
Privacy-Preserving Sharing of Data Analytics Runtime Metrics
for Performance Modeling

Jonathan Will
will@tu-berlin.de

Technische Universität Berlin
Berlin, Germany

Dominik Scheinert
dominik.scheinert@tu-berlin.de
Technische Universität Berlin

Berlin, Germany

Seraphin Zunzer
zunzer@campus.tu-berlin.de
Technische Universität Berlin

Berlin, Germany

Jan Bode
jan.bode@campus.tu-berlin.de
Technische Universität Berlin

Berlin, Germany

Cedric Kring
c.kring@campus.tu-berlin.de
Technische Universität Berlin

Berlin, Germany

Lauritz Thamsen
lauritz.thamsen@glasgow.ac.uk

University of Glasgow
Glasgow, United Kingdom

ABSTRACT
Performance modeling for large-scale data analytics workloads can
improve the efficiency of cluster resource allocations and job sched-
uling. However, the performance of these workloads is influenced
by numerous factors, such as job inputs and the assigned clus-
ter resources. As a result, performance models require significant
amounts of training data. This data can be obtained by exchanging
runtime metrics between collaborating organizations. Yet, not all
organizations may be inclined to publicly disclose such metadata.

We present a privacy-preserving approach for sharing runtime
metrics based on differential privacy and data synthesis. Our evalu-
ation on performance data from 736 Spark job executions indicates
that fully anonymized training data largely maintains performance
prediction accuracy, particularly when there is minimal original
data available. With 30 or fewer available original data samples,
the use of synthetic training data resulted only in a one percent
reduction in performance model accuracy on average.

CCS CONCEPTS
• Computing methodologies→ Distributed computing method-
ologies; • Information systems; • Security and privacy;

KEYWORDS
Distributed Dataflows, Resource Allocation, Performance Modeling,
Data Sharing, Data Privacy

ACM Reference Format:
Jonathan Will, Dominik Scheinert, Seraphin Zunzer, Jan Bode, Cedric Kring,
and Lauritz Thamsen. 2024. Privacy-Preserving Sharing of Data Analyt-
ics Runtime Metrics for Performance Modeling. In Companion of the 15th
ACM/SPEC International Conference on Performance Engineering (ICPE ’24
Companion), May 7–11, 2024, London, United Kingdom. ACM, New York, NY,
USA, 4 pages. https://doi.org/10.1145/3629527.3652276

This work is licensed under a Creative Commons Attribution
International 4.0 License.

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0445-1/24/05.
https://doi.org/10.1145/3629527.3652276

1 INTRODUCTION
Distributed dataflow systems, such as Apache Spark [16] and
Apache Flink [2] enable parallel data processing on large clusters of
commodity hardware by facilitating parallelization and error han-
dling. Here, performance models, which accurately estimate a job’s
runtime on various cluster setups, enable efficient job scheduling
and job-specific resource allocation [6, 14].

However, accurately modeling the performance of such data
processing jobs is challenging. Excluding unpredictable events like
hardware failures, various factors in the wider execution context
influence runtime behavior. These factors include data analytics
algorithm and job parameters, software versions, dataflow frame-
work parameters, input dataset characteristics, the cluster resources
provided, and possibly the interference of co-located jobs running
on the same cluster [5, 15]. Many of these factors may vary between
job executions. Therefore, due to the potentially high-dimensional
feature space, creating comprehensive performance models neces-
sitates access to substantial amounts of training data.

There are approaches for sharing execution-context-aware per-
formance metrics among collaborators [12, 15]. Nevertheless, this
approach to collaborative machine learning raises concerns about
data privacy, particularly for private sector companies who may
be reluctant to share such metadata with competitors. This applies
especially to certain characteristics of their processed datasets that
may disclose internal business information, such as a business’s
customer count.
Several methods have been proposed for achieving privacy in col-
laborative machine learning. These methods vary in effectiveness
depending on the specific application [3, 4, 7, 9, 10, 13]. One promis-
ing method for sharing training data while maintaining privacy is
differential privacy with data synthesis [9, 10].

In this paper, we introduce an automated method for privacy-
preserving collaborative performance modeling for dataflow work-
loads. Our approach involves obfuscating performance model train-
ing data using differential privacy through data synthesis. Addition-
ally, we assess and discuss the potential of this method to maintain
performance model accuracy when using synthetic training data.
We also measure the overhead associated with generating synthetic
performance data. For the evaluation, we use a dataset of 736 unique
Spark job executions.

https://doi.org/10.1145/3629527.3652276
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3629527.3652276

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Jonathan Will et al.

2 RELATEDWORK
This section explains performance modeling of distributed dataflow
workloads and lays out privacy-preserving approaches to collabo-
ratively training machine learning models.

2.1 Dataflow Job Performance Modeling
The performance of distributed dataflow jobs is influenced by nu-
merous factors. These factors include the type and size of the allo-
cated cluster, software versions, along with certain job parameters
and dataset characteristics.

Previous works on cluster resource allocation establish perfor-
mance models for different cluster configurations to learn dataflow
job behavior. These models can be employed for automated sched-
uling or resource allocation decisions [5, 6, 11, 12, 14, 15].
Karasu [12] utilizes shared performance metrics to accelerate the
iterative optimization of given objectives like minimizing runtime
or carbon emissions.
C3O [15] shares models and performance metrics for a specific
job in a single repository. The repository maintainers annotate
all the job parameters and dataset characteristics that influence
performance.

While data sharing approaches can help solve the cold-start
problem of model-based performance optimization, a drawback of
these approaches is that participating organizations must be willing
to share metadata, including dataset characteristics, despite privacy
concerns.

2.2 Privacy in Collaborative Machine Learning
For achieving training data privacy, Liu et al. have identified the
following three general categories of approaches [8]:

1. Aggregation. Aggregation-based approaches for privacy in
collaborative machine learning involve participants independently
training models on their local data and sharing aggregated model
updates, such as gradients or statistics instead of raw data. One
prominent example is Federated Learning [7].

2. Encryption. Training with encrypted data has been demon-
strated to be effective for relatively simple models, like Naive Bayes
and decision trees [1]. Notable examples of encryption methods
include Secure Multi-Party Computation [4] and Homomorphic
Encryption [3].

3. Obfuscation. Various obfuscation techniques can be applied
to unencrypted training data, including adding noise or gener-
ating new data while maintaining statistical properties neces-
sary for training accurate models. Notable methods include Data
Anonymization [13] and Data Synthesis [9, 10].

We use an obfuscation-based approach since the other two cate-
gories of approaches have shortcomings that limit their applicability
to collaborative performance modeling of data analytics workloads.
Aggregation-based methods necessitate continuous cooperation of
several collaborators, which might not be feasible for rarely-used
data analytics jobs.
Encryption-based approaches can share training data, but the lim-
ited model viability of those approaches limit their applicability to
performance modeling of data analytics workloads.

3 APPROACH
This section outlines our obfuscation-based approach for privacy-
preserving collaborative performance modeling.

3.1 Idea Overview
The main aim of our approach is to share performance model train-
ing data for data analytics workloads between collaborating orga-
nizations. In order to incentivize data sharing, it is important to
anonymize meta information pertaining to a collaborator’s work-
loads. At the same time, the data must maintain the statistical
properties required for training accurate performance models, such
as an accurate relation between execution context and runtime.
We are presenting an automated method for collaborative perfor-
mance modeling of dataflow workloads while preserving privacy,
an overview of which is shown in Figure 1.

Public Performance
Metrics Repository

Performance
Model

Job Scheduler /
Resource Allocator

submit data
analytics job

run job

measure
performance

metrics

get relevant
training data

User

Privacy
Preservation
Technique

Cluster

Figure 1: High-level overview of privacy-preserving runtime
metrics sharing for collaborative performance modeling.

Example Use Case:
An online retailer regularly processes sales data and captures per-
formance metrics, including runtime and execution context, such
as the number of rows and columns processed and the public cloud
resources used. From this data, the retailer generates synthetic
datapoints that collaborators can use to train reasonably accurate
performance models. Yet, collaborators cannot derive sensitive in-
formation from the shared data, such as the number of sales pro-
cessed by a specific job or the total amount of sales processed during
a certain time period.

3.2 Data Obfuscation via Data Synthesis
To facilitate privacy-preserving sharing of performancemodel train-
ing data, we employ an obfuscation technique introduced as Data-
Synthesizer by Ping et al. [9]. This technique generates synthetic
data from the original dataset in two steps. Each step is represented
by a separate system module.

1) The DataDescriber captures the data types, correlations, and
distributions of the attributes in the original dataset and generates
a data summary.

2) The DataGenerator samples any specified number of synthetic
data points from the data distribution summary generated by
DataDescriber. Therefore, the synthetic data points differ from
the original data in terms of both quantity and content.

DataSynthesizer has been released as an open-source tool1.

1github.com/DataResponsibly/DataSynthesizer, accessed in January 2024

https://github.com/DataResponsibly/DataSynthesizer

Privacy-Preserving Collaborative Performance Modeling ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

4 EVALUATION
In this section, we assess the feasibility of our approach through
experimental evaluation. We measure the accuracy of performance
models trained with synthetic data and the overhead involved in
producing such data.

4.1 Experimental Setup
In the evaluation, we use the trace dataset and the performance
models published in C3O [15].

Trace Dataset.
The dataset contains Spark job executions for five distinct algo-
rithms that were tested across various cluster configurations in
Amazon EMR, a managed Spark service. The algorithms, namely
Sort, Grep, Linear Regression, K-Means, and Page Rank, were
executed on clusters of different sizes, with varying runtime-
influencing job parameters and input dataset characteristics. The
dataset comprises 36, 150, 140, 140, and 270 unique runtime experi-
ments for the aforementioned jobs, respectively.

Performance Models.
Weutilize the C3O performancemodeling system’s two default mod-
els: Gradient boosting and a model based on Ernest [14]. Typically,
gradient boosting displays higher accuracy, except in situations
with limited availability of training data, where the Ernest model
may have superior accuracy.
We evaluate the trained model’s accuracy with the mean absolute
percentage error (MAPE) metric. For example, if the predicted run-
time deviates by 20%, the MAPE will be expressed as 0.2.

Local Hardware.
We measured the overhead of generating synthetic data with
a Python script that ran single-threaded on an octa-core AMD
Ryzen 7 PRO 4750U processor (1.7-4.1 GHz, 8MB cache).

The full evaluation is available in a public code repository:
github.com/dos-group/pm-data-privacy

200 400 600 800 1000
Synthetic samples

0.0

0.1

0.2

0.3

0.4

M
AP

E

Sort

200 400 600 800 1000
Synthetic samples

0.0

0.1

0.2

0.3

0.4

M
AP

E

Grep

200 400 600 800 1000
Synthetic samples

0.0

0.1

0.2

0.3

0.4

M
AP

E

Linear Regression

200 400 600 800 1000
Synthetic samples

0.0

0.1

0.2

0.3

0.4

M
AP

E

K-Means

200 400 600 800 1000
Synthetic samples

0.0

0.1

0.2

0.3

0.4

M
AP

E

Page Rank

Ernest model: Original data
Ernest model: Synthetic data

Gradient boosting: Original data
Gradient boosting: Synthetic data

Figure 2: Synthetic training dataset size and resulting perfor-
mance model error compared to using the full original data.

4.2 Performance Modeling with Synthetic Data
A viable approach must allow for accurate performance model-
ing with synthetic data. We assess the performance model’s error
trained on original and synthetic data in various scenarios.

Synthetic Training Data Size and Performance Model Accuracy.

First, we investigate how the creation of a substantial quantity of
synthetic training data impacts model accuracy. We measured the
accuracy of performance models that were trained on complete
original datasets for different Spark jobs. Then, we extracted vari-
ous amounts of synthetic data from the same dataset, mainly larger
quantities than the original data available. With this sample data,
we retrained the models and measured their accuracy.

Figure 2 shows the results of this experiment. They suggest
that additional synthetic training data does not have an observable
impact on model accuracy beyond a certain point. Further, using
synthetic data for training works differently well compared to using
original data, depending on the model performance and type of job.

Sampling Synthetic Data from Few Available Original Data Points.

Next, we examine the feasibility of generating synthetic training
data with limited availability of original training data. To this end,
we randomly selected different small quantities of samples from
the original performance dataset and generated 1000 synthetic data
points from that. Then, we trained the performance models on
both the original and synthetic data and compared their prediction
accuracy.

Figure 3 shows the results of this experiment. We find that when
original data availability is low, the use of synthetic data for train-
ing results in performance models that are nearly as accurate. For
availability ranging from 3 to 30 original samples, we observed a
difference of only 1.14%. However, this contrasts with the results
from the previous experiment shown in Figure 2, where models
trained on synthetic data sampled from a larger dataset of original
data can perform significantly worse than models trained on the
original data.

5 10 15 20 25 30
Available original samples

0.0
0.1
0.2
0.3
0.4
0.5
0.6

M
AP

E

Sort

5 10 15 20 25 30
Available original samples

0.0
0.1
0.2
0.3
0.4
0.5
0.6

M
AP

E

Grep

5 10 15 20 25 30
Available original samples

0.0
0.1
0.2
0.3
0.4
0.5
0.6

M
AP

E

Linear Regression

5 10 15 20 25 30
Available original samples

0.0
0.1
0.2
0.3
0.4
0.5
0.6

M
AP

E

K-Means

5 10 15 20 25 30
Available original samples

0.0
0.1
0.2
0.3
0.4
0.5
0.6

M
AP

E

Page Rank

Ernest model: Original data
Ernest model: Synthetic data

Gradient boosting: Original data
Gradient boosting: Synthetic data

Figure 3: Performance model error with 1000 synthetic data
samples, generated from small amounts of original data.

https://github.com/dos-group/pm-data-privacy

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Jonathan Will et al.

4.3 Data Synthesis Overhead
A viable approach to creating synthetic data for accurate perfor-
mance modeling must not impose excessive overhead for data cre-
ation. We measured the overhead of creating synthetic training
data on the hardware described in Section 4.1.

100 200 300 400 500
Generated synthetic samples

0

4

8

12

R
un

tim
e

[s
]

10 15 20 25 30
Available original samples

0

4

8

12

R
un

tim
e

[s
]

Job (dataset columns): Sort (3) Grep (4) Linear Regression (5) K-Means (5) Page Rank (5)

Figure 4: Overhead for creating synthetic data for different
Spark job performance datasets.

In Figure 4, we see that for performance datasets containing
the runtime and runtime-influencing factors of typical Spark jobs,
this overhead was measured to be approximately between half a
second and ten seconds. We observe that the computational cost of
synthesizing data does not significantly increase with an increase
in the amount of sampled synthetic data or the number of available
samples in the original dataset. Rather, the findings suggest that the
primary computational effort arises from processing each attribute,
i.e., column, in the original dataset. In the case of DataSynthesizer,
this part is conducted by the DataDescriber component.

4.4 Discussion
We will now discuss the experimental evaluation’s results in terms
of the practical implications for our approach’s viability.

First, we observed that it is feasible to generate substantial quan-
tities of synthetic data without compromising the model’s accuracy.
This implies that we can achieve privacy not just by modifying the
content of each data point, but also by creating arbitrarily large
amounts of synthetic data, thereby concealing the actual quantity
of processed jobs.

Then, it has been observed that the model accuracy gap when
using synthetic data is lowest when the quantity of original data
points is low. In instanceswhere publicly shared training data points
are unavailable or rare, the introduction of synthetic data can have
a significant positive effect on the model accuracy of collaborators.
Consequently, sharing synthetic data is particularly advantageous
in the early stages of a training data sharing initiative.

Finally, the computational overhead of generating synthetic per-
formance data has been shown to range in seconds for performance
datasets of typical Spark jobs on typical consumer hardware. This
low amount of time should not discourage collaborators from gen-
erating and sharing synthetic data.

5 CONCLUSION
In summary, this paper has explored how differential privacy via
data synthesis can facilitate the sharing of runtime data for perfor-
mancemodeling of data analytics workloads in a privacy-preserving
manner. Our initial method has demonstrated an acceptable trade-
off between model prediction accuracy and data privacy. Especially
in cases where there is limited available performance data overall,
the accuracy of collaborators’ performance models can be signifi-
cantly improved through the use of shared synthetic training data
samples. Further, the data synthesis has been shown to induce low
computational overhead.

In the future, we will investigate alternative approaches to en-
sure privacy when sharing performance metrics of data analytics
workloads. Moreover, we hope our short paper also inspires further
research by others in the same direction.

ACKNOWLEDGMENTS
This work has been supported through a grant by the German
Research Foundation (DFG) as “C5” (grant 506529034).

REFERENCES
[1] Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser. 2014. Machine

Learning Classification over Encrypted Data. Cryptology ePrint Archive (2014).
[2] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,

and Kostas Tzoumas. 2015. Apache Flink: Stream and Batch Processing in a
Single Engine. Bulletin of the IEEE Computer Society Technical Committee on Data
Engineering 36, 4 (2015).

[3] Haokun Fang and Quan Qian. 2021. Privacy Preserving Machine Learning with
Homomorphic Encryption and Federated Learning. Future Internet 13, 4 (2021).

[4] Oded Goldreich. 1998. Secure Multi-Party Computation. Manuscript. Preliminary
version 78, 110 (1998).

[5] Chin-Jung Hsu, Vivek Nair, Vincent W Freeh, and Tim Menzies. 2018. Arrow:
Low-level Augmented Bayesian Optimization for Finding the Best Cloud VM. In
ICDCS ’18. IEEE.

[6] Muhammed Tawfiqul Islam, Shanika Karunasekera, and Rajkumar Buyya. 2021.
Performance and Cost-Efficient Spark Job Scheduling Based on Deep Reinforce-
ment Learning in Cloud Computing Environments. IEEE Transactions on Parallel
and Distributed Systems 33, 7 (2021).

[7] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. 2020. Federated
Learning: Challenges, Methods, and Future Directions. IEEE Signal Processing
Magazine 37, 3 (2020).

[8] Bo Liu, Ming Ding, Sina Shaham, Wenny Rahayu, Farhad Farokhi, and Zihuai
Lin. 2021. When Machine Learning Meets Privacy: A Survey and Outlook. ACM
Computing Surveys 54, 2 (2021).

[9] Haoyue Ping, Julia Stoyanovich, and Bill Howe. 2017. DataSynthesizer: Privacy-
Preserving Synthetic Datasets. In SSDBM ’17. ACM.

[10] Debbie Rankin, Michaela Black, Raymond Bond, Jonathan Wallace, Maurice
Mulvenna, Gorka Epelde, et al. 2020. Reliability of Supervised Machine Learning
Using Synthetic Data in Health Care: Model to Preserve Privacy for Data Sharing.
JMIR Medical Informatics 8, 7 (2020).

[11] Dominik Scheinert, Alireza Alamgiralem, Jonathan Bader, Jonathan Will,
Thorsten Wittkopp, and Lauritz Thamsen. 2021. On the Potential of Execu-
tion Traces for Batch Processing Workload Optimization in Public Clouds. In Big
Data ’21. IEEE.

[12] Dominik Scheinert, Philipp Wiesner, Thorsten Wittkopp, Lauritz Thamsen,
JonathanWill, and Odej Kao. 2023. Karasu: A Collaborative Approach to Efficient
Cluster Configuration for Big Data Analytics. In IPCCC ’23. IEEE.

[13] Navoda Senavirathne and Vicenç Torra. 2020. On the Role of Data Anonymization
in Machine Learning Privacy. In TrustCom ’20. IEEE.

[14] Shivaram Venkataraman, Zongheng Yang, Michael Franklin, Benjamin Recht,
and Ion Stoica. 2016. Ernest: Efficient Performance Prediction for Large-scale
Advanced Analytics. In NSDI ’16. USENIX.

[15] Jonathan Will, Lauritz Thamsen, Dominik Scheinert, Jonathan Bader, and Odej
Kao. 2021. C3O: Collaborative Cluster Configuration Optimization for Distributed
Data Processing in Public Clouds. In IC2E ’21. IEEE.

[16] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, Ion
Stoica, et al. 2010. Spark: Cluster Computing with Working Sets. HotCloud 10,
10 (2010).

	Abstract
	1 Introduction
	2 Related Work
	2.1 Dataflow Job Performance Modeling
	2.2 Privacy in Collaborative Machine Learning

	3 Approach
	3.1 Idea Overview
	3.2 Data Obfuscation via Data Synthesis

	4 Evaluation
	4.1 Experimental Setup
	4.2 Performance Modeling with Synthetic Data
	4.3 Data Synthesis Overhead
	4.4 Discussion

	5 Conclusion
	Acknowledgments
	References

