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Abstract. As the Internet of Things (IoT) increasingly empowers the
network extremes with in-place intelligence through Machine Learning
(ML), energy consumption and carbon emissions become crucial factors.
ML is often computationally intensive, with state-of-the-art model archi-
tectures consuming significant energy per training round and imposing
a large carbon footprint. This work, therefore, argues for the need to in-
troduce novel mechanisms into the ML pipelines of IoT services, so that
energy awareness is integrated in the decision-making process for when
and where to initiate ML model training.
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1 Introduction

With recent advancements in IoT hardware, we are seeing the use of ML on IoT
devices for highly responsive and intelligent services. However, ML is compute-
hungry. In fact, the computational power required for training new state-of-
the-art model architectures has been doubling every 4 months [2]. This com-
putational effort results in higher and higher energy consumption and, in turn,
increasing carbon emissions, contributing to global warming. Already, ICT or-
ganizations report that approximately 15% of their energy consumption can be
attributed to AI/ML and this ratio is expected to rise considerably [3]. With
Gartner [1] indicating that 75% of enterprise data will be created and processed
outside of data centers, and the climate crisis demanding a rapid reduction in
carbon emissions, a key emerging challenge is to adequately support the migra-
tion to sustainable Al-driven cloud edge ToT solutions [5].

This work discusses the challenges of deploying Al-driven IoT services in
geo-distributed settings with a focus on energy consumption and carbon foot-
print. During the session we will broaden the discussion towards the need for
extending ML orchestration frameworks so that their decision-making mecha-
nisms cover energy-awareness by recommending when and where ML models
should be trained and elaborate why these two inter-related challenges are not
easy to overcome.
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2 Reference Use Case

To drive the discussion, let us consider a realistic ML-driven IoT application.
This application features several road-side IoT units, using cameras and object
detection for traffic monitoring. Several Mobile Edge Computing nodes (MECs)
are scattered across the city and employed for local coordination as well as
recurrent model training at a neighborhood level. For the evaluation we consider
a MEC to be powered by a DELL PowerEdge R610 server and equipped with a
Nvidia T4 GPU. The ML pipeline employs the TensorFlow benchmark suite® to
output a CNN model for object detection, trained with the ImageNet dataset?
(144GB, 1.3M images) for a duration of approximately 5 hours, when it reaches
a satisfactory MLPerf accuracy.

3 When to Train a ML Model?

Deciding when to initiate repeated ML model training can highly impact the
carbon footprint of an ML-based application. In particular, an application’s op-
erational carbon footprint depends on the energy mix powering the compute
resources used. An illustrative example is given in Fig. 1, where for a given day
in the country of Cyprus, the carbon intensity of the energy grid shows signif-
icant volatility. This is attributed to the mix of energy sources powering the
grid (Fig. 2), where the low-carbon energy sources solar and wind generate to
the greatest extent during the day, while high-carbon sources (i.e., oil) dominate
production during the evening hours.

Taking this into account, power utilization data is extracted from the CNN
model training runs over the use case testbed. Fig. 4 (red palette) showcases the
estimated carbon footprint for model training with the training process initiated
at different times in Cyprus. Specifically, it shows that initiating model training
at mid-day versus 6pm reduces the carbon footprint by 1.93kg, while the carbon
footprint is reduced even by 2.61kg in comparison to 9pm.

3 https: //github.com/tensorflow/benchmarks
* https://www.image-net.org/
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4 Where to Train a Model?

Arguably, a country or region that uses high-carbon energy sources, such Cyprus,
may not be ideal for ML model training. In contrast, let us consider the country
of Sweden, with Fig. 3 showing its carbon intensity measured over the same day.
We can observe that the intensity is relatively stable across the day. This is ideal.
First, when the model is trained does not make a huge difference. Second, the
intensity is significantly lower, with Sweden usually being the EU state report-
ing the lowest carbon intensity. Considering now also the UK with a moderate
carbon intensity that would rank it in the middle of the EU, let us go back to
Fig. 4 and compare this with the training rounds initiated at different times in
Cyprus. We can see that migrating an ML application to a different country
can yield a significantly different environmental footprint, with model training
in Sweden and the UK promising a 93% and 38% reduction in carbon emissions,
respectively, in contrast to the Cyprus-based training, even during mid-day.

5 Energy-Aware Support for ML Workflow Orchestrators

Figure 5 depicts a high-level overview of the PowerML tool for aiding the decision-
making of ML orchestration frameworks as to when and where to train ML
models. To design such a tool the following steps are required. First, resource
utilization must be mapped into energy consumption with different power mod-
els embraced for processors, memory, graphic and Al accelerators, as well as
network links. In large-scale heterogeneous deployments this can easily become
a configuration nightmare. To aid with this, we are building an open repository
for power models that can be shared among users. Second, energy consump-
tion must be used for estimating carbon emissions, which are dependent on the
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Fig. 5. The PowerML tool for aiding energy-aware orchestration of ML training

energy mix currently powering the power grid. Several grids provide live and his-
toric data but this is either through websites or APIs, without a common data
model. PowerML overcomes this challenge by providing an abstraction layer for
accessing energy mix data from energy grids.

Moreover, there are many trade-offs to consider for the decision-making, com-
monly requiring human input as to which strategies should be explored. This
is an inhibitor to a fully automated processes. One such trade-off is between
accuracy and energy saving when postponing model training. That is, waiting
for a low-carbon energy time window may come with a huge accuracy hit if the
data distribution changes (concept drift) in the meantime [4]. Other trade-offs
come with moving the workload to a different location. Moving large volumes
of training data introduces delays and has a carbon cost of its own to consider.
Moreover, moving data across regions is not a simple process with potential legal
and privacy requirements, contradicting key arguments for in-place processing
and edge intelligence.
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