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Abstract—With the increasing amount of available data, dis-
tributed data processing systems like Apache Flink and Apache
Spark have emerged that allow to analyze large-scale datasets.
However, such engines introduce significant computational over-
head compared to non-distributed implementations. Therefore,
the question arises when using a distributed processing approach
is actually beneficial. This paper helps to answer this question
with an evaluation of the performance of the distributed data
processing framework Apache Flink. In particular, we compare
Apache Flink executed on up to 50 cluster nodes to single-
threaded implementations executed on a typical laptop for three
different benchmarks: TPC-H Query 10, Connected Components,
and Gradient Descent. The evaluation shows that the perfor-
mance of Apache Flink is highly problem dependent and varies
from early outperformance in case of TPC-H Query 10 to slower
runtimes in case of Connected Components. The reported results
give hints for which problems, input sizes, and cluster resources
using a distributed data processing system like Apache Flink or
Apache Spark is sensible.

I. INTRODUCTION

Helping businesses and researchers to discover relevant
information in overwhelming collection of data is an important
task. The digital age, however, generated an explosion of
available data [1]. Datasets are getting increasingly bigger such
that they do not fit into the memory of a single computer [2].

One way to approach this problem is to use distributed
data processing. The Google File System (GFS) [3], a reliable
and scalable file storage, and Google’s MapReduce [4], a
distributed data processing engine, presented a model for
distributed data processing engines. Similar ideas are found in
Hadoop1, which includes a distributed file storage (HDFS) [5]
and a distributed data processing engine (Hadoop MapRe-
duce) [6]. Frameworks like Apache Spark2 [7], Apache
Storm3 [8], and Apache Flink4 improved upon the program-
ming model and allow to describe arbitrary workflows. These
frameworks orchestrate multiple computer nodes organized in
a cluster. The nodes communicate with each other in order to
distribute the workload.

However, such systems introduce significant computa-
tional overheads in the form of communication, serialization,
scheduling, deployment, and synchronization. Because of this

1Apache Hadoop, http://hadoop.apache.org/ [Accessed May 23, 2016]
2Apache Spark, http://spark.apache.org/ [Accessed May 23, 2016]
3Apache Storm, http://storm.apache.org/ [Accessed May 23, 2016]
4Apache Flink, https://flink.apache.org/ [Accessed May 23, 2016], origi-

nated from [9]

is often difficult to decide when to use such a distributed
system. The question arises for which data sizes and cluster
resources the computational advantages of a distributed system
outweigh its overheads. Knowing which problems are better
suited for non-distributed environments enables users to save
costs on cluster resources. Moreover, this knowledge can also
reduce development costs when the most cost-effective solu-
tion is chosen right away, so that only a single implementation
has to be developed. In addition, using the comparison of
single-threaded benchmarks against distributed scale-outs the
user can also choose the system which better suits his financial
or temporal constraints. He can decide whether performance
gains of distributed systems, if any, justify their increased cost.

In this paper we present a performance evaluation of the
data processing framework Apache Flink by comparing single-
threaded implementations against their distributed counter-
parts. For our approach we followed the idea of the Configu-
ration that Outperforms a Single Thread (COST) [10], which
seeks to find a constellation of cluster resources and problem
input sizes such that the distributed data processing engine
shows performance gains over an efficient serial implemen-
tation. The comparison of distributed and serial implementa-
tions gives insights into the true performance benefits of a
distributed data processing engine. Since Apache Flink and
other distributed data processing systems like Apache Spark
exhibit similar runtime behavior [11, 10, 12] the results are
representative for a wider range of systems. We chose the
three benchmarks, TPC-H Query 10, Connected Components,
and Gradient Descent for the evaluation. For the cluster imple-
mentations, we used the examples provided with Apache Flink.
The single-threaded versions used Objective-C and a single-
threaded database engine. These benchmarks were chosen to
showcase the performance of Apache Flink for three different
typical application domains of distributed data processing.

Outline. The remainder of this paper is structured as fol-
lows. Section II provides some background on the Apache
Flink framework and the COST metric. Section III presents
the approach and explains the selection of the benchmarks.
Section IV provides information on the benchmark implemen-
tations as well as the used datasets. Section V summarizes
and Section VI discusses the evaluation results. Finally, Sec-
tion VII concludes the paper and provides ideas for future
work.

http://hadoop.apache.org/
http://spark.apache.org/
http://storm.apache.org/
https://flink.apache.org/


II. BACKGROUND

This section provides information on the benchmarked dis-
tributed data processing engine Apache Flink. Subsequently,
the ideas and motivations behind the COST metric are pre-
sented.

A. Apache Flink

Apache Flink is an open source platform for distributed data
processing which embraces the Google Dataflow model [13]. It
enables the user to write programs that can be distributed over
a number of worker nodes. This makes it possible to process
large-scale datasets faster than a single computer could.

Internally, Apache Flink represents job definitions using
directed acyclic graphs (DAGs) [14]. The nodes of the graph
are either sources, sinks, or operators. Source nodes read
in or generate the input data, while sink nodes produce
the output. The inner vertices are operators which execute
arbitrary user-defined functions (UDFs) that consume input
from incident nodes and provide input for adjacent nodes.
The DAGs generated from the user’s job definitions are then
transformed into the more concrete Execution Graphs, which
contain the necessary information for running the job on a
cluster. Data partitioning enables the data-parallel execution of
the subtasks. During the transformation the UDFs are split up
into multiple parallel subtasks. Each subtask executes the same
UDF. However, each processes different parts of the input data.

This setup makes clear where overheads might emerge.
Firstly, the task scheduling as well as the deployment of
the tasks on the respective machines introduce overhead.
Moreover, the nodes have to communicate with each other
in order to distribute the workload. The communication be-
tween different nodes demands for serialization and transport
buffering, which adds to the overhead.

On top of the possibility to define a job by using a DAG, a
layer of second-order functions is implemented in order to sim-
plify the development for the user [15]. Apache Flink provides
APIs for implementing batch as well as stream processing. The
exposed functions for dataset and data stream transformations
are similar to functions known from functional programming
(e. g. map, reduce, and filter). Additionally, the DataSet API
provides transformations known from relational databases like
joins and grouping. The DataStream API provides additional
operators which are useful in the streaming context. These
operators include the definition of windows and window-based
aggregations.

Apache Flink further provides support for iterations in the
dataflow. A special case are the Delta Iterations [12]. Delta
Iterations exploit the fact that for some computations not every
data item is updated at every iteration step. They work on a
working set and a solution set. The working set is what drives
the iterations. At every step a new working set is computed
and fed back into the iteration. A shrinkage of the working
set improves the efficiency by leaving converged subinstances
of the problem untouched. The solution set can be modified
at each iteration step. The output of the Delta Iteration is
the solution set after the last iteration. The Delta Iteration

terminates either when the working set is empty or a maximum
number of iterations is reached.

An important feature of data processing frameworks is that
such jobs can be easily distributed without further changes to
the program code. The jobs can be executed locally on a single
computer or run on a cluster with hundreds or thousands of
workers.

B. The COST Metric
One fundamental aspect in the development of scalable

systems is to assess their performance. In the context of par-
allel systems the performance metric of parallel speedup has
emerged [16]. Several such speedup metrics were defined [17],
including:
• The Relative Speedup which is defined as

S =

time to solve problem P using
algorithm A and 1 processor

time to solve problem P using
algorithm A and N processors

The baseline is defined as using the same algorithm
which, however, executes using only one processor.

• The Real Speedup which is defined as

S =

time to solve problem P using
best serial algorithm A and 1 processor

time to solve problem P using
algorithm A and N processors

Here, the parallel algorithm is compared to the best serial
algorithm. Since the best serial algorithms might not
be known, a state-of-the-art algorithm can be used in
practice.

Similarly, these concepts can be used for distributed data
processing systems.

The COST metric suggests a new baseline for evaluating the
performance of scalable systems against an efficient single-
threaded implementation. The baseline is similar to the base-
lines defined for real speedup. However, the COST metric
does not explicitly demand the benchmark to be executed on
the same computer. In fact the original single-threaded COST
benchmarks were executed on a commodity laptop. The COST
of a data processing system is defined as the required resources
(e. g. amount of workers, number of CPU cores, CPU speed,
RAM size) such that the system outperforms the baseline and,
therefore, shows real speedup.

The COST metric is motivated by the fact that relative
speedup and strong scalability do not imply good overall
performance, that is, no real speedup. Imagine a benchmark of
a data processing system which does show strong scalability
for a given problem as the number of resources increases. This
sign of scalability might be misleading. The data processing
engine might have significant overhead which is distributed
with the increasing amount of workers. Thus, the benchmark
would only document the scalability of the computational
overhead and not the actual performance gains. The COST
metric deals with this problem by providing a baseline which
does not reward “substantial but parallelizable overheads” [10,
1].



III. METHODOLOGY

In order to evaluate the performance benefits of the dis-
tributed data processing engine Apache Flink, the COST
metric was used. For this, distributed benchmarks are executed
on a cluster and the respective performance is compared to
the single-threaded counterpart which is run on a commodity
laptop. Due to the disk constraints only those datasets were
selected that could fit into the laptop’s memory.

A. Benchmark Selection

The benchmarks were chosen such that they cover different
application domains. Three popular use cases were selected.

The TPC-H Query 10 benchmark is an example of a
relational query that analyzes historical data. Executing such
queries was among the key requirements for parallel databases.

Traversing huge graphs is another prominent use case for
distributed systems. Distributed graph algorithms are known
for their extensive intra-node communication [18]. Therefore,
Connected Components was selected to gain insights into the
performance implications when run on a cluster.

Lastly, machine learning methods demand for distributed
systems as they often work with immense training datasets.
Consequently, the optimization method Gradient Descent was
included.

B. Benchmarking Setup

The distributed implementations were run on a cluster
whereas a consumer laptop was used for the single-threaded
benchmark. Every run was measured three times and the
median was reported.

The cluster consists of 50 machines. Each computer in the
cluster is equipped with an Intel Xeon X3450 @2.67GHz
CPUs (4 physical cores, 8 hardware contexts) and 16 GB
of RAM. Each node runs Linux (kernel version 3.10.0), Java
1.8.0, and Apache Flink 0.10.1. We configured Flink to use
HDFS 2.7.1, to allocate 10 GB of the main memory, and to
provide eight task execution slots per worker.

The local computer is a laptop MacBookPro12,1 with an
Intel Core i5 5257U @2.7GHz CPU (2 physical cores, 4
hardware contexts) and 8 GB of RAM.

IV. BENCHMARKS

This sections presents the implementations of the bench-
marks. The local and the cluster implementations are available
online5. The Apache Flink jobs are based on the example
implementations provided with the framework. When selecting
the single-threaded implementation, care was taken that the
selected implementations were not unnecessary inefficient.
However, guaranteeing the most efficient implementation was
not the aim.

5Available on GitHub at https://github.com/verbit/cost-flink-local and
https://github.com/verbit/cost-flink-cluster [Accessed May 23, 2016]

Listing 1
TPC-H QUERY 10

SELECT c.custkey, c.name,
SUM(l.extendedprice * (1 - l.discount)) AS

revenue,
c.acctbal, n.name, c.address, c.phone, c.

comment
FROM customer c, orders o, lineitem l, nation

n
WHERE c.custkey = o.custkey

AND l.orderkey = o.orderkey
AND o.orderdate >= DATE ’[DATE]’
AND o.orderdate < DATE ’[DATE]’ + INTERVAL

’3’ MONTH
AND l.returnflag = ’R’
AND c.nationkey = n.nationkey

GROUP BY c.custkey, c.name, c.acctbal, c.phone
, n.name,
c.address, c.comment

ORDER BY revenue DESC LIMIT 20;

A. TPC-H Query 10

The Transaction Processing Performance Council (TPC)
concentrates on the development of benchmarks for databases
and transaction processing systems6. One such benchmark
suite is TPC-H7. The suite consists of a data population and
a query component which are claimed to have industry-wide
relevance.

The aim of the data scheme is to portray a real-world
business scenario. In supplement to the data scheme, the TPC-
H suite provides the DBGen tool8 for data generation. The
program generates comma separated value (CSV) datasets.
The amount of the data generated can be adjusted by adjusting
the Scale Factor (SF). A Scale Factor of N corresponds to
roughly N GB of data.

TPC-H defines further business-oriented queries. Listing 1
shows the definition of query number 10. The query finds
customers which might have had problems with ordered parts
and thus returned them. The customers are sorted in terms
of their contribution to the lost revenue and the top 20 are
returned.

The implementations of the TPC-H Query 10 were slightly
adjusted in order to match the implementation provided with
Apache Flink. They, therefore, differ from the original defini-
tion. Firstly, the implementations do not output the c.phone
and c.comment columns. What is more, the orders are
filtered only by years greater than 1990 as opposed to a period
of three months. In addition to that, the result is not sorted by
revenue and is further not limited to 20 entries.

Apache Flink: The implementation in the Apache Flink
framework is straightforward. It makes use of Flink’s DataSet
API which enables an easy translation of the original query

6TPC organization, http://www.tpc.org/ [Accessed May 23, 2016]
7TPC-H Specification 2.16.0 http://www.tpc.org/tpch/spec/tpch2.16.0v1.

pdf [Accessed May 23, 2016]
8The tool is available for download on https://github.com/electrum/

tpch-dbgen [Accessed May 23, 2016]

https://github.com/verbit/cost-flink-local
https://github.com/verbit/cost-flink-cluster
http://www.tpc.org/
http://www.tpc.org/tpch/spec/tpch2.16.0v1.pdf
http://www.tpc.org/tpch/spec/tpch2.16.0v1.pdf
https://github.com/electrum/tpch-dbgen
https://github.com/electrum/tpch-dbgen


into a Flink job. An advantage of the Flink implementation is
that it does not need to transform the data into an internal
representation as opposed to database systems. Instead it
operates directly on the generated CSV files.

Single-Threaded: The SQLite database9 was chosen for the
single-threaded implementation. SQLite is a software library
which implements a SQL database engine in a single-threaded
manner. The local TPC-H Query 10 implementation uses the
sqlite3 command line tool for creating a database from the
generated CSV data and executing the actual query against the
created database. Both, creating and querying the database, are
implemented using ordinary SQL scripts with some SQLite
extensions for importing and exporting CSV files. The scripts
are executed by the command line tool.

B. Connected Components

A connected component of a given undirected graph is
a subgraph in which the vertices meet the following two
conditions:

1) Two arbitrary vertices are connected by a path.
2) The vertices are only connected to vertices in the sub-

graph.
There exist multiple techniques for finding the connected
components of a graph. In the following we present two
algorithms. While the Flink job is implemented using label
propagation due to its scalability, the Objective-C implemen-
tation makes use of the disjoint-set data structure enabling fast
execution.

Apache Flink: The label propagation algorithm begins by
assigning every vertex an unique identifier. Afterwards, at each
iteration step every vertex propagates its current identifier to
all neighbors. If a vertex receives an identifier smaller than it
currently has, the identifier is updated. This process iterates
until there are no changes to the identifiers of the vertices.

The Apache Flink job uses the DataSet API for implement-
ing the operations needed by the label propagation algorithm.
The propagation of a vertex’ current identifier is implemented
using SQL-like operations (e. g. joins and aggregation). For
the iteration process, Flink’s Delta Iterations are used.

Single-Threaded: The disjoint-set data structure interface
can be split up in two primal methods, namely Union and Find.
To begin with, every vertex is assigned his own identifier. The
Find method takes a vertex as input and outputs its root node.
The Union method takes two vertices as input and assigns an
identical identifier to both. Thus, effectively making the two
vertices belong to the same connected component. Listing 2
shows the implementation of the naive Union-Find interface.

A problem of the naive implementation is that it might
degenerate into a linked list due to the behavior of the Union
method. In order to improve the computational complexity of
the naive implementation the following two modifications are
employed:
• Union-by-Rank: Adjust the Union method by attaching

the smaller tree under the bigger one.

9SQLite project, https://www.sqlite.org/ [Accessed May 23, 2016]

Listing 2
NAIVE UNION-FIND

uint32_t uf_find(union_find *uf, uint32_t n) {
uint32_t r = uf->root[n];
while (r != uf->root[r]) r = uf->root[r];
return r;

}
void uf_union(union_find *uf, uint32_t n1,

uint32_t n2) {
uint32_t n1_root = uf_find(uf, n1);
uint32_t n2_root = uf_find(uf, n2);
uf->root[n1_root] = n2_root;

}

• Path Compression: Extend the Find method such that
after every invocation for a given vertex the found root is
directly assigned to all transitive parents of that vertex.

Listing 3 displays the optimized Union-Find interface.

Listing 3
OPTIMIZED UNION-FIND

uint32_t uf_find(union_find *uf, uint32_t n) {
uint32_t r = uf->root[n]; // find root
while (r != uf->root[r]) r = uf->root[r];
if (n != r) {

uint32_t j = n;
uint32_t j_root = uf->root[n];
while (j_root != r) { // compress path
uf->root[j] = r;
j = j_root;
j_root = uf->root[j_root];

}
}
return r;

}
void uf_union(union_find *uf, uint32_t n1,

uint32_t n2) {
uint32_t n1_root = uf_find(uf, n1);
uint32_t n2_root = uf_find(uf, n2);
if (n1_root == n2_root) return;
// union by rank
if (uf->rank[n1] < uf->rank[n2]) {

uf->root[n1_root] = n2_root;
} else if (uf->rank[n1] > uf->rank[n2]) {

uf->root[n2_root] = n1_root;
} else {

uf->root[n2_root] = n1_root;
++(uf->rank[n1_root]);

}
}

The implementation computes the connected components by
traversing an edge list and applying the Union method for each
edge. After all edges are processed the Find method returns for
every vertex the identifier of the connected component. The
program supports ASCII encoded edge list files as well as bi-
nary representation. In case of a textual edge list representation
the program has to deal with file sizes of tens of gigabytes.
Therefore, special care was taken in implementing the input

https://www.sqlite.org/


data processing in order to ensure efficient file traversal and
parsing.

C. Gradient Descent

Gradient descent is a technique to solve optimization prob-
lems. Given an objective function, gradient descent searches
for the minimum of that function. The algorithm iteratively
computes the gradient at the current point and moves in the
negative direction of that gradient.

For large-scale learning problem calculating the gradient for
the whole training dataset might be unfeasible. The stochastic
gradient descent simplifies the calculation by only looking at
one example at a time. The weight vector is updated as

wt+1 B wt − γ∇Qi (wt )

where i is chosen randomly in every iteration step. It can be
shown that stochastic gradient performs well in large-scale
applications [19].

The efficiency of the stochastic gradient descent can be
improved by calculating the gradient of a small subset of
random data points, so called mini-batches, rather than for
a single point. That is, the weight vector is updated by

wt+1 B wt − γ
1
|B |

∑
b∈B

∇Qb (wt )

where B is a set of randomly chosen indices at every iteration
step. The mini-batch stochastic gradient descent enables more
efficient calculation compared to single point updates since it
enables the usage of efficient vectorized implementations.

Apache Flink: The Apache Flink implementation uses the
FlinkML library10 which contains several predefined routines
for machine learning applications. The stochastic gradient
descent method is part of the optimization package. Listing 4
shows how the library enables a concise definition of the
Apache Flink job.

Listing 4
GRADIENT DESCENT JOB

val initialWeights = ...
val trainingDataSet = ...
// create optimizer
val sgd = SimpleGradientDescent()
.setIterations(50)
.setStepsize(0.1)
.setLossFunction(

GenericLossFunction(SquaredLoss,
LinearPrediction))

// calculate weights
val weights = sgd.optimize(trainingDataSet,

initialWeights)
weights.print()

At the time of this writing, however, the FlinkML imple-
mentations do not include true stochastic gradient descent.

10Apache Flink’s machine learning library FlinkML, https://ci.apache.org/
projects/flink/flink-docs-master/libs/ml/ [Accessed May 23, 2016]

Instead whole partitions of the dataset are used to compute
the gradient. Thus, effectively leading to regular batch gradient
descent. Later releases of the library should provide the correct
implementations11.

Single-Threaded: The single-threaded implementation is
implemented in Objective-C and makes use of efficient im-
plementations of the BLAS interface12 [20]. Similar to the
implementation of connected components, the implementation
has to deal with file sizes of tens of gigabytes. The program
has therefore to implement efficient data reading. The imple-
mentation accepts ASCII encoded as well as binary dataset
implementations. Randomly shuffled data as recommended
in [19] is an important requirement of the program. By as-
suming random order in the input data, the implementation can
traverse the data sequentially leading to performance boosts. In
case of ASCII encoded datasets the files are transformed into a
binary representation before the computation starts. This does
not only reduce the file size but moreover eliminates decoding
overhead.

V. RESULTS

This section presents the results from running the implemen-
tations on the cluster and on the local machine, respectively.

A. TPC-H Query 10

The DBGen tool was used to generate the input data for
both implementations. The generator gives the possibility to
vary the generated data size by adjusting the Scale Factor (SF).
A Scale Factor of N corresponds to a data size of roughly N
GB. This benchmark includes two comparisons. The single-
threaded versions used the SQLite database. Before the actual
query is run the generated data has first to be read in into
the database. The load time as well as the query execution
time were measured. The measurements were repeated with
two different Scale Factors. Table I illustrates the results.

TABLE I
LOCAL TPC-H QUERY 10 PERFORMANCE

Implementation Load time Query time

SQLite (SF 1) 74 s 7 s
SQLite (SF 10) 790 s 202 s

The benchmark shows that for smaller input sizes the query
time is reasonable small at seven seconds. However, increasing
the input data by a factor of ten significantly increases the
query time at 202 seconds. In addition, the time it takes SQLite
to read in the data is significantly high compared to the time
it takes to execute the query. In both cases the load time is
higher than the query time.

The second benchmark shows how the single-threaded
implementation compares to the cluster scale-out. Figure 1
summarizes the outcome.

11Flink ML optimization package, https://ci.apache.org/projects/flink/
flink-docs-release-0.10/libs/ml/optimization.html [Accessed May 23, 2016]

12BLAS routines, http://www.netlib.org/blas/ [Accessed May 23, 2016]

https://ci.apache.org/projects/flink/flink-docs-master/libs/ml/
https://ci.apache.org/projects/flink/flink-docs-master/libs/ml/
https://ci.apache.org/projects/flink/flink-docs-release-0.10/libs/ml/optimization.html
https://ci.apache.org/projects/flink/flink-docs-release-0.10/libs/ml/optimization.html
http://www.netlib.org/blas/


0 10 20 30 40 50

0

200

400

600

800

# Nodes

E
xe

cu
tio

n
Ti

m
e

[ s
]

Performance of the Distributed TPC-H Query 10

SF = 10 (∼ 10 GB)
SF = 100 (∼ 100 GB)

Fig. 1. Execution time of the TPC-H Query 10 on the cluster implemented
in Apache Flink.

Comparing the runtime of the 10 GB dataset on one
computer to the runtime of the single-threaded implementation
yields interesting results. The one node scale-out with a
runtime of 88 seconds already outperforms the single-threaded
version. This holds true even if the load time of SQLite is
disregarded.

However, note that the TPC-H Query 10 benchmark exhibits
bad strong scaling behavior. For the 10 GB dataset the job
finishes in 27 seconds when using 5 nodes. Further increasing
the amount of workers does not improve the runtime. When
performing the query using the 100 GB dataset a similar
picture emerges. With 20 nodes the benchmarks needs 234
seconds. Larger scale-out do not improve the runtime. How-
ever, with a runtime of 304 seconds using 5 nodes the cost of
bigger scale-outs might not justify the runtime improvements.

B. Connected Components

For the calculation of the connected components the
uk-2007-05 graph was used [21, 22]. Table II summarizes
the basic quantities of that graph.

TABLE II
BASIC QUANTITIES OF THE UK-2007-05 GRAPH

uk-2007-05

Vertices 105 896 555
Edges 3 738 733 648
File Size (ASCII) 66.9 GB
File Size (Binary) 15.7 GB

Both implementations were run using the ASCII encoded
version of the graph’s edge list. In addition to that, the local
implementation was also benchmarked using the binary for-
mat. Table III summarizes the outcomes on the local machine.

Figure 2 visualizes the execution time on the cluster for
different amount of worker nodes.

TABLE III
LOCAL CONNECTED COMPONENTS PERFORMANCE

Implementation Execution Time

Local (Binary Input) 52 s
Local (ASCII Input) 148 s
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Performance of the Distributed Connected Components

Fig. 2. Execution time of the Connected Components benchmark on the
cluster implemented in Apache Flink.

The cluster consisting of 50 nodes was not able to outper-
form the local Connected Components implementation. The
fastest runtime was measured with all the 50 nodes at 408
seconds. The local implementation that processed the ASCII
encoded input with a runtime of 148 seconds was faster by
more than a factor of two.

C. Gradient Descent

The input data was generated by using a polynomial
function and adding Gaussian error. In order to simulate
multi-dimensional workload the Vandermonde matrix for a 20
dimensional polynomial was generated. Effectively, this makes
the Gradient Descent fit a polynomial function of order 20 to
the generated data. The Gradient Descent benchmark was run
with 50 iterations over the whole dataset with no convergence
criterion.

The benchmark was measured with a dataset of 20 000 000
data points. This translates to roughly 10 GB of data. Table IV
summarizes the performance of the local implementation. In
addition to that, the distributed implementation ran on different
cluster scale-outs. Figure 3 displays the results.

Even if the transformation time is disregarded, the single-
threaded is outperformed beginning with a cluster size of five
nodes and a runtime of 152 seconds. Increasing the amount



TABLE IV
LOCAL GRADIENT DESCENT PERFORMANCE

Dataset Size Conversion Execution

m = 20 000 000 (∼ 10 GB) 209 s 180 s
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Performance of the Distributed Gradient Descent

Fig. 3. Execution time of the Gradient Descent benchmark on the cluster
implemented in Apache Flink.

of workers shows even higher outperformance. However, be-
ginning with 20 nodes and a runtime of 50 seconds no further
improvements could be measured by increasing the amount of
workers.

VI. DISCUSSION

As the reported measurements suggest, whether using
Apache Flink on a cluster is beneficial over a single-threaded
implementation is very dependent on the problem at hand.
The single-threaded TPC-H Query 10 is outperformed even
by a one node scale-out. Further increase in nodes shows
how strongly the data processing framework outperforms the
single-threaded database. However, it should be noted that the
systems have different use case. The SQLite is a database used
for storing and querying data stored on a single computer.
Apache Flink, on the other hand, provides the facilities for
massively parallel data processing. Both systems have distinct
feature sets and target different user groups. This might con-
tribute to the large discrepancy in running times. The choice
of SQLite might not be the right choice to truly evaluate a
baseline for Apache Flink. But still, it provides insights into
how a simple single-threaded database performs compared to
a dataflow system.

The Connected Components benchmark shows a completely
different picture. Even the cluster setup with 50 nodes could
not outperform the local implementation, independent of the
input data format. The benchmark displays that some problems

might not map well into the distributed environment. Dis-
tributed graph algorithms are known for extensive intra-node
communication adding significant overhead to the scalable
implementation.

For the Gradient Descent benchmark the performance differ-
ences were notably smaller when compared to the previous two
problems. The single-threaded implementation spends most
of the time reading the input file. Thus, the execution time
is primarily limited by the disk drive speed. Furthermore,
the program spends more than half of its time transforming
the dataset into a binary representation. The Apache Flink
implementation, on the other side, benefits from distributed
file reading through HDFS and distributed parsing.

VII. CONCLUSION AND FUTURE WORK

The paper presented a performance comparison between the
distributed data processing framework Apache Flink and a sin-
gle computer to help answer the question for which problems
such a distributed system is a sensible choice. The used COST
metric aims to provide a better baseline for the performance
evaluation of distributed data processing systems. By using
single-threaded baselines, systems that introduce significant
but distributable overhead are not rewarded. Furthermore, the
user can gain insights into the real performance benefits of
the distributed system. In order to gain representative COSTs,
benchmarks with different application domains were selected.
The three benchmarks consist of TPC-H Query 10, Connected
Components, and Gradient Descent.

The evaluation on a cluster of 50 nodes and a commodity
laptop showed a notable variety for the gained COSTs. While
the local TPC-H Query 10 implementation was outperformed
even by a Apache Flink installation running with one worker
node, the local Connected Components implementation was
not outperformed by the cluster.

The results can be used by a user to make more educated
choices of systems for his problems at hand. Primarily, this
allows the user to select the faster system or the best system
given financial or temporal constraints. In addition, wrong
system decision are minimized and costs can be saved in cases
where the distributed system is not appropriate.

Several extensions to the work presented in this paper would
be interesting. Firstly, using SQLite as the single-threaded
implementation of Connected Components might not have
been the perfect choice. A single-threaded dataflow implemen-
tation might yield more comparable results. In addition to that,
the range of benchmarked problems and algorithms could be
further extended in order to provide an even broader portfolio
of comparisons. This could help users in mapping problems at
hand more easily to the benchmarked problems. Furthermore,
comparing other factors than the runtime can provide useful
insights for the user as well. Tradeoffs like the ease of
implementation and the monetary cost between the system
could as well be considered. Lastly, adding comparisons to
multi-threaded implementations that take full advantage of the
computing capabilities of a single node would give users a
better impression of the system alternatives.
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