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Abstract—Scientific workflows are widely used to automate
scientific data analysis and often involve processing large
quantities of data on compute clusters. As such, their execution
tends to be long-running and resource intensive, leading to
significant energy consumption and carbon emissions.

Meanwhile, a wealth of carbon-aware computing methods have
been proposed, yet little work has focused specifically on scientific
workflows, even though they present a substantial opportunity
for carbon-aware computing because they are inherently delay
tolerant, efficiently interruptible, and highly scalable.

In this study, we demonstrate the potential for carbon-
aware workflow execution. For this, we estimate the carbon
footprint of two real-world Nextflow workflows executed on
cluster infrastructure. We use a linear power model for energy
consumption estimates and real-world average and marginal
CI data for two regions. We evaluate the impact of carbon-
aware temporal shifting, pausing and resuming, and resource
scaling. Our findings highlight significant potential for reducing
emissions of workflows and workflow tasks.

Index Terms—scientific workflows, carbon-aware computing,
carbon footprint, task scaling, sustainable computing

I. INTRODUCTION

Scientists across domains rely on increasingly large datasets
and complex workflows to perform diverse tasks such as image
processing, genome analysis, and material simulations. These
workflows are pipelines composed of computational tasks.
Systems like Nextflow [1]] allow for the execution and monitor-
ing of scientific workflows on distributed cluster infrastructure.

Scientific workflows often process vast quantities of data
in parallel across numerous cluster nodes, and thus tend to be
resource-intensive with runtimes spanning hours to weeks [2].
This leads to significant energy consumption and carbon
emissions. For example, an Earth observation workflow [3|]
showed runtime variations (between 5 and 81 hours per
execution) depending on available resources, highlighting the
need to assess and optimize the execution of such workflows.

Recent initiatives to enhance the sustainability of computing
aim to align computational loads with the availability of low-
carbon energy through carbon-aware computing [4]—[7]. This
alignment can be achieved by temporally shifting and scaling
flexible compute workloads against energy signals like carbon
intensity (CI), which is a measure of the emissions produced
per kilowatt-hour (kW h) of electricity consumed. There are
two practically relevant CI signals: average and marginal.
Average reflects the overall grid emissions, factoring in each
energy source’s relative share and emission rate. In contrast,
marginal measures the emissions of the specific energy source

meeting an additional load. In many regions, both signals
vary significantly due to intermittent renewable sources and
demand fluctuations [4f]. Temporal shifting involves scheduling
applications to consume electricity when the CI is relatively
low and to pause the workload otherwise [4], [[6]. Resource
scaling entails dynamically allocating resources to workloads
based on the CI of electricity to make use of more resources
when the CI is low, and to reduce demand when it is higher [5].

While these methods demonstrate the potential of carbon-
aware computing, no study to date has focused on carbon-
aware scheduling and scaling of scientific workflows, despite
them appearing particularly well-suited for carbon-aware
execution owing to the following properties:

e Delay tolerance: Many scientific workflows will not have
strict deadlines (e.g. executing against a new dataset when
it becomes available), so even if results will often be
expected within certain time frames (e.g. a few days), there
is flexibility for executions to be shifted.

o [nterruptibility: Workflows consist of tasks that typically
exchange intermediate results between tasks using disks,
allowing to pause execution temporarily and to execute
subsequent tasks from persisted data when lower carbon
energy becomes available again.

e Scalability: Resource allocation can be adjusted so that
tasks are executed on machines of varying scales and
entire workflows are run on clusters of different sizes. This
enables the shaping of runtimes and resource usage against
upcoming periods of low-carbon energy.

e Heterogeneity: The tasks of a workflow can have varying
resource demands, including possibly be CPU-intensive or
I/O-intensive analysis steps, so especially energy-intensive
tasks could utilize the lowest carbon energy available.

This paper explores the potential of carbon-aware execution
for scientific workflows. Specifically, we evaluate the potential
emission savings for two real-world Nextflow workflows.
We assess carbon-aware temporal shifting, with and without
interruptions, and resource scaling at node and processor
levels. Moreover, we quantify emissions and possible savings
by applying both average and marginal CI using commercial-
grade data. We explore potential emission savings by com-
paring the impact of adjusted executions, without considering
CI forecasting errors or workflow performance estimation
accuracy. We share our simulation and results analysis cod
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II. EXPLORATION OF THE POTENTIAL

We describe our experimental setup before exemplifying
the potential reduction in emissions through applying
carbon-aware computing methods.

A. Experimental Setup

Scientific Workflows. We study two real-world workflows
from Nextflow’s community-curated nf-core libraryE] 8] —
Chip-Seq and Rangeland. To minimize carbon emissions in
our study, we rely on existing historical traces for entire
workflow executions from [9]. Meanwhile, we executed the
trimgalor workflow task on cluster and server resources.
Compute Resources. The Chip-Seq workflow was executed
on an eight-node cluster equipped with AMD EPYC 7282
processors with 128GB RAM, while Rangeland was executed
on an eight-node cluster equipped with Intel Xeon Silver 4314
processors with 256GB RAM — we executed workflow tasks
on one of these nodes, alongside an edge server equipped
with an Intel i7-10700T processor with 32G B RAM.
Energy Consumption Estimation. We estimate the carbon
footprint using Ichnos [[10], a tool we built for estimating the
carbon footprint of Nextflow workflows from traces, which al-
lows users to provide power models for the compute resources
utilized. We used a linear power model to estimate energy
consumption, translating this to carbon emissions with fine-
grained CI data aligning with each workflow task’s execution.
Carbon Intensity Data. @ We performed all footprint
estimations using average and marginal CI data sourced from
the Electricity Maps Data Portaﬂ and WattTimeEl We use both
CI signals data at hourly intervals to make results directly
comparable, except for experiments in Sections and
This aligns with most carbon-aware computing research that
uses the signals presented in Section While other metrics
for renewable energy accounting exist (e.g. market-based
measures such as RECs and PPAs), we did not focus on these
as they not necessarily reflect low-carbon energy availability
at a certain time and place. While all scientific workflows and
tasks were executed from 2023 to 2024, the latest average
CI data available to us was from 2023. For workflows that
occurred in 2024, we backdated the timestamps to 2023.

B. Baseline Carbon Footprint

To establish baselines for subsequent experiments, we
estimated the energy consumption of the selected workflows.
With the Chip-Seq workflow consuming 35.16kW h, and the
Rangeland workflow consuming 11.54kWh. We estimated
the original carbon footprint for both workflows, in Table [}
using average and marginal CI data, based on the original
execution times. We focus on operational carbon emissions
and do not discuss embodied carbon emissions in this work.

As the compute cluster nodes were reserved solely for
these workflows, we could also factor in the whole memory

Zhttps://github.com/nf-core/
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TABLE I: Reduction in carbon footprint shifting entire
workflows. OrFP = Original Footprint

Average CI Marginal CI
OrFP Reduction (%) OrFP Reduction (%)
Workflow | (gCO2e) in48h in 192h | (gCO2) in 48h in 192h
Chip-Seq | 19,386.45 49.16 63.98 | 27,615.39 5.94 66.21
Rangeland | 3,926.96  32.60 48.99 10,075 5.89 7.67

available on each node. We estimated the energy consumption
for the ‘reserved memory’ — the full memory available on all
utilized nodes over the workflow’s execution — finding that it
accounted for 4-5% of the overall estimated consumption (the
sum of workflow and reserved memory consumption). Since
workflows can also be executed on shared compute resources,
we do not consider full node memory emissions in this way
in our evaluation of carbon-aware shifting and scaling.

C. Entire Workflow Shifting

In our first experiment, the start time of each workflow’s
execution was adjusted by an hour, for every hour within
a specified “flexibility window” to measure the potential
reduction possible without adjusting the workflow’s execution.
We considered two windows: one of 2 days (24h before and
after), and of 8 days (96h before and after). We considered
start times before the original start time to ensure that low
carbon windows were not missed, to fully illustrate the
potential for carbon-aware shifting.

The results are in Table Il We found that increasing the
flexibility window could yield a greater reduction in the
overall footprint for both workflows — with the potential
reduction largely dependant on when the original workflows
were executed and the CI levels of the surrounding days.
Our approach assumes an unrealistic knowledge of workflow
runtimes and error-free CI forecasts. However, many
schedulers are reliant on such signals [11], [12], and tools
are available to predict workflow task runtime and energy
consumption with a low error [13], [[14]. Still, we emphasize
that this study explores potential emissions reduction, but not
how this potential can be achieved in practice.

D. Interrupted Workflow Shifting

In our second experiment, we considered how workflows
could be interrupted to exploit multiple shorter periods of
low-carbon energy. While individual tasks cannot generally
be paused and resumed, their start can be delayed without
substantial overhead. As workflow systems like Nextflow use
disk storage to exchange intermediate results, there will often
be limited runtime overhead for reading the inputs of tasks
from disks at a later point in time. The overhead of pausing and
resuming entire workflow applications, hence, mainly stems
from having to align task executions with multiple shorter peri-
ods of low-carbon energy availability, so that all tasks executed
in a given time period finish fully within given periods.

For our experiment, we divided tasks from the original
execution into hourly windows, to align them with multiple
non-consecutive low-carbon CI windows. These windows
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contain two types of tasks: (i) complete tasks that start and
finish in the current hour; (ii) partial tasks that start in the
current hour but finish later. All the partial tasks in a window
that occurs before interruption will be executed in a later
window. By interrupting workflow execution in this way,
we add some overhead and estimate this by considering the
longest partial task in a window (most delayed) — as an upper
bound of overhead. The overall overhead of interruptions is
the sum of the overheads of individual windows for every
interval where interruption occurred. We mapped the task
execution windows to the lowest carbon intervals in a given
flexibility window, in chronological order, to align with the
workflow’s original execution and data dependencies.
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Fig. 1: Reduction in carbon footprint of workflows using
interrupted temporal shifting over 12-192 hour windows.

For Chip-Seq, a potential reduction of 49% can be achieved
with no overhead in the 48h window, and this improves to
64% in the 192h window with a runtime overhead of ~4% —
using the average signal. For Rangeland, a potential reduction
of 8% can be achieved with a runtime overhead of ~5% in
the 48h window, improving to a reduction of 52% with a
runtime overhead of ~3% in the 192h window — using the
marginal signal — outperforming the entire workflow shifting.
This exemplifies the potential for interrupted workflow
shifting to offer greater reductions in carbon emissions over
the same windows with a low overhead. Furthermore, more
sophisticated implementations of interrupted shifting, that
divide workflows into shorter task execution windows, e.g.
15min instead of 60min, and more adaptive alignment of
tasks, i.e. the most energy-intensive or longest-running tasks
being aligned with windows of low CI electricity, could
outperform entire workflow shifting even more significantly
— making better use of limited time before deadlines.

E. Adjusting Compute Resources Used

We explored the impact of choosing different nodes to
execute the same individual workflow task, using 5-min
marginal CI time-series data. We executed the trimgalore
task on a cluster node, and an edge server, and recorded the
runtime and energy consumption on the utilized resources. In
Fig. 2a] we plot the marginal CI for the region of California
on the 26th of November, 2023, showing selected executions
of the trimgalore task, all starting at 21:10. At this time, the
ClI is below 200gCO2e, but it sharply increases around 21:50.
The task executed on the cluster ran for 33min, consuming
0.07kWh and producing 37.99CO2e. The task that ran on
the edge server ran for 50min, consuming 0.02kW h and pro-
ducing 13.8gC'O2e. We see that the smallest carbon footprint
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Fig. 2: Impact of resource scaling on the alignment of
trimgalore execution with marginal CI in California (a) and
the Netherlands (b).

could be achieved by using a less powerful device, despite
the cluster execution better fitting the low-carbon window.

F. Adjusting Processor Frequencies

We also explored the impact of varying the processor
frequency on the carbon emissions produced by running an
individual task, using 5-min marginal CI time-series data. We
executed the trimgalore task on the cluster node and varied
the frequency, starting at 2.0GHz and increasing by 0.5GHz.
We repeated this increase up until the frequency exceeded
the device’s maximum frequency. For all executions, we
adjusted the start time to 11:30 on the 1st of July, 2023, using
marginal CI data from the Netherlands, as shown in Fig. 2b]
where we show selected executions of the task. We see that
the CI rises twice, slightly at 12:00, then sharply at 13:00.

We could run the task on the cluster node running at
4.0GHz, which runs for 32min consuming 0.09kxWh to
optimally fit the first half of the low-carbon window producing
4.09CO2e. We could alternatively run the task on the same
node at 2.0G H z, which runs for 62min consuming 0.10kW h
producing 9.5gCO2e.

As shown, increasing the frequency of the node can reduce
the time taken for the task to complete, and potentially the
carbon emissions. So, we can ‘shape’ a task by adjusting the
processor’s frequency, to fit tasks into low-carbon windows.

G. Adjusting Cluster Size for Entire Workflow Execution

For this experiment, we used workflow traces for the execu-
tion of the Chip-Seq workflow at different scales on the com-
pute cluster. In Table [lI} executing the workflow consumed ap-
proximately the same amount of energy at different scales, yet
the makespan reduced as the number of nodes increased. We
see that the execution on two nodes took 12 hours, while the
execution on eight nodes took only 3 hours. These decreases
in makespan lead to a reduction in the carbon footprint due
to variations in the given CI data, especially for average CI.
However, further reductions could be made by aligning shorter
makespans optimally with low-carbon windows of electricity.

III. RELATED WORK

Temporal Shifting. Various works propose to schedule
or interrupt flexible workloads to only consume electricity
when CI is low, thereby reducing carbon emissions [4f], [6].
Other studies aim to only leverage excess renewable energy,



TABLE II: Impact of cluster sizes on the carbon footprint of
Chip-Seq executions

# makespan  energy  Avg. emissions ~ Marg. emissions
nodes (h)  (kWh) (gC0O2e) (gC0O2e)
2 11.84 34.13 11,862.16 25,387.30
4 5.97 34.39 9,616.61 25,968.88
8 3.13 34.17 6,817.35 23,639.88

similarly delaying or scheduling applications to align with
this energy and spare compute capacity [15], [16]. None of
these works specifically optimizes workflow execution.
Resource Scaling. Carbon-aware resource scaling dynami-
cally allocates more resources when CI is low and reduces
demand when it is higher — either performing horizontal scal-
ing based on one-time offline profiling [5]], or applying vertical
scaling to limit the carbon emissions rate of containerized ap-
plications [7]], which is not directly applicable to applications
composed out of connected tasks like scientific workflows.
Other Carbon-Aware Computing Techniques. Other work
has yielded carbon-aware computing techniques and tools
to prioritize sustainability for data centres or to enable
applications to control how they use renewable energy [17],
[18]. Previous work considering specifically workflows has
not gone beyond location-based load shifting [19], or example
use of carbon-aware time shifting [14]. In addition, none of
these techniques specifically exploits the characteristics of
workflows for carbon-aware execution.

IV. CONCLUSION

In this paper, we highlighted the potential of carbon-aware
execution for scientific workflows. To begin, we estimated
the operational carbon footprint from running two real-world
workflows; they produced 3.9-19.4kg of carbon emissions.
Using these estimates as baselines, we first assessed carbon-
aware time shifting, finding that this could reduce the footprint
of Chip-Seq by up to 64% using average CI and 66% using
marginal CI data. We also explored resource scaling as a
means to either align the execution of individual workflow
tasks to upcoming low-carbon energy availability windows
or to assign more compute nodes to reduce the runtime
of entire workflows — potentially reducing the footprint of
Chip-Seq by 42.5% using average CI data. Although the
studied workflows have smaller footprints than those running
for thousands of core hours, their impact is still significant.
Moreover, we see no reason why the potential identified
should not be extrapolated to larger workflows, given also
larger infrastructures and longer flexibility windows for
executing workflows, since the workflow properties we
highlight — delay tolerance, interruptibility, scalability, and
heterogeneity — should be widely applicable.
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