranking is equally weighted.

Formally, we approximate the cost-optimal cloud configu-
ration c∗ ∈ C for a given job j∗ of class K with the help of
historical test jobs P of class K as follows:

c∗ = argmin
c∈C

cost(j∗, c) ≈ argmin
c∈C

∑
j∈P

cost(j, c)
min C∈C cost(j, C)

with

cost(j, c) = runtime_in_hours(j, c) · current_hourly_cost(c)

Determining the approximate cost-optimal cloud configuration
for a given job in this way has three advantages. First, we
automatically disregard cloud configurations that have shown
to be generally unsuitable for the identified class of distributed
data processing jobs. Second, by always applying current
costs, we automatically adjust our selection in accordance with
a continuously changing resource cost structure. Finally, the
cloud configuration selection process, including the ranking of
cloud resource options, has negligible computational overhead
for each selection after the one-time infrastructure profiling
(Step 0) has been completed one time for a given infrastruc-
ture. The infrastructure profiling step is not being repeated by
each user of the approach.

III. EVALUATION

In this section, we evaluate our method, Flora, against
baseline approaches on a new trace dataset of Spark job
executions on GCP, Google’s public cloud. Specifically, we
examine the quality of the selected resource configurations,
the impact of the pricing model, and the impact of the
classification accuracy.

This evaluation, including a prototypical implementation
of Flora in Python 3.11 and the trace dataset are publicly
available5.

A. Trace Dataset

We ran a set of diverse Spark jobs on cloud configurations
with varying scale-out, memory per node, and CPU per node
and recorded the resulting runtimes.

This data also constitutes the infrastructure profiling step of
the proposed approach. However, for all experiments, Flora
and the baseline approaches only ever access runtime data
from infrastructure profiling jobs that have used a different
underlying algorithm than the job for which they select cloud
resources. We do this as we do not assume job recurrence,
i.e., we assume that there is no availability of runtime data
of previous executions of the same (or nearly the same) job.
Therefore, e.g., the configuration selection for Sort with 188
GiB disregards the profiling data from Sort with 94 GiB, and
instead only learns from the profiling data of the 16 other
infrastructure profiling jobs.

5github.com/dos-group/flora

https://github.com/dos-group/flora


Spark Jobs.
As depicted in Table I, we created 18 test jobs from nine
common underlying data processing algorithms and two dif-
ferently sized input datasets for each algorithm. These jobs
were compiled with Scala 2.12.14 and ran on Spark 3.3.0,
using Java 11.

TABLE I
THE 18 SPARK JOBS AND THEIR CLASSIFICATIONS

Algorithm Data Type Dataset Sizes [GiB] Class

Grep Text { 3010, 6020 } B

Sort Text { 94, 188 } A

Word Count Text { 39, 77 } B

K-Means Vector { 102, 204 } A

Linear Regression Vector { 229, 459 } A

Logistic Regression Vector { 210, 420 } A

Join Tabular { 85, 172 } A

GroupByCount Tabular { 280, 560 } B

SelectWhereOrderBy Tabular { 92, 185 } B

The jobs consist of commonly known data processing
algorithms, of which we used the standard implementation
present in Spark’s libraries. The actual source code of the
jobs and the test dataset generators can be seen in a public
git repository6. While these types of jobs have also been used
in the creation of older such trace datasets [16], [24], our
new dataset aims to weigh the jobs targeting different data
types equally, in an attempt to create a balanced sample. In
particular, those are text data, vector data, and tabular data.

We were able to classify most of the test jobs based on just
our knowledge of the algorithm. For the jobs involving the
Join and SelectWhereOrderBy algorithms, we needed to also
consider the data distribution in the input datasets to achieve
a fitting classification. For Join, we assign class A since we
know the smaller of the two tables in our test dataset is not
negligibly small. For SelectWhereOrderBy, we assign class B
since we know that only a small portion of samples in our test
dataset is selected in the SelectWhere phase and therefore the
sorting of the OrderBy phase is less significant.

Cloud Configurations.
Table II lists the ten different GCP configurations we used to
execute each of the 18 jobs, resulting in a total of 180 job
executions.

Configurations 1-3 differ only in total cluster memory, while
configurations 4-6 differ only in total cluster CPU cores. The
remaining configurations share total memory and total CPU
with at least one other configuration, only differing in scale-
out. Thus, our choice of cloud configuration space and the
resulting runtime dataset also enables isolating and interpreting
each of these three influences’ impact on a given job’s runtime.
This distinguishes our trace from the other such datasets of
which we are aware.

6github.com/dos-group/benchspark

TABLE II
CLOUD CONFIGURATIONS USED FOR JOB EXECUTION

# Instance Type Scale-Out Total Cores Total RAM

1 n2-highcpu-8 8 64 64 GiB

2 n2-standard-8 8 64 256 GiB

3 n2-highmem-8 8 64 512 GiB

4 n2-highmem-4 4 16 128 GiB

5 n2-standard-8 4 32 128 GiB

6 n2-highcpu-32 4 128 128 GiB

7 n2-highmem-8 2 16 128 GiB

8 n2-standard-4 8 32 128 GiB

9 n2-standard-4 16 64 256 GiB

10 n2-highcpu-8 16 128 128 GiB

Overall, the configuration options in our evaluation dataset
do not focus on just scale, since for the most part, that would
translate mostly to a cost-performance trade-off [12]. Instead,
the prominent configuration dimensions include the ratio be-
tween memory and CPU cores, as well as the distribution
of these given resources across fewer large nodes or more
numerous but smaller nodes. This in turn creates a search space
of configuration options with different degrees of efficiency,
i.e., distance from the cost-performance Pareto front.

Job Executions.
Table III shows the statistical properties of the trace dataset
that resulted from executing each of the 18 Spark jobs on each
of the ten resource configurations.

TABLE III
STATISTICAL PROPERTIES OF THE EVALUATION TRACE DATASET

CONTAINING 180 SPARK JOB EXECUTIONS

Cost [USD] Runtime [seconds]

mean 1.409 1834.832

std 2.645 2917.467

min 0.177 141.680

25% 0.457 462.730

50% 0.772 848.700

75% 1.289 1722.530

max 26.156 21714.740

A job execution cost about $1.41 USD on average and
lasted about half an hour on average. Note that due to budget
constraints, each job was only executed once on each cloud
resource configuration, which may make this measured test job
data somewhat vulnerable to outliers. Users of the approach
may consider running each test job multiple times to improve
the quality of their infrastructure profiling data.

https://github.com/dos-group/benchspark


B. Resource Allocation Approaches Tested

As part of our evaluation, we compare Flora to two state-
of-the-art baselines and also to several simple baseline ap-
proaches. All approaches attempt to select the most cost-
optimal configuration for a given job out of the given con-
figuration options.

Flora is an approach that does not assume the recurrence
of a job to learn from runtime data of previous instances
of the job or to amortize the initial cost of traversing the
configuration search space of the given job. Consequently, we
did not evaluate competing approaches that rely on building
performance models from previous instances of a job. In our
evaluation, Flora’s computational overhead for each selection
is in the millisecond range on consumer hardware. All other
approaches tested also have a low overhead for selecting a
resource configuration for an individual given job.

The evaluated approaches are as follows:

• Flora
This is our method as described in Section II.

• Flora with one class (Fw1C)
This approach is similar to Flora, but it skips the classi-
fication step and thus learns from every test job and not
just from a selection of similar test jobs.

• Juggler [9]
As highlighted in Section IV, Juggler is a state-of-the-
art approach. It choses configurations for Spark jobs
based on providing just enough total cluster memory
for in-memory caching after a brief job profiling period.
However, Juggler is only applicable for iterative machine
learning workloads and is hence only evaluated for K-
Means, Linear Regression, and Logistic Regression.

• Crispy [11]
As highlighted in Section IV, Crispy is a state-of-the-art
approach. It attempts to configure the cluster according
to an estimate of the memory consumption of the given
job, which Crispy obtains by extrapolating the memory
consumption that it measured during a brief job profiling
period.

• Minimizing/maximizing CPU
This approach means always selecting the configuration
option that has the highest/lowest allocation of CPU
cores.

• Minimizing/maximizing memory
This approach is analogous and means always selecting
the configuration option that has the highest/lowest allo-
cation of memory.

• Random selection
This represents the average expected result of a uniformly
sampled random choice from all cloud configuration
options.

C. Cost-Optimized Cloud Resource Selection

In this Section, we present the main results of our evaluation
of Flora and the aforementioned baseline approaches. All
approaches attempt to select the most cost-optimal configu-
ration out of the 10 options for each of the 18 jobs in our
trace dataset. We simulate this selection and we then consult
our aforementioned evaluation trace dataset to assess to what
extent an approach succeeds in identifying the cost optimal
configuration option.

For this evaluation we apply GCP’s VM pricing as of
2024-12-01 in Google’s Frankfurt data center as the cost model
to our dataset. Further, we normalized the dollar cost and
runtime in seconds for each job, so that 1.0 represents the
minimum observed value for that given job. This is to ensure
that the quality of each of the 18 configuration selections is
weighted equally in this evaluation.

TABLE IV
RESULTS OF CLOUD RESOURCE SELECTION APPROACHES,

NORMALIZED TO 1 = OPTIMAL, THEN AVERAGED OVER ALL 18 JOBS.

Approach Cost Runtime

minimize CPU 2.126 7.837

random selection 1.941 3.484

minimize memory 1.864 3.166

maximize CPU 1.590 1.346

maximize memory 1.487 1.442

Flora with one class 1.336 1.952

Juggler 1.334 2.973

Flora 1.052 1.578

Table IV presents a summary of this evaluation. Here,
we averaged the normalized cost and runtime values over
all 18 jobs. We see that Flora’s selections achieve a mean
normalized cost of 1.052, meaning that, on average, the cloud
configuration that Flora selects for a given job merely incurs
a 5.2% higher execution cost than what the cheapest available
choice would have incurred. This is by far the lowest value
out of all tested approaches.

The mean normalized runtime Flora achieves with these se-
lections is 1.578, which means that, on average, Flora chooses
a configuration that leads to an execution duration 57.8%
longer than what would have been possible with the fastest
configuration option for that given job. Comparatively, this
means that Flora’s cost-optimized selections still lead to decent
performance, only being beaten by the baseline approach that
always chooses the configuration with the highest total CPU
allocation. This suggests that the low cost is achieved in
part by occupying the efficiently used resources for shorter
durations.



TABLE V
CONFIGURATION SELECTION AND RESULTING NORMALIZED JOB

EXECUTION COST FOR EACH JOB, WITH 1 = OPTIMAL

Crispy Juggler Fw1C Flora
Grep 3010 GiB #7 1.711 – – #9 1.381 #1 1.000
Grep 6020 GiB #7 1.730 – – #9 1.421 #1 1.000
GroupByCount 280 GiB #2 1.389 – – #9 1.445 #1 1.000
GroupByCount 560 GiB #3 1.870 – – #9 1.423 #1 1.003
Join 85 GiB #9 1.196 – – #9 1.196 #9 1.196
Join 172 GiB #9 1.093 – – #9 1.093 #9 1.093
K-Means 102 GiB #7 1.482 #7 1.482 #8 1.308 #9 1.237
K-Means 204 GiB #2 1.000 #2 1.000 #8 2.158 #9 1.081
Lin. Regression 229 GiB #2 1.000 #7 1.503 #9 1.053 #9 1.053
Lin. Regression 459 GiB #3 1.076 #2 1.294 #9 1.146 #9 1.146
Log. Regression 210 GiB #3 1.066 #2 1.435 #9 1.045 #9 1.045
Log. Regression 420 GiB #3 1.292 #3 1.292 #9 1.000 #9 1.000
SelectWhereO... 92 GiB #3 1.772 – – #9 1.334 #1 1.000
SelectWhereO... 185 GiB #7 1.496 – – #9 1.307 #1 1.000
Sort 94 GiB #2 1.251 – – #2 1.251 #9 1.050
Sort 188 GiB #2 1.941 – – #2 1.941 #9 1.031
Word Count 39 GiB #9 1.258 – – #9 1.258 #1 1.000
Word Count 77 GiB #9 1.294 – – #9 1.294 #1 1.000

Mean 1.384 1.334 1.336 1.052

Table V details the selection quality of Flora and the main
baseline approaches for each of the 18 jobs. We see that
Flora’s cloud resource selections generally lead to optimal
or near-optimal execution cost, overall outperforming baseline
approaches.

Out of the ten available cloud configuration options, Flora
ended up choosing configuration #9 for all jobs of class A.
This indicates that any combination of four out of the five test
jobs of class A, on average, have seen the most cost-optimal
solution with configuration #9. While configuration #9’s total
cluster memory of 256 GiB allows for caching at least parts of
the input datasets of the memory-demanding jobs of class A.
Meanwhile, it is notable that Flora made a clear choice in favor
of spreading the total cluster CPU cores and memory over 16
smaller nodes as compared to configuration #2, which has the
same number of CPU cores and memory, but spread over just
8 larger nodes. This suggests that the jobs of this class do
not just share a preference for the allocation of memory for
caching, but they also share a preference for the distribution
of the resources among cluster nodes.

In line with the assertion that jobs of class B do not need
significant amounts of memory for caching large parts of the
dataset, Flora chose #1 configuration for those jobs. This is
the configuration that has the least total cluster memory and
resulted in cost-optimal execution for almost all class B jobs.

D. Influence of the Resource Cost Structure

The total cost of an execution is determined by the execution
duration and the hourly cost of the resources used during the
execution.

Once the cost of individual cloud resources changes, the
cost-efficiency ranking of the available cloud configurations
may change as well. For instance, fluctuating renewable energy
production continuously changes the environmental cost of
operating certain cloud resources [25]. Further, fluctuating
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Fig. 2. Comparing cloud configuration selection approaches for varying
individual resource costs. Main approaches are highlighted in color, while
basic baselines for reference are shown in gray.

demand and availability due to shared infrastructure use vary
the cost of using individual cloud resources, either in terms of
price in public clouds [23] or capacity consumption in private
clouds.

In Figure 2, we investigate how the quality of resource
selections of Flora and baseline approaches change in response
to changes in the cost structure of the available resource
options. In particular, we focus here on the prices of 1 GB
of memory and 1 vCPU core. On the far left of the x-axis
(10−2), the hourly cost of 1 GB of memory is equal to the
hourly cost of 0.01 vCPU cores. On the far right of the x-
axis (101), the hourly cost of 1 GB of memory is equal to
the hourly cost of 10 vCPU cores. For reference, we mark
the price points we used in the main evaluation experiment in
Section III-C with a thin green vertical line.

We see that Flora is able to react to price changes in indi-
vidual resources comparatively well. The pricing points where
Flora adjusts its resource selection correspond to the points
where the plot line contains a “step”. Meanwhile, approaches
that directly allocate individual resources only work as long as
the hourly cost of the resource is justified by the performance
gained from that resource. This can be observed with Juggler
and its memory allocation for in-memory caching, as well as
the approaches minimizing or maximizing the allocation of a
particular resource.

In our experiments, the hourly costs for resource configura-
tions with the same amount of total cluster memory and total
cluster CPU cores are equal, regardless of scale-out. While
this represents the actual cost model for the cloud resources
we used to generate the trace dataset as of 2024-12-01, it may
differ for other infrastructures or cost denominations other than
price. However, conceptually, this cannot break Flora either,
since its selection decision is not based on the current cost of
individual aspects of the resource configuration, but based on
the current cost of discrete configuration options.



E. Influence of Flora’s Classification Accuracy

Flora uses a classification step to select which test jobs to
learn from, preferring ones that are similar to the given job.
In this section, we investigate how the classification accuracy
for jobs affects the quality of resulting resource selection.

We repeated the main evaluation of Section III-C, but varied
the number of given jobs that we misclassify on purpose
to simulate user annotation by non-experts. The test jobs’
classification remains accurate in this experiment, assuming it
has been done by experts, since this classification only needs
to be done once per test job for all users of the approach.
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Fig. 3. Evaluating Flora’s resource selection quality for varying job classifi-
cation accuracy.

Figure 3 shows the results of this experiment. We see that
users who misclassify a third or more of their given jobs would
achieve better results using Flora with a single class instead
of the original method with two classes. Furthermore, we can
observe that Flora users who guess their job’s class with a coin
flip are still expected to achieve significantly better results than
users that randomly select a cloud configuration themselves,
without using Flora.

F. Discussion

The evaluation results have demonstrated that jobs with
similar data access patterns share similar preferences for
cluster resources, especially with respect to memory alloca-
tion. Meanwhile, suitable memory allocation has a significant
impact on the cost efficiency of a job execution, as been found
in related work [9]–[12].

For the investigated jobs and the cloud configurations,
Flora’s binary decision in favor of allocating memory appears
to yield better results than directly estimating the right amount
of memory to allocate, as attempted by, e.g., Juggler [9]. On
the one hand, this may be due to the coarse-grained total clus-
ter memory options within the available cloud configuration
options of our trace dataset. On the other hand, it may be due

to the fact that Flora automatically favors cost-efficient cloud
configurations in general, e.g., by automatically choosing an
appropriate distribution of the allocated resources across the
cluster nodes.

Our approach has negligible computational overhead be-
yond a one-time infrastructure profiling phase that is unique
per infrastructure offering, and the results can be utilized by all
users of the distributed dataflow system on said infrastructure.
For instance, the method could be implemented by cloud
providers, who conduct the infrastructure profiling to offer all
of their users cost-efficient processing.

Without needing to repeat the infrastructure profiling step,
users could re-implement the job classification aspect, e.g.,
further subdivide or merge classes. As seen when comparing
Flora with one vs. with two classes, a more finegrained clas-
sification may lead to more accurate job behavior predictions,
but it also increases the possibility of misclassifications.

Non-expert users, without sufficient knowledge of their
job, can fall back to a one-class version of Flora and still
achieve reasonable cost efficiency for the first execution of
their job. Meanwhile, if their job happens to be recurring, the
more suitable class in a two-class approach could be found
automatically by trying both class assumptions for the same
job and examining which class assumption leads to a lower
cost. This search cost would then be amortized by subsequent
instances of the recurring job.

IV. RELATED WORK

In this section, we discuss related approaches to resource
allocation for distributed dataflows. We group the works
by what information the approaches base their decision on.
Related approaches to our research problem learn job behavior
from historical job executions, from dedicated job profiling, in-
frastructure profiling, or a combination of multiple information
sources.

A. Learning from Historical Executions

Several approaches use historical runtime data to predict a
job’s performance. This runtime data is typically obtained from
full previous executions of a recurring job [4], [13]–[17]. The
models are then used to predict the execution performance
for different cluster configurations, allowing to choose an
optimized configuration.

CherryPick [15] and related approaches [16], [17], for
example, use Bayesian optimization to iteratively predict the
cost-optimal cloud configuration based on all available his-
torical executions, while respecting a minimum performance
target. The exploration phase ends when the cost of further
search is deemed unjustified.

Meanwhile, Silhouette [14] is a cloud configuration se-
lection method based on performance modeling with low
training overhead. Silhouette uses a model transformer for
rapid transfer learning, and can optimize cloud configurations
under constraints.

The drawback of all resource selection approaches based on
historical executions is that they only work for jobs that are



recurring in some form, without solving the difficult problem
of distinguishing historical jobs that behave too different to be
considered the same job still. At the same time, Microsoft and
Alibaba, for instance, have identified only 40-65% of jobs in
their data centers as recurring [26]–[28].

Unlike these approaches, Flora does not assume the exis-
tence of any previous or subsequent executions of the given
job. This also allows Flora to avoid the problem of determining
when a job is deemed similar enough to be an instance of
a recurring job, considering possible changes in input dataset
characteristics or job parameters which may influence the job’s
resource access patterns significantly.

B. Learning from Job Profiling

Several other approaches attempt to efficiently learn enough
information about just the given job to make a resource
allocation decision [9]–[11], [20]–[22].

Ernest [21] trains a parametric model for the scale-out
behavior of jobs from the results of profiling runs on reduced
input data, which works well for data-parallel programs that
exhibit intuitive scale-out behavior. Ernest performs profiling
runs on the target infrastructure, leading to relatively high
overhead in cost and time.

Juggler [9] and Blink [10] by Al-Sayeh et al. can use small
job profiling runs independent of the target infrastructure to
measure the ratio between input dataset size and cached data
size for Spark jobs. This information is then used to allocate
cluster resources with sufficient memory to enable in-memory
caching of the dataset.

Crispy [11], our own work, follows a similar approach as
Juggler and Blink by estimating the memory required for a
full job execution, but differs in details of how memory usage
is measured during profiling. Like Juggler and Blink, Crispy
has only been shown to work well on some jobs, notably ones
that exhibit a straightforward relation between input sizes and
memory use, e.g., for caching.

These job-profiling based approaches, like Flora, do not
assume job recurrence. Thus, they try to configure the clus-
ter directly, without relying on performance data from full
historical executions, i.e., previous instances of a recurring
job. In contrast, however, Flora can utilize knowledge gained
from executions of loosely related historical jobs on the target
infrastructure.

C. Learning from Infrastructure Profiling

Some related approaches use infrastructure profiling to learn
about available configuration options and apply this knowledge
during their configuration selection process.

RUPAM [19], is a heterogeneity-aware task scheduling
system for big data platforms, which considers both task-level
resource access patterns characteristics as well as available
hardware characteristics. It expands Spark’s native scheduling
decisions which already respect data locality concerns that are
rather characteristic for co-located compute and storage nodes
of on-premise clusters. It uses sysbench and iperf to measure
CPU, I/O, and network performance of the available machines.

While RUPAM aims to maximize performance, given the
available resource options, it does not consider the operating
cost of different resources and is therefore not suitable for
cloud-based distributed dataflow job execution.

Perona [18], our own work, employs an infrastructure fin-
gerprinting approach that automatically selects statistically sig-
nificant benchmarking metrics and saves the gathered bench-
marking data in a public repository. Users of the approach can
then utilize the infrastructure fingerprints to iteratively find
an optimized configuration quicker than standalone iterative
search based configuration approaches like Arrow or CherryP-
ick. Perona therefore also shares these approaches’ limitation
of needing to expend significant computational power to
choose a resource configuration for each new job, thus also
relying on the assumption that the main runtime-behavior-
influencing factors remain consistant between instances of a
recurring job.

Unlike these approaches, Flora uses actual distributed
dataflow jobs as test jobs to profile the infrastructure. Also,
Flora has no need for an adaptation step for each new given
job and does not rely on any test runs of the given job
itself to make a configuration selection. Instead, the given job
undergoes a user-annotated classification.

V. CONCLUSION

In this paper, we presented Flora, a new approach to
selecting cloud resources for cost-optimized big data process-
ing. We have shown that Flora selects near-optimal resource
configurations and, after an initial infrastructure profiling
step, imposes virtually no resource selection overhead. Flora
accomplishes this by leveraging categories of jobs, treating a
given job as either memory-demanding or memory-yielding,
and then selecting the cloud configuration that was optimal for
a category of jobs in an infrastructure-specific profiling trace,
respecting current cloud resource costs.

In the future, we want to automate and improve the classifi-
cation step of our approach to help users submit jobs they have
limited knowledge about. In particular, we plan to explore a
combination of static code analysis and minimal profiling of
given jobs.
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