
Dynamic Resource Allocation
for Distributed Dataflows

vorgelegt von
Lauritz Thamsen, M.Sc.,

geb. in Braunschweig

von der Fakulät IV – Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
- Dr. Ing. -

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. Tilmann Rabl
Gutachter: Prof. Dr. Odej Kao
Gutachter: Prof. Dr. Andreas Polze
Gutachter: Prof. Dr. César A. F. De Rose

Tag der wissenschaftlichen Aussprache: 4. Mai 2018

Berlin 2018

Acknowledgments
I want to take the opportunity to thank a number of people, who supported me and
helped shape this thesis.

First, I want to thank my advisor Odej Kao for the valuable advice and guidance over
the last years, for the opportunities to present my work at international conferences and
to other research groups, and for the helpful feedback I received on drafts of this thesis. I
also want to thank Cesar de Rose and Andreas Polze for agreeing to review this thesis and
for the feedback I received when I was allowed to present my results prior to submitting
this thesis.

I am grateful to Jossekin Beilharz, Thomas Renner, and Ilya Verbitskiy for critically
reading this thesis and for helping me improve the presentation of my results with many
practical suggestions and comments. Jossekin even took the time to review the prelim-
inary version of this thesis while we were on the road for two weeks, attending confer-
ences in Hong Kong and Taipei. Thomas and Ilya, on the other hand, were not only very
supportive in the preparation of this thesis, but also closely worked with me in the last
years and I am thankful for the good collaboration. I would also like to give credit to
the students who worked with me over the last years, especially to Jannis Koch and also
to Benjamin Rabier, Julian Böhm, and Sascha Wolke. Furthermore, I want to thank Uta
Hartmann, Oliver Buck, and Jana Bechstein for proofreading this thesis and helping me
improve the style.

I am thankful to my colleagues and former colleagues at TU Berlin. I especially want
to thank Tobias Herb, Andreas Kunft, Alexander Alexandrov, and Asterios Katsifodimos
here. They helped me get into the research field of this thesis when I first started at TU
Berlin with a background in interactive programming systems and only a rudimentary
understanding of scalable data analytics.

I also want to take this opportunity to thank Robert Hirschfeld and his research group,
of which I was allowed to be part of during my Master’s program at Hasso-Plattner-
Institut and with whom I wrote all my first academic texts, arguably starting my aca-
demic endeavors about seven years ago.

Finally, I want to thank my family and friends, especially my parents and Uta, for their
understanding and support.

iii

Abstract
Distributed dataflow systems enable users to process large datasets in parallel on clusters
of commodity nodes. Users temporarily reserve resources for their batch processing jobs
in shared clusters through containers. A container in this context is an abstraction of a
specific amount of resources, typically a number of virtual cores and an amount of mem-
ory. For their production batch jobs, users often have specific runtime targets and need
to allocate containers accordingly. However, estimating the performance of distributed
dataflow jobs is inherently difficult due to the many factors the performance depends on
such as programs, datasets, systems, and resources. Additionally, there is significant per-
formance variance in the execution of distributed dataflows in shared large commodity
clusters. For these reasons, users often over-provision resources considerably to ensure
the runtime targets of their production jobs are met. This behavior leads to unnecessary
low resource utilizations and thereby generates needless costs.

This thesis presents novel methods for predicting the performance of distributed data-
flow jobs and for allocating minimal sets of resources predicted to meet users’ runtime
targets. The core question addressed by this thesis is how minimal resources can be
allocated automatically for a given runtime target and a production batch job of a dis-
tributed dataflow framework. To this end, this thesis contributes (1) two models for
capturing the scale-out behavior of distributed dataflow jobs, a simple parameterized
model of distributed processing and a nonparametric model able to interpolate arbitrary
scale-out behavior given dense training data, and a method for automatically choosing
between these two models, (2) different measures of the similarity between job execu-
tions and methods for selecting similar previous executions of a job as a basis for accurate
performance prediction, and (3) a method for continuously monitoring a running job’s
progress towards its runtime target and dynamically adjusting resource allocations based
on per-stage runtime predictions. The overall solution we present in this thesis supports
multiple distributed dataflow systems through the use of black-box models and can be
deployed on a per-application basis in existing cluster setups.

The methods presented in this thesis have been implemented in prototypes, experi-
mentally evaluated on a commodity cluster using exemplary distributed dataflow jobs,
and peer-reviewed for publication at renowned international conferences. For the experi-
ments, we used jobs from the domains of search, relational processing, machine learning,
and graph processing. We further used different datasets of these domains, ranging from
1 to 745.5 gigabytes, and up to 60 cluster nodes.

v

Zusammenfassung
Verteilte Datenflusssysteme erlauben es Nutzern, große Datenmengen parallel auf Com-
puterclustern zu verarbeiten. Nutzer reservieren für ihre Analyseprogramme Ressour-
cen mittels sogenannter Container. Diese Container repräsentieren eine bestimmte Men-
ge an Ressourcen, zum Beispiel eine bestimmte Anzahl an Prozessorkernen und eine
Menge Hauptspeicher. Für produktiv eingesetzte Analyseprogramme haben Nutzer oft
spezifische Laufzeitvorgaben. Es ist jedoch schwierig, das Laufzeitverhalten von verteil-
ten Datenflussprogrammen vorher abzuschätzen, weil dieses von sehr vielen Faktoren
beeinflusst wird. Einen wesentlichen Einfluss auf das Laufzeitverhalten haben neben
den Programmen dabei die Datensätze, die Systeme und die Ressourcen. Zudem va-
riiert die Ausführungsgeschwindigkeit von verteilten Datenflussprogrammen erheblich
in von vielen Nutzern gemeinsam verwendeten Commodity Clustern. Daher reservie-
ren Nutzer häufig deutlich mehr Ressourcen als erforderlich, um sicherzustellen, dass
Laufzeitanforderungen eingehalten werden. Diese Vorgehensweise führt allerdings zu
unnötig niedriger Ressourcenauslastung und dadurch zu unnötigen Kosten.

Diese Doktorarbeit präsentiert neue Methoden zur Vorhersage der Laufzeit von ver-
teilten Datenflussprogrammen und zur Reservierung minimaler zur Einhaltung von Lauf-
zeitvorgaben nötiger Ressourcen. Die Forschungsfrage dieser Doktorarbeit ist demnach,
wie minimal nötige Ressourcen für gegebene Laufzeitanforderungen von produktiv ein-
gesetzten verteilten Datenflussprogrammen automatisch ausgewählt werden können.
Dazu leistet die Doktorarbeit die folgenden Beiträge. (1) Es werden zwei Modelle zur Be-
schreibung des Skalierungsverhaltens von verteilten Datenflussprogrammen vorgestellt
sowie eine Methode, um automatisch zwischen den beiden Modellen zu wählen. (2) Es
werden mehrere verschiedene Maße für die Ähnlichkeit zweier Ausführungen des glei-
chen Datenflussprogramms präsentiert, sowie Methoden um genau diejenigen ähnlichen
vorangegangenen Ausführungen als Basis für die Laufzeitvorhersage von Programmen
auszuwählen, die eine hohe Vorhersagegenauigkeit versprechen. (3) Es wird eine Me-
thode vorgestellt, die mittels Laufzeitvorhersagen für die einzelnen Teilschritte von Da-
tenflussprogrammen abschätzt, ob ein aktuell laufendes Programm die Laufzeitvorgabe
ungefähr einhalten wird, und die Menge an reservierten Ressourcen ansonsten entspre-
chend dynamisch anpasst. Die Lösung, die in dieser Doktorarbeit präsentiert wird, unter-
stützt durch den Einsatz von Blackbox-Modellen verschiedene verteilte Datenflusssyste-
me und kann für einzelne Anwendungen in bestehenden Cluster-Aufbauten verwendet
werden.

vii

viii

Die vorgestellten Methoden wurden prototypisch implementiert, experimentell mit
beispielhaften Datenflussprogrammen sowie großen Datensätzen auf einem Commo-
dity Cluster evaluiert und im Rahmen von Publikationen auf mehreren renommierten
internationalen Konferenzen begutachtet. Für die Experimente wurden unter anderem
Programme aus den Domämen relationale Datenverarbeitung, maschinelles Lernen, und
Graphanalyse verwendet. Außerdem wurden verschiedene bis zu 745,5 Gigabyte große
Datensätze und bis zu 60 Commodity Server verwendet.

Contents
1 Introduction 1

1.1 Problem Definition . 3
1.2 Contributions . 5
1.3 Outline of the Thesis . 7

2 Background 9
2.1 Distributed Data-Parallel Processing . 9

2.1.1 Distributed Dataflows . 11
2.1.2 Comparison to High-Performance Computing 15

2.2 Shared Analytics Cluster Setup . 17
2.2.1 Distributed File Systems . 18
2.2.2 Resource Management Systems . 19
2.2.3 Co-Located Cluster Setup . 21

3 Related Work 23
3.1 Distributed Dataflow Systems and Related Distributed Systems 23

3.1.1 Distributed Dataflow Systems . 24
3.1.2 Systems Used in Conjunction with Distributed Dataflow Systems . 26
3.1.3 Related Parallel and Distributed Computing Systems 29

3.2 Runtime Prediction and Resource Allocation for Runtime Targets 32
3.2.1 Pure Runtime and Progress Estimation 33
3.2.2 System-Specific Automatic Resource Allocation 33
3.2.3 Resource Allocation Based on Black-Box Prediction Models 35

3.3 Adaptive Resource Management . 37

4 Problem and Concepts 39
4.1 Problem and State of the Art . 39
4.2 Assumptions and Requirements . 42

4.2.1 Batch Processing Jobs . 42
4.2.2 Distributed Dataflow Systems . 42
4.2.3 Dedicated Analytics Clusters . 44
4.2.4 Requirements for a Practical Solution 45

4.3 Approach and Methods . 45
4.3.1 Solution Overview . 45
4.3.2 Application to Iterative Jobs . 49

ix

x Contents

4.4 System Architecture . 50
4.4.1 Architecture Overview . 51
4.4.2 Prototype Components . 52
4.4.3 Integration with YARN and Spark 55

5 Modeling the Scale-Out Behavior of Batch Jobs 59
5.1 Scaling out Distributed Dataflows . 59
5.2 Scale-Out Models for Distributed Dataflows 64

5.2.1 Parametric Regression . 64
5.2.2 Nonparametric Regression . 66
5.2.3 Automatic Model Selection . 67

5.3 Evaluation . 67
5.3.1 Cluster Setup . 67
5.3.2 Experiments . 68
5.3.3 Results . 69

6 Estimating Job Runtimes Based on Similar Previous Executions 73
6.1 Predicting Job Performance Based on Previous Executions 74
6.2 Assessing the Similarity of Job Executions 76

6.2.1 Similarity Measures . 76
6.2.2 Similarity Quality . 80
6.2.3 Training Job-Specific Thresholds and Weights 83

6.3 Estimating the Remaining Runtime of Recurring Iterative Jobs 84
6.3.1 Estimate Inference . 85
6.3.2 Final Estimate . 86
6.3.3 Outlier Iterations . 86

6.4 Evaluation . 87
6.4.1 Cluster Setup . 87
6.4.2 Experiments . 87
6.4.3 Results . 89

7 Allocating Resources for Jobs With Runtime Targets 95
7.1 Stage-Wise Runtime Prediction . 96
7.2 Selecting Resources for Runtime Targets . 97

7.2.1 Resource Allocation Based on Predicted Runtimes 97
7.2.2 Selecting Resources on Job Submission 98
7.2.3 Adjusting Allocations at Runtime 99
7.2.4 Selecting Resources for Jobs with Insufficient Training Data 101

7.3 Evaluation . 101
7.3.1 Cluster Setup . 101
7.3.2 Experiments . 102
7.3.3 Results . 103

8 Conclusion 107

1 Introduction
Many organizations have to work with increasingly large datasets. The cost of storing a
large volume of data has decreased considerably. Therefore, more data can be saved for
later analysis. Furthermore, there is also more data being generated. A major reason for
this is the digitalization with the Internet of Things as a driving force. Large numbers
of sensors as increasingly deployed in manufacturing and urban infrastructures contin-
uously record and emit data. For example, the Spanish city of Santander currently uses
the continuous measurements of 15.000 sensors to monitor and analyze traffic conditions,
noise, and air quality [1]. User-generated content is another reason for the increasingly
large volumes of data, especially in combination with enormous user bases. Today, some
Internet companies have billions of users. This many users generate immense datasets.
Companies process this data for their core business and also to gain further insights.
Google, for example, processes hundreds of terabytes of Web pages to improve Web
search [2]. The company also uses millions of clicks as a basis for recommending arti-
cles on its news aggregation platform [3]. Furthermore, researchers analyzed Web search
logs of millions of users of multiple search engines to detect previously unknown phar-
maceutical side effects [4].

The increasing size of datasets and decreasing prices of commodity hardware, espe-
cially when compared to specialized parallel computers, have led to clusters of comput-
ers being used widely for working with large datasets. Companies, researchers, and the
open source community developed distributed systems for storing and processing large
datasets using clusters of shared-nothing commodity nodes. Distributed data-parallel
processing systems support users in developing and executing distributed programs.
These systems offer high-level programming abstractions that hide the complexities of
parallel programming from users. Moreover, they provide efficient fault-tolerant dis-
tributed execution of programs.

A particularly popular class of systems for general-purpose distributed data-parallel
processing are distributed dataflow systems like MapReduce [5], Spark [6], and Flink [7].
Users of these systems create programs from a set of operators, configure these data trans-
formation tasks with sequential user code, and then connect the tasks to form directed job
graphs. The distributed dataflow systems subsequently execute jobs in parallel and dis-
tributed across a set of connected shared-nothing commodity nodes. Tasks are executed
data-parallely, so parallel task instances process partitions of the data. Further, depend-
ing on the semantics of operators, also instances of subsequent tasks in the job graphs
can potentially process elements simultaneously, adding pipeline parallelism.

1

2 Chapter 1. Introduction

In comparison to the technology used for high-performance computing (HPC), dis-
tributed dataflow systems arguably make it easier to develop scalable data-parallel pro-
grams that efficiently analyze large datasets in parallel using large sets of commodity
cluster nodes. This is due to the high-level programming abstractions and comprehen-
sive distributed runtime environments of distributed dataflow systems. The program-
ming model is restricted to a set of pre-defined operators, yet for these operators, the
systems provide efficient implementations, data partitioning and parallelization, com-
munication and synchronization, distributed task management, as well as monitoring
and fault tolerance.

A prerequisite for executing a distributed dataflow program with a certain level of par-
allelism is using a set of compute resources providing that level of parallelism. Usually,
multiple users share clusters to increase the resource utilization. In this case, resource
management systems like Mesos [8] and YARN [9] manage the cluster nodes and users
reserve shares of the available resources for their jobs via containers. A container is an
abstraction of resources, used for resource negotiation and scheduling. It represents for
example a number of virtual cores and an amount of main memory. Users typically re-
serve tens to hundreds of containers for their jobs, while containers of multiple jobs share
the cluster and nodes, typically without resource isolation.

Users often have specific performance requirements for their production data process-
ing jobs [10, 11]. Twitter, for instance, aims for a target latency of ten minutes for updating
their search completion indices based on terabytes of log data [12]. Missing such run-
time targets negatively effects the usability of services. Moreover, in case of agreed upon
service level objectives (SLOs), typically expressed in the form of service level agree-
ments (SLAs), missing runtime targets also entails financial penalties.

However, how specific levels of parallelism and resource allocations translate to job
runtimes is often not straightforward for distributed dataflows. First, the speed-up of
additional compute capacities is limited by ingestion rates, partitioning, and synchro-
nization overheads. For example, when the available network links are fully saturated
for most of a job’s runtime, using more cores and memory will not speed up the job’s
execution significantly. Second, even when jobs can be scaled out to meet a particular
runtime target, estimating beforehand how many containers are actually necessary to
meet this goal is difficult. The scale-out behavior of distributed dataflow jobs depends
on many factors related to the programs, datasets, systems, and resources used. The
scale-out behavior is also often not completely straightforward. Due to data skew and
the overheads of distributed communication and synchronization, it is fully possible that
allocating more containers will lead to longer runtimes. Furthermore, failures and inter-
ference with concurrently running workloads can add considerable runtime variance [11,
13, 14].

Given runtime targets despite the difficulty of anticipating distributed dataflow perfor-
mance, users defensively over-provision resources for their important production jobs.
This behavior is problematic as it leads to poor overall cluster utilizations. In fact, a
study of a production cluster at Twitter [15] shows that the aggregate CPU utilization

1.1. Problem Definition 3

was consistently below 20%, despite resource reservations close to 80% of the total ca-
pacities. Memory utilization was between 40–50%, yet still differed considerably from
the reserved capacities of also close to 80% of the total memory. Similarly, an analytics
cluster at Google only achieved a CPU utilization of 25–35% and memory utilization of
40%, even though reservations exceeded 75% and 60% of the available capacities [13].
Resource utilizations this low suggest large potential for optimization. Moreover, im-
provements in this area will have huge impacts. Organizations would be able to save
money on initial infrastructure investments, operational and maintenance costs, as well
as costs for energy consumption.

At the same time, many production batch jobs run repeatedly. These are batch jobs
that periodically update core data structures of organizations, scheduled for instance
on a daily or hourly basis [10, 14, 16]. They account for up to 60% of the overall jobs
running on dedicated analytics clusters and typically have defined performance require-
ments [11]. This presents an opportunity to collect runtime statistics for recurring jobs
and model their scale-out behavior based on previous executions. Such scale-out mod-
els allow to predict the runtimes of a job for specific sets of resources. Based on these
predictions, a minimal scale-out and therefore number of containers can be chosen auto-
matically for a user’s runtime target. Containers then translate to temporarily reserved
resources, typically cores and memory, on specific worker nodes. Furthermore, monitor-
ing of the actual job performance and dynamic adjustments based on runtime statistics
can be used to address runtime variance.

Accurate runtime prediction and automatic resource allocation are especially impor-
tant for distributed dataflow jobs. First, due to the data-parallel execution model and
efficient scalable runtime environments of distributed dataflow systems, a multitude of
scale-outs and thus numbers of containers can be used for jobs. Second, distributed data-
flow systems make it easier to develop efficient data-parallel programs that make use
of large sets of cluster resources, allowing even users without extensive knowledge of
parallel programming, distributed systems, and data-parallel processing to create such
programs. At the same time, even expert users do not always fully understand system
and workload dynamics [17, 18]. Thus, systems arguably should alleviate users from
having to allocate resources for their jobs and runtime targets themselves. Moreover,
accurate runtime prediction can also be immensely useful for resource management sys-
tems. Similarly as in the area of HPC [19, 20], accurate runtime predictions can be used
to go beyond merely selecting the next job from a queue of submitted jobs to planning
schedules ahead based on the predicted runtimes of jobs and future availability of re-
sources.

1.1 Problem Definition
The topic of this thesis is resource allocation for production batch jobs of distributed
dataflow frameworks. The research question of this thesis is

4 Chapter 1. Introduction

“Given a runtime target for a production batch job of a distributed dataflow framework, how can
minimally necessary sets of resources be allocated automatically?”.

The problem embodied in this research question and addressed in this thesis is twofold:

Runtime Prediction The runtime of distributed dataflow jobs is difficult to predict due
to the many factors that determine the performance of distributed dataflows, for
which often not even full statistical information are available before execution, ren-
dering even detailed performance models obsolete without sample runs. This first
part of the problem therefore asks how runtimes of distributed dataflow systems
can be predicted based on samples.

Runtime Variance There is considerable variance in the runtimes of distributed data-
flow jobs in shared commodity clusters. This is due to worker failures, updated
data and code, as well as varying degrees of data locality and interference with
co-located workloads. Runtime variance can be addressed by provisioning for the
worst case, but the goal of this thesis is to allocate minimal necessary resources.
This second part of the problem therefore asks how runtime variance can be ad-
dressed when minimal sets of resources are allocated for distributed dataflow jobs
based on runtime prediction models.

The idea of our solution is to let users explicitly state their runtime targets, use scale-out
models that allow to predict the runtimes of distributed dataflow jobs, train these mod-
els on selected similar previous executions of recurring jobs, and then allocate minimal
sets of resources predicted to meet users’ runtime targets, while addressing performance
variance with continuous monitoring and dynamic adjustments.

We make a number of assumptions, while addressing the problem:

Recurring Batch Jobs We assume that production batch jobs with specified runtime tar-
gets are executed repeatedly, for example on a daily or hourly basis.

Distributed Dataflow Systems We assume that batch jobs of distributed dataflow sys-
tems are scalable and consist of multiple stages that can be monitored, modeled,
and executed with different sets of resources.

Shared Homogeneous Clusters We assume that production batch jobs with specified
runtime targets run in shared homogeneous commodity clusters.

We specifically do not assume a particular distributed dataflow framework and no par-
ticular application domain. We also do not assume the availability of a dedicated staging
cluster to profile new jobs. Furthermore, we do not expect jobs to run in isolation or
otherwise fully predictable performance. We also do not assume control over job admis-
sion, the execution order of jobs, or container placement. Instead, we focus on setting the
scale-out in terms of number of containers, which we refer to as resource allocation in
this thesis, for single distributed dataflow jobs.

1.2. Contributions 5

1.2 Contributions
This thesis proposes a set of solutions to the problem described above. These solutions
make contributions in three areas: modeling the performance of distributed dataflows,
selecting similar previous job executions as a basis for runtime prediction models, and
allocating resources for distributed dataflow jobs dynamically based on predicted run-
times.

In the first area, the thesis presents a black-box approach for modeling the performance
of distributed dataflow jobs. The idea is to find a function that describes the scale-out be-
havior of a job based on a couple of example executions. We present two different models
and a method for dynamically selecting between models. First, a parameterized model
that provides reasonable predictions from a few data points. Second, a model using non-
parametric regression that, given dense training data, can be used to accurately interpo-
late arbitrary scale-out behaviors. Our method for selecting between models incorporates
the available training data and the prediction task.

In the second area, the thesis presents an approach for selecting samples for accurate
performance estimation using the similarity between executions of distributed dataflow
jobs. Our approach is to continuously match a job to similar previous executions based
on all available statistics, including statistics on the current job execution collected at run-
time, allowing more accurate estimations as a job progresses. This way, a current job is
matched to previous executions based on its actual runtime behavior. We first present a
set of similarity measures. We then present methods for assessing the overall similarity
between job executions. Specifically, we automatically train weights and thresholds on all
previous executions of a job to give weight to those similarities that provide accurate es-
timations for a particular job. Finally, we present a method for estimating the progress of
iterative distributed dataflow jobs that makes use of our similarity matching techniques.

In the third area, the thesis presents a practical application of the methods for perfor-
mance modeling and for selecting sample runs as a basis for prediction models. Here,
we present a method for automatically selecting minimal sets of resources predicted to
meet the runtime targets of recurring distributed dataflow jobs. We use scale-out models
for each of a job’s stages, trained on previous executions of jobs, and then dynamically
allocate resources for each job stage using the scale-out models. The overall solution we
present here monitors jobs at runtime, predicts the remaining runtime at each of a job’s
synchronization barriers, and dynamically adjusts resource allocations to meet the job’s
runtime target despite variance in job performance.

We have implemented the methods presented in this thesis in a prototype of a system
for dynamic resource allocation, which we call Ellis. Ellis makes use of a component for
scale-out modeling, called Bell, and a component for selecting similar previous executions
as training data, called Cutty. We integrated Ellis with YARN and Spark. Moreover, we
evaluated all three prototypes experimentally with several exemplary Spark and Flink
applications, large real-word as well as synthetic datasets, and up to 60 nodes of a com-
modity cluster.

6 Chapter 1. Introduction

Central parts of this thesis have been published as follows:

1. L. Thamsen, I. Verbitskiy, J. Beilharz, T. Renner, A. Polze, and O. Kao. “Ellis: Dy-
namically Scaling Distributed Dataflows to Meet Runtime Targets”. In: Proceedings
of the 2017 IEEE International Conference on Cloud Computing Technology and Science.
CloudCom 2017. IEEE, 2017.

2. J. Koch, L. Thamsen, F. Schmidt, and O. Kao. “SMiPE: Estimating the Progress of
Recurring Iterative Distributed Dataflows”. In: Proceedings of the 18th International
Conference on Parallel and Distributed Computing, Applications and Technologies. PD-
CAT 2017. IEEE, 2017.

3. L. Thamsen, I. Verbitskiy, F. Schmidt, T. Renner, and O. Kao. “Selecting Resources
for Distributed Dataflow Systems According to Runtime Targets”. In: Proceedings of
the IEEE International Performance Computing and Communications Conference. IPCCC
2016. IEEE, 2016.

Additionally, the following publications are related to this thesis:

1. L. Thamsen, I. Verbitskiy, B. Rabier, and O. Kao. “Learning Efficient Co-locations
for Scheduling Distributed Dataflows in Shared Clusters”. In: Services Transactions
on Big Data 5.1., 2018.

2. T. Renner, L. Thamsen, and O. Kao. “Adaptive Resource Management for Dis-
tributed Data Analytics Based on Container-level Cluster Monitoring”. In: Proceed-
ings of the 6th International Conference on Data Science, Technology and Applications.
DATA 2017. SCITEPRESS, 2017.

3. L. Thamsen, B. Rabier, F. Schmidt, T. Renner, and O. Kao. “Scheduling Recurring
Distributed Dataflow Jobs Based on Resource Utilization and Interference”. In: Pro-
ceedings of the 6th 2017 IEEE International Congress on Big Data. BigData Congress
2017. IEEE, 2017.

4. T. Renner, L. Thamsen, and O. Kao. “CoLoc: Distributed Data and Container Colo-
cation for Data-Intensive Applications”. In: Proceedings of the 2016 IEEE International
Conference on Big Data. IEEE BigData 2016. IEEE, 2016.

5. L. Thamsen, T. Renner, M. Byfeld, M. Paeschke, D. Schröder, and F. Böhm. “Visually
Programming Dataflows for Distributed Data Analytics”. In: Proceedings of the 2016
IEEE International Conference on Big Data. BigData 2016. IEEE, 2016.

6. I. Verbitskiy, L. Thamsen, and O. Kao. “When to Use a Distributed Dataflow Engine:
Evaluating the Performance of Apache Flink”. In: Proceedings of the IEEE Interna-
tional Conference on Cloud and Big Data Computing. CBDCom 2016. IEEE, 2016.

7. L. Thamsen, T. Renner, and O. Kao. “Continuously Improving the Resource Uti-
lization of Iterative Parallel Dataflows”. In: Proceedings of the IEEE International
Conference on Distributed Computing Systems Workshops. ICDCSW 2016. IEEE, 2016.

8. T. Herb, L. Thamsen, T. Renner, and O. Kao. “Aura: A Flexible Dataflow Engine for
Scalable Data Processing”. In: Andreas Knüpfer, Tobias Hilbrich, Christoph Nietham-

1.3. Outline of the Thesis 7

mer, José Gracia, Wolfgang E. Nagel, Michael M. Resch (eds.), Tools for High Performance
Computing 2015. Springer, 2016.

9. T. Renner, L. Thamsen, and O. Kao. “Network-Aware Resource Management for
Scalable Data Analytics Frameworks”. In: Proceedings of the 2015 IEEE International
Conference on BigData. BigData 2015. IEEE, 2015.

10. A. Alexandrov, A. Kunft, A. Katsifodimos, F. Schüler, L. Thamsen, O. Kao, T. Herb,
and V. Markl. “Implicit Parallelism Through Deep Language Embedding”. In: Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data. SIG-
MOD ’15. ACM, 2015.

1.3 Outline of the Thesis
The remainder of this thesis is structured as follows.

Chapter 2 presents the necessary background on distributed data processing and ana-
lytics clusters. First, we present distributed data-parallel processing systems with a par-
ticular focus on distributed dataflow systems and differences to the area of HPC. Second,
we describe the typical setup of shared analytics clusters. We explain the main concepts
behind distributed file systems and resource management systems. We also describe how
these systems are used in conjunction with distributed dataflow systems.

Chapter 3 presents related work. First, we present systems for distributed data-parallel
processing, focussing on distributed dataflow systems, but also discussing the applicabil-
ity of the methods presented in this thesis to other parallel computing systems. Second,
we present work on predicting the runtimes of distributed dataflow jobs and on allo-
cating resources based on predicted runtimes. Third, we present systems that monitor
the performance of distributed processing systems and use collected runtime statistics to
adaptively improve resource usage.

Chapter 4 describes the problem in detail and gives an overview of our solution. First,
we explain how the difficulty of estimating the performance of distributed dataflows
leads to low cluster utilizations and unnecessary costs, arguing that systems should se-
lect resources automatically for users’ runtime targets. We also identify critical limitations
with current solutions to the problem. Second, we discuss our central assumptions, from
which we derive the requirements for our solution. Third, we present our overall ap-
proach and the central methods to solve the presented problem. Finally, we present the
system architecture and the implementation of our prototype components.

Chapter 5 presents methods for modeling the performance of distributed dataflow
jobs. First, we describe what happens when distributed dataflow jobs are scaled out
to more compute resources and which factors impact whether scaling out a particular
job actually decreases its runtime. Second, we present two different models that, given
sufficient training samples, can be used to capture the scale-out behavior of distributed
dataflow jobs. Third, we present a method for automatically choosing between the mod-

8 Chapter 1. Introduction

els, given both training data and a prediction task. Finally, we present an evaluation of
the presented methods using six distributed dataflow jobs and a cluster of 60 nodes.

Chapter 6 presents methods for selecting similar previous executions of distributed
dataflow jobs as a basis for performance estimation. First, we describe the general ap-
proach of using similar previous executions for estimating the performance of jobs. Sec-
ond, we present multiple measures that can be used to compare job executions such as
the input data size and stage runtimes. We also propose methods for assessing the over-
all similarity of executions and the usefulness of similarity measures for performance
estimation. Furthermore, we explain how we train thresholds and weights for each job
automatically based on all of its previous executions. Third, we show a method for esti-
mating the remaining runtimes of running iterative distributed dataflow jobs using the
previously presented methods. Finally, we present an evaluation of the presented meth-
ods using three iterative distributed dataflow programs, nine different datasets, and a
cluster of 40 nodes.

Chapter 7 presents methods for dynamic resource allocation for distributed dataflow
jobs with specific runtime targets. First, we show how we use scale-out models for in-
dividual job stages to predict the runtime of distinct parts of a distributed dataflow job.
Second, we explain how sets of resources can be allocated based on predicted stage run-
times, both initially and after assessing a job’s progress at the synchronization barriers
in-between job stages. Finally, we present an evaluation of Ellis, the prototype in which
we implemented these methods for dynamic resource allocation, using four distributed
dataflow jobs and a cluster of 60 nodes.

Chapter 8 concludes this thesis by summarizing our results and identifying directions
for future work.

2 Background
Contents

2.1 Distributed Data-Parallel Processing . 9
2.1.1 Distributed Dataflows . 11
2.1.2 Comparison to High-Performance Computing 15

2.2 Shared Analytics Cluster Setup . 17
2.2.1 Distributed File Systems . 18
2.2.2 Resource Management Systems . 19
2.2.3 Co-Located Cluster Setup . 21

This chapter presents the background of this thesis. We first describe distributed data-
parallel processing, focusing on distributed dataflow systems and highlighting differ-
ences between these systems and the area of high-performance computing. Subsequently,
we present the typical setup of dedicated shared cluster infrastructures for data-parallel
processing and the main ideas behind distributed file systems and resource management
systems.

2.1 Distributed Data-Parallel Processing
Parallel computing requires parallel hardware, parallel problems, and parallel programs.
Parallel hardware can be a single parallel computer, for example one equipped with mul-
tiple cores or processors, but also a large cluster of connected multi-core machines. Due
to the increasing size of datasets and the low prices for commodity hardware compared
to high-capacity parallel hardware, clusters of locally connected shared-nothing com-
modity nodes are often used for storing and processing large datasets. These computing
environments require distributed systems for processing large datasets in parallel.

Computing problems can be solved in parallel when multiple input elements can be
processed independently or multiple different programming steps can be executed si-
multaneously. Processing multiple input elements in parallel following the same pro-
gram is called data parallelism. In contrast, simultaneously executing multiple different
programs that work together to solve a problem is called task parallelism. When large
datasets have to be processed, problems are often data-parallel. In this case, the input
data can be split up among parallel workers, typically running on multiple connected
nodes, to be processed in parallel. The parallel workers need to be synchronized and

9

10 Chapter 2. Background

exchange data when multiple elements with specific characteristics are to be combined,
otherwise they can process partitions of the entire data independently. Furthermore,
even combining groups of elements can happen in parallel, as long as there are multiple
groups that should be combined. This way, using distributed data-parallel processing
systems to run data-parallel programs on a set of parallel computers such as a commod-
ity cluster can significantly speed up computations. The two categories data-intensive
and compute-intensive are also used to distinguish problems [21]. Data-intensive appli-
cations are I/O-bound, predominantly reading and transferring large amounts of data,
while compute-intensive applications are CPU-bound, primarily devoting time to com-
putation.

A popular class of systems for general-purpose distributed data-parallel processing
are distributed dataflow systems [22]. Prominent examples of this class of systems are
MapReduce [5], SCOPE [23], Spark [6], and Flink [7]. In distributed dataflow systems,
data is processed as it flows through a graph of data-parallel operators. Data-parallel in-
stances of the operators run on homogeneous shared-nothing commodity cluster nodes.
The data usually gets re-partitioned and distributed among these data-parallel task in-
stances multiple times during the execution of a distributed dataflow job. Distributed
dataflow systems combine functional programming elements and techniques known from
parallel databases. Users create programs by supplying sequential code to the second-
order function Map and Reduce. Such user-code operators and database operators like
Joins are then connected to form entire dataflow job graphs. Data partitioning and data-
parallel operator implementations allow for effective parallel execution. Furthermore,
the systems include fault-tolerant and efficient distributed runtime environments to run
jobs on commodity clusters. Other techniques known from parallel databases that have
been applied with distributed dataflow systems include declarative programming ab-
stractions such as SQL-like query languages and automatic query optimization. The main
conceptional difference that remains to actual parallel databases are that distributed data-
flow systems only process data and do not persistently manage data. Instead of storing
and indexing the datasets, distributed dataflow systems typically ingest input datasets
from distributed file systems, usually adhoc and without access to comprehensive data
statistics. Distributed dataflow systems have been developed for data-intensive applica-
tions, yet workloads can also be compute-intensive [24].

Besides distributed dataflow systems, there are numerous other kinds of distributed
data-parallel processing systems. Many of these are domain-specific solutions such as
systems specifically for distributed graph processing [25, 26] or distributed machine learn-
ing [27, 28]. However, this thesis focuses on runtime prediction, effective training data
selection, and dynamic resource allocation for distributed dataflow systems and there-
fore we discuss these systems in detail in the following section. Afterwards, we discuss
major differences to the area of HPC in regards to suitable problems, used hardware, and
applied programming abstractions.

2.1. Distributed Data-Parallel Processing 11

2.1.1 Distributed Dataflows

Distributed dataflows are graphs of connected data-parallel operators, which execute
user-defined functions on a set of shared-nothing commodity cluster nodes. Distributed
dataflow systems offer high-level programming abstractions and include efficient fault-
tolerant distributed runtime environments for developing and executing data-parallel
processing jobs. The systems allow users to create scalable data-parallel programs from
sequential building blocks. Users select and connect operators such as Map, Reduce, and
Join into dataflow job graphs. Map and Reduce are second-order functions that execute
user-defined functions (UDFs). There are also variants of these two operators, for ex-
ample pre-defined aggregations for computing sums. Join and Cross are examples for
operators that combine two dataflows into one. Figure 2.1 shows an example of a data-
flow graph. Two different input datasets are read-in and pre-processed by two different
operators, before the data is joined and aggregated and stored again.

Source 1 FlatMap

Source 2 Reduce

Reduce SinkJoin

Figure 2.1: An exemplary dataflow graph.

The distributed dataflow systems take care of task parallelization, distributed execu-
tion, and fault tolerance. For each configured operator, the systems create a number of
data-parallel task instances. Each of these instances is supplied with and processes a
partition of the data. The number of data-parallel task instances is called degree of paral-
lelism (DOP). Figure 2.2 shows the previous example dataflow job graph parallelized to
a DOP of two.

Source 11

Source 12

FlatMap1

FlatMap2

Source 21

Source 22

Reduce1

Reduce2

Reduce1

Reduce2

Sink1Join1

Join2 Sink2

Figure 2.2: A parallelized version of the exemplary dataflow graph.

Task instances of Map operators take a single element as input, transform it, and pro-
duce a single output element for each input element. Since the Map instances process
each input element independently, the input data can be assigned arbitrarily to the data-

12 Chapter 2. Background

parallel task instances of a specific Map task. Besides data parallelism, the behavior of
Map operators allows for pipeline parallelism: Multiple subsequent Map tasks can run
concurrently and in parallel, once preceding Map task instances produced input for sub-
sequent ones. Operators like Reduce and Join, in comparison to Map, merge multiple
elements with the same key. Task instances of these operators require all elements with
the same key to be available before they can start outputting results. Therefore, all previ-
ous tasks have to be finished, effectively synchronizing the parallel dataflows and thereby
adhering to the bulk synchronous parallel (BSP) model [29]. That is, pipelines of opera-
tors can be executed simultaneously up to a pipeline-breaking operator like a Reduce or
a Join. The pipeline-breaking operators separate distributed dataflow jobs into multiple
subsequent stages. Usually a job consists of multiple such stages, while only one stage is
executed at a time. The other stages of the job are either inactive or not even scheduled
and deployed to particular resources yet. Since all instances of the predecessor task or
tasks have to be finished before a pipeline-breaking operator can be executed, the slowest
instance of the predecessor task determines the overall runtime of a stage. Task instances
that are considerably slower than the other task instances of a particular operator are
called stragglers.

Even if operators like Join and Reduce do not allow for continued pipeline parallelism,
these operators are still executed data-parallely: Multiple data-parallel task instances join
or reduce groups of elements with the same key values in parallel. For this, as explained,
these operators need to receive all elements with the same key values. This is achieved by
partitioning the data using a partitioning function, which assigns elements with the same
key to the same data-parallel task instance. In general, partitions for data-parallel pro-
cessing are either created by reading in multiple splits of the input data in parallel from
a distributed file system or received from predecessor tasks in the dataflow graph. Pre-
decessor tasks either transmit existing partitions, transferring elements to one instance of
the subsequent task, or re-partition the data, transferring elements to multiple instances
of the subsequent task following a particular partitioning function. The latter case, in
which typically all instances of a currently running task transmit elements to all instances
of a subsequent task in order to re-partition the data, is called shuffling.

Many algorithms are iterative in nature. Examples include machine learning algo-
rithms such as K-Means or Stochastic Gradient Descent (SGD) and graph processing al-
gorithms like PageRank or Connected Components. In iterative algorithms, the same
steps are executed repeatedly. This is also true for iterative distributed dataflow jobs.
These distributed dataflow jobs repeat the same part of the job, usually multiple but at
least one stage, until a given number of iterations has been performed or until a termina-
tion criteria has been met. Figure 2.3 shows an exemplary parallelized dataflow, in which
two stages are repeatedly executed.

Many iterative algorithms need to examine less and less data in subsequent iterations.
This behavior is called convergence and the elements that have to be processed in the
next iteration are often called active records. For example, when computing the connected
components of a graph using label propagation, only those vertices that have been as-

2.1. Distributed Data-Parallel Processing 13

IterationPre-processing Post-processing

Figure 2.3: An iterative parallel dataflow graph.

signed to a different component in the last iteration have to be considered in the next
iteration [30]. When this property of algorithms is used to actually process less data
with subsequent iterations, this is called incremental or delta processing as opposed to bulk
processing. Distributed dataflow systems synchronize the parallel dataflows in-between
iterations, adhering to the BSP model. That is, all parallel task instances of the last dis-
tributed dataflow stage of the last iteration stop before the task instances of the first stage
of the next iteration start.

Distributed dataflow jobs are executed by a number of workers. These workers are
processes running on connected machines, typically shared-nothing commodity cluster
nodes yet also potentially virtual machines. Distributed dataflow systems typically as-
sume homogeneous capacities and also usually do not incorporate details on networks
beyond assuming connections between all workers. In particular, distributed dataflow
systems usually assume access to the same processing capacities in terms of cores and
memory on each worker. That is, each worker provides the same number of so called ex-
ecution slots, each with access to the same amount of memory and usually one processing
core. The systems then assign either single task instances or pipelines of subsequent task
instances to execution slots. Some systems schedule and deploy each stage separately.
Other systems schedule and deploy entire dataflow jobs at once, leaving it to the oper-
ating system which thread has work and is scheduled and which thread is waiting for
input.

Figure 2.4 shows a simple exemplary distributed dataflow job that is scheduled and
deployed to a node. In this example, a full pipeline of task instances of two subsequent
stages is scheduled and deployed to a single execution slot of a worker node. Regardless
of how pipelines and stages are rolled out, intermediate results in-between subsequent
distributed dataflow stages are typically kept in-memory as far as possible, while infor-
mation of the current partitioning is also usually maintained across stages and iterations.

Typically commodity hardware and standard software components are used for clus-
ters that run distributed data analytics. Given the scales at which data is processed in par-

14 Chapter 2. Background

Source1

Source2

FlatMap1

FlatMap2

Reduce1

Reduce2

Sink1

Sink2

Figure 2.4: A scheduled and deployed distributed dataflow graph.

allel on connected worker nodes, failures are to be expected. Consequently, distributed
dataflow systems usually implement mechanisms to achieve fault tolerance, so that not
entire jobs have to be re-started in case of worker failures. One approach to fault toler-
ance is to snapshot intermediate data to durable storage such as to a distributed file sys-
tem that stores each chunk of a file redundantly on multiple nodes. Another approach
is based on tracking which operations were performed and which parts of the entire
data was processed for each partition. This linage information then allows to re-compute
particular lost partitions, which is considerable faster than re-running entire jobs when
individual workers fail.

Besides failures, which make it necessary to read in snapshots or re-compute parti-
tions of the data, there are multiple other reasons for particular task instances requiring
more execution time than others task instances, making the slower task instances strag-
glers. For instance, unnoticed hardware problems might degrade the performance of a
particular node and decrease the throughput of particular task instances. Furthermore, if
partitioning schemes and the distribution of key values in a dataset result in more work
being assigned to specific task instances, these task instances will also take longer than
task instances with less work assigned. Another reason for the straggling performance of
particular data-parallel task instances can be a low degree of data locality.

Data locality is the idea of ingesting input data locally. The degree of data locality
then indicates how much of the data can be read-in locally. Data locality often has an
impact of the performance of jobs, since the input data that is not locally available has
to be transmitted and received over the network first. Receiving data over the network
that is read-in on remote nodes usually takes longer than reading data from a local disk.
Therefore, data-parallel task instances at the beginning of a distributed dataflow job that
have been assigned parts of the inputs that are not locally available usually require more
time to ingest their partitions, compared to task instances with local data access.

Given that distributed dataflow systems implement different mechanisms in regard to,
for example, scheduling or fault tolerance, particular systems have their own strengths
and use cases. On the level of developing distributed dataflow programs, the systems
further offer different programming abstractions and sets of operators. Some provide,
for example, only the second-order functions Map and Reduce, while others provide
more operators. Some distributed dataflow systems offer declarative programming ab-
stractions such as SQL-like query languages and domain-specific abstractions on top of
the general-purpose operator-level abstractions. Furthermore, on the level of distributed

2.1. Distributed Data-Parallel Processing 15

dataflow execution, there exist different physical implementations of logical operators
and also different mechanisms for partitioning data among data-parallel instances. More-
over, as indicated before, there are different approaches to scheduling and deploying
jobs that consist of multiple stages as well as for managing and exchanging interme-
diate results in-between stages. How intermediate results are handled and exchanged
in-between stages is also usually connected to fault tolerance. Intermediate results can,
for example, be exchanged through a distributed file system for fault tolerance. Other
systems use linage instead of snapshotting to optimize the performance of the failure-
free case. Aside from these matters, there is often existing code tied to a specific system.
This code can be legacy code of an organization, yet also available algorithm implemen-
tations in the form of libraries. Moreover, another practical matter that leads to choosing
one distributed dataflow system over the other are available connectors, data formats,
and other integration code allowing to use a particular processing system with related
distributed systems such as distributed file systems, databases, and messaging systems.
That is, there is a class of similar distributed systems built around data-parallel operators
executed on connected shared-nothing worker machines and programming abstractions
that include second-order functions, yet there are numerous good reasons for users to
choose a particular distributed dataflow system over another one for a specific data ana-
lytics task.

2.1.2 Comparison to High-Performance Computing

In the area of HPC, there is a long history of using high-performance computers and clus-
ters to solve often highly compute-intensive problems with low-latency requirements [31].
Programmers use abstractions like Message Passing Interface (MPI) [32], Parallel Virtual
Machine (PVM) [33], and OpenMP [34] to develop custom analysis and simulation pro-
grams that optimally harness the capabilities of the available parallel computing architec-
ture. These hardware architectures can differ significantly, yet have in common that they
provide high-performance capacities in terms of overall processing units and low-latency
networks. These hardware architectures and the programming technology used for HPC
allow for a wide range of problems to be solved efficiently, including compute-intensive
problems that exhibit a significant level of coupling between tasks.

Compared to the methods and workloads in the area of HPC, distributed data-parallel
processing with distributed dataflow systems differs in three aspects:

• Problems solved with distributed dataflow systems typically exhibit less coupling
and more data parallelism than typical HPC workloads.

• The computing infrastructures used for distributed dataflow jobs are usually com-
prised of large numbers of commodity nodes and commodity network technology,
while high-performance parallel computers and interconnects are used for HPC.

16 Chapter 2. Background

• The programming abstractions of distributed dataflow systems are more high-level
and declarative as well as adhering to more restricted programming models, com-
pared to programming technology used for HPC.

Workloads in the area of HPC are often more coupled than the workloads naturally ex-
pressed as distributed dataflows and more often compute-intensive [35–37]. Thus, HPC
workloads are intensive less due to a large amount of data that can be processed in-
dependently, yet more due to a large amount of dependent computations that need to
be performed. Examples for more tightly coupled HPC workloads include many sim-
ulations as, for example, from the domain of computational fluid dynamics, in which
simulated particles have an effect on other particles, requiring the exchange of many
messages between parallel workers and fine-grained updates to their state [38]. In con-
trast, distributed dataflow systems focus more on scalable data-parallel processing and,
thus, managing large amounts of independent data-parallel tasks. The strategy of dis-
tributed dataflow systems, which is efficiently processing large inputs by partitioning
and re-partitioning data among a set of workers that otherwise work independently, is
not directly applicable for many HPC workloads. Moreover, the main performance ob-
jective for HPC workloads is typically low latency, while for distributed data-parallel
processing jobs the main objective usually is high throughput.

Hardware used in the area of HPC is usually high-performance hardware, equipped
with considerable computing capabilities in terms of cores, main memory, and network
bandwidth [35, 36]. These massively-parallel computers feature a substantial number
of processors, each with access to a large amount of shared memory, often with some
areas of the overall main memory being local to a processor while other areas are less
so, so that access to memory is not uniform. The processors are also typically connected
by high-speed interconnects. Usually, these infrastructures are hosted and operated in
dedicated computing centers, often running programs of a certain scientific domain such
as climate simulations. Typically, users with extensive knowledge about the particular
hardware architectures and the parallel programs that run on these environments op-
erate HPC infrastructures and are also involved in allocating resources for jobs, since
achieving optimal performance requires configuration and fine-tuning of many param-
eters. In contrast, distributed dataflow systems explicitly target commodity nodes and
networks [2, 36]. That is, distributed dataflows are executed on large numbers of homo-
geneous shared-nothing commodity nodes connected by commodity network technol-
ogy like Ethernet. Compared to the massively-parallel computers used for HPC, these
commodity infrastructures are typically less reliable. Furthermore, users usually only
decide the scale-out and number of containers to be used for their distributed dataflow
jobs, while the systems take care of generating parallel executions plans and executing
these plans on commodity nodes. Aside of this, there is some configuration of the dis-
tributed dataflow system in regards to resource usage, which is also not trivial, yet is
often done for an entire cluster, not on a per-job basis1. These differences make HPC in-

1 Flink for example allows to configure how much of the allocated memory should be used
for network buffers, which is a setting for an entire Flink cluster and changes require re-

2.2. Shared Analytics Cluster Setup 17

frastructures the better fit for workloads that are more tightly coupled and have higher
low-latency requirements.

With HPC users typically use lower-level programming abstractions and languages
compared to the high-level languages and programming abstractions used with dis-
tributed dataflow systems [21]. The programming models used for HPC typically offer
message passing and global communication primitives [37, 39]. Users explicitly express
parallelism as well as communication and synchronization of parallel and distributed
processes. Distributed dataflow systems provide much more rigid programming models,
more framework in terms of available operators that only need to be connected to form
dataflow job graphs, and also much more comprehensive distributed runtime environ-
ments that for example also implement mechanisms for fault tolerance. In comparison,
it is usually possible to achieve higher performance with the programming models and
languages used for HPC, while the space of problems that can be expressed with HPC
programming technology is also larger than what naturally fits distributed dataflows.
However, this typically involves much more programming effort and in turn also possi-
bilities to make mistakes.

In comparison, distributed dataflow systems have been explicitly designed for clusters
of shared-nothing commodity hardware and data-intensive workloads. In this context,
distributed dataflow systems are easier to use than many other forms of parallel and
distributed programming due to their high-level programming models and comprehen-
sive runtime environments. Users are only required to write sequential code for their
distributed data-parallel processing jobs. This high level of abstraction and ease of use
comes at the cost of performance, when compared to programs that have been hand-
coded and carefully tuned for a specific computing environment. At the same time, there
have been extensive efforts to automatically optimize the execution of distributed data-
flow jobs on the level of data-parallel query plans in regard to operator selection, operator
order, and optimal partitioning [10, 40–44]. Furthermore, not all classes of problems nat-
urally fit the programming models and abstractions offered by distributed dataflow sys-
tems. Still, distributed dataflow systems are used increasingly for data-parallel process-
ing of large datasets in many domains, including for example relational processing [23,
40, 45–48], graph processing [49], and machine learning [50–52]. This popularity of dis-
tributed dataflow systems is arguably due to the fact that they allow even users without
extensive knowledge of parallel programming, distributed systems, and data-parallel
processing to develop and run massively parallel distributed data processing programs.

2.2 Shared Analytics Cluster Setup
This section presents the two types of systems usually used in conjunction with dis-
tributed data-parallel processing systems, distributed file systems and resource manage-
ment systems, as well as how these systems run co-located on the same cluster nodes.

starting Flink. https://ci.apache.org/projects/flink/flink-docs-release-1.3/setup/
config.html#background, accessed 2018-02-24.

https://ci.apache.org/projects/flink/flink-docs-release-1.3/setup/config.html#background
https://ci.apache.org/projects/flink/flink-docs-release-1.3/setup/config.html#background

18 Chapter 2. Background

2.2.1 Distributed File Systems

Distributed file systems split large files into smaller blocks. These blocks are then dis-
tributed among and stored on multiple nodes. That is, files are stored on multiple cluster
nodes and each node stores blocks of multiple files. This way, all disks in the cluster are
used for storing large files. Moreover, if a single node stops working unexpectedly, each
block is still available on other nodes. Thus, this design provides fault tolerance through
redundancy. Furthermore, storing each file redundantly across multiple nodes provides
parallel access and thereby scalability.

File

…

Data
Node

Data
Node

Data
Node

Data
Node

Meta Data
Node

File Block

File Block Locations

Disk

Client

Figure 2.5: Chunks of a large file are stored in a distributed file system with a central metadata
server.

Figure 2.5 exemplifies the main idea of distributed file systems. Four Data Nodes store
blocks of a large file, while a Meta Data Node tracks the necessary location information to
access the entire file. For this, the Meta Data Node keeps track of the specific locations of
each individual block and its duplicates.

When users want to access a file stored in a distributed file system, they must obtain
all individual data blocks of the file. For this, they first request block locations from the
Meta Data Node and then request each individual block from the Data Nodes specified
in the Meta Data Node’s response. When users want to write files to a distributed file
system on the other hand, they first request the locations for storing data from the Meta
Data Node, before storing the splits of a large file directly on the Data Nodes. Large

2.2. Shared Analytics Cluster Setup 19

files are often written and read not by centralized clients, but by distributed data-parallel
systems. These systems read and write files on multiple Data Nodes in parallel.

When a particular block should be read on a particular Data Node, the block must be
transferred over the network when it is not available on that Data Node. However, to ob-
tain optimal performance data access should be coordinated in a way such that the data
is read locally as much as possible, moving computations to the data for a high degree
of data locality, if necessary. When a data-parallel processing system writes output to the
distributed file system, it writes blocks simultaneously on a number of Data Nodes. Op-
timizing for both local data access and fault tolerance, a typical strategy for duplicating
new blocks is storing one copy locally, another copy on a node of the same rack, and a
third copy on a node of different rack.

2.2.2 Resource Management Systems

Many organizations that regularly have to process large datasets operate dedicated clus-
ters of machines for their data processing jobs. These dedicated cluster infrastructures are
typically shared by many jobs, expressed in one or multiple different distributed data-
parallel processing systems. For sharing the cluster resources among jobs and process-
ing systems, resource management systems are used. Instead of permanently running
a single data processing system on the cluster, which may or may not support running
multiple jobs in parallel, a resource management system runs permanently on the cluster
nodes while individual processing systems run in temporarily reserved containers. That
is, without resource management, a single processing system manages the whole cluster.
This, however, forces users to use a specific distributed data processing system. Resource
managers, on the other hand, let users choose processing systems with each reservation,
as long as the particular system is integrated with the resource manager. A reservation
can be valid for the runtime of a single job or for multiple related jobs, for instance when
interactively analyzing the same dataset with multiple jobs.

Containers in this context are not necessarily Linux containers2, even though some re-
source management systems do support the usage of Linux containers. Instead, in this
context, containers are foremost logical leases of resources, allocated on a node. These
containers have a specific size, representing for instance a number of cores and an amount
of main memory. Users determine both how many of these containers should be reserved
for a job and the size of the containers. Depending on the size of containers and node ca-
pabilities multiple containers run on a single node. Containers that are co-located on the
same node share the resources of the node. Even though some resource management
systems provide support for resource isolation, containers are frequently used without
resource isolation. Specifically, when no means of resource isolation are installed, con-
tainers that have been allocated on the same node share the cores, network links, and
disks, while main memory is usually statically allocated to particular containers. Sharing
resources without resource isolation is often beneficial for the overall cluster throughput
2 https://linuxcontainers.org/, accessed 2018-02-16.

https://linuxcontainers.org/

20 Chapter 2. Background

as the resource demands of long-running analytics jobs often fluctuate significantly over
the runtime of a job [24, 53]. Thus, when multiple jobs share resources freely, they can
benefit from statistical multiplexing [13, 54]. For instance, when a Job A temporarily has a
high demand for I/O and is running co-located to a Job B that already finished ingesting
its input data and now is mostly CPU-intensive for a time, Job A will benefit from access
to more I/O resources than would be its fair share while Job B will be able to take advan-
tage of access to more cores than actually reserved, when no resource isolation prevents
this. At the same time, two jobs that both predominantly require disk access will inter-
fere significantly with each other, especially with access to hard disks which provide the
highest read speeds for sequential access and often less throughput in case of concurrent
reads from multiple threads. How much jobs benefit from shared resources or otherwise
exhibit interference depends on which jobs share resources and also the resources used.
Sharing and interference can have a significant impact on job runtimes and therefore lead
to runtime variance.

Node
Manager

C

C

C

C

Node
Manager

C

C

C

C

Node
Manager

C

C

C

C

Client

Client

Cluster
Manager

Client

Resource Management

Application 1

Application 2

Application 3

Figure 2.6: Cluster resource management with containers.

Figure 2.6 shows the general idea behind resource managers. The resource manage-
ment system’s master process, called Cluster Manager, runs on one node, while the other
nodes host applications in containers. On these worker nodes runs a process called Node
Manager. Node Managers are responsible for monitoring resource availability, for report-
ing failures, and for starting and stopping containers on the nodes they run on. The Clus-
ter Manager is responsible for scheduling containers onto workers as well as for manag-
ing and monitoring the lifecycle of entire distributed applications. For this, the Cluster
Manager needs a global view of the available resources and running applications. It,
therefore, communicates with the Node Managers processes. In Figure 2.6, three clients
each have a job running on the shared cluster and each job uses a number of containers.

2.2. Shared Analytics Cluster Setup 21

Jobs are usually submitted via a specified submission protocol and go through an ad-
mission control phase. In this phase security and administrative checks are performed.
If these checks are successful and jobs accepted, the Cluster Manager allocates resources
to the jobs. Usually, the job first receives a single container. This first container then
runs the job’s master process, which negotiates the allocation of more resources with the
Cluster Manager. The application’s master then starts the distributed processing system.
Specifically, it starts and monitors the system’s worker processes in all additionally allo-
cated containers. In this procedure, there are two levels of scheduling. First, the Resource
Manager schedules containers onto its worker nodes. Second, the distributed processing
system schedules its worker processes onto the set of allocated containers. This approach
is advantageous, since the distributed processing system can make more assumptions
about the execution model and also the submitted jobs, so it is usually in a better position
to optimize for aspects like data locality. Beyond this centralized design for resource man-
agement systems there are also decentralized architectures, in which multiple Resource
Manager processes are used for scalability and fault tolerance.

2.2.3 Co-Located Cluster Setup

Dedicated analytics clusters typically run multiple distributed systems for storing and
processing large datasets in conjunction. The general software stack for this setup is
depicted in Figure 2.7. A distributed file system is used for storing large datasets using
the disks of all cluster nodes. By using a resource management system on top, cluster
resources can be allocated to and thus shared among multiple data processing systems
and jobs. That is, on top of the resource management system run applications, each
potentially using a different distributed processing system. The distributed processing
systems and jobs are executed in temporarily reserved containers. For this, the systems
are started within these containers for the runtime of a job or a longer session.

Distributed File System

Resource Management System

Framework

Application

Framework

Application

Framework

Application

Operating System

Figure 2.7: The typical software stack used with dedicated analytics clusters.

Typically, the worker processes of both the distributed file system and the resource
management system run on the same nodes. This way, the jobs and processing systems

22 Chapter 2. Background

running on the cluster resources can have local access to files stored in the distributed
file system. This is important as reading input data from local disks and also writing
results locally takes less time than remote access, for which data must be first send over
the network. Figure 2.8 depicts the execution of jobs in temporarily reserved containers
with local access to files stored in a distributed file system that runs co-located to the
resource management systems providing the containers. Four cluster nodes run three
applications and also host parts of distributed files. The applications have local access to
the parts of files that are stored on the nodes they have resource reservations on.

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Worker Node

Resource Reservation

Local Disk

Distributed File PartC

Figure 2.8: Using a resource management system and a co-located distributed file system on clus-
ter nodes.

How much of the input data can be read locally depends on many factors: the size
of input files and the size of blocks, the number of redundant copies of each block, the
number of containers, and the actual placement of both data blocks and containers. Yet,
the degree of data locality can have a significant impact on the runtime of jobs and since
this degree varies, data locality is a major reason for runtime variance when running data
processing jobs in shared large dedicated clusters [55, 56].

3 Related Work
Contents

3.1 Distributed Dataflow Systems and Related Distributed Systems 23

3.1.1 Distributed Dataflow Systems . 24

3.1.2 Systems Used in Conjunction with Distributed Dataflow Systems 26

3.1.3 Related Parallel and Distributed Computing Systems 29

3.2 Runtime Prediction and Resource Allocation for Runtime Targets . . . 32

3.2.1 Pure Runtime and Progress Estimation 33

3.2.2 System-Specific Automatic Resource Allocation 33

3.2.3 Resource Allocation Based on Black-Box Prediction Models . . . 35

3.3 Adaptive Resource Management . 37

First, we present distributed dataflow systems, the class of systems for which the ap-
proach and methods presented in this thesis were designed for. We also present systems
typically used in conjunction with distributed dataflow systems, namely distributed file
systems and resource management systems. Concluding this first section, we describe
related distributed systems for massively parallel computation and the applicability of
our solution to these systems.

Second, we present work on predicting runtimes and allocating resources based on
such predictions for distributed dataflow systems, explaining major differences to the
approach and methods presented in this thesis.

Third, we present related work on adaptive resource management for distributed data-
flow jobs. The work presented in this third category is related to our approach and
methods in its objectives, automatically optimizing resource usage and adherence to per-
formance goals for distributed dataflow jobs, yet does not apply runtime prediction for
allocating resources according to runtime targets.

3.1 Distributed Dataflow Systems and Related
Distributed Systems

This section first presents distributed dataflow systems, then the systems typically used
in conjunction with distributed dataflow systems, and finally other examples of systems
for using highly-parallel computing resources.

23

24 Chapter 3. Related Work

Distributed dataflow systems are essential related work as the approach and meth-
ods presented in this thesis have been designed for these systems. That is, the models,
the similarity matching, and our approach for predicting the runtimes of and selecting
resources for job stages target distributed dataflow systems.

As distributed dataflow systems are typically used together with distributed file sys-
tems and resource management systems in shared cluster setups, we further describe
these systems. The interactions of distributed dataflow systems with both distributed file
systems and resource management systems, when multiple jobs run simultaneously on
cluster resources, are a major reason for runtime variance. These interactions are, there-
fore, a motivation for our approach to matching previous runs with a similar runtime
behavior as explained in Chapter 6 and our approach to dynamic resource allocation as
explained in Chapter 7. Furthermore, we present a system architecture that integrates
our approach and methods on the level of the resource management system, thereby
supporting different distributed dataflow systems.

Finally, we describe major distributed data-parallel processing systems that do not fol-
low a dataflow model, parallel databases built for analyzing large datasets, and notable
other systems used for massively parallel computation.

3.1.1 Distributed Dataflow Systems

Distributed dataflow systems are frameworks for scalable data analytics. The systems
provides efficient fault-tolerant distributed runtime environments for executing graphs
of connected data-parallel operators on a set of shared-nothing commodity cluster nodes.
Typically, distributed dataflow systems execute jobs consisting of multiple stages of data-
parallel operators. Such stages consist of subsequent dataflow operators that in principle
can run simultaneously.

Accurate scale-out modeling, runtime prediction, and resource allocation based on pre-
dicted runtimes is important for distributed dataflows. Programs of distributed dataflow
systems are typically highly scalable. This is due to the data-parallel execution model
of distributed dataflow systems and the distributed runtime environments of these sys-
tems, which include efficient implementations of data-parallel operators and partitioning
mechanisms. Consequently, a large number of different scale-outs can be reasonably used
for a distributed dataflow job. However, also distributed dataflow jobs exhibit increased
overheads with increasing numbers of parallel workers and do not always have com-
pletely straightforward scale-out behavior, for example due to skew in the data. Selecting
an inadequate scale-out for a job can, therefore, result in lower resource utilization and
unnecessary costs. At the same time, distributed dataflow systems make it considerably
easier to develop efficient distributed data-parallel processing programs, even for users
without extensive knowledge of parallel programming, distributed systems, and data-
parallel processing. However, even these users need to allocate an adequate amount of
resources for their jobs and performance requirements. For these reasons, accurate run-
time prediction and automatic resource allocation are arguably especially important for

3.1. Distributed Dataflow Systems and Related Distributed Systems 25

distributed dataflow systems and the overall solution presented in this thesis, thus, fo-
cuses on distributed dataflow systems.

The key assumptions that we make about distributed dataflow systems on a concep-
tional level are explained in Section 4.2.2, while practical considerations for using our
prototype system Ellis with existing systems are described in Section 4.4.

MapReduce [2, 5] introduced a programming model based on the second-order func-
tions Map and Reduce. Users provide UDFs to these operators, which are then executed
in parallel on connected distributed workers. The execution model of MapReduce is
based on the alternating execution of the two operators. First, the Map operator is exe-
cuted data-parallelly, then Reduce is executed data-parallelly. For fault tolerance the in-
termediate results are exchanged by storing and reading elements to disks in-between the
two phases. The Map tasks sort the results by key, so that the Reduce tasks can efficiently
read and then reduce defined groups of elements. MapReduce is a limited distributed
dataflow system as it does not support general job graphs. A major implementation of
the programming and execution model presented in [5] is part of Hadoop1, which we
will refer to as Hadoop MapReduce.

Dryad [57] and Nephele [58] also execute data-parallel tasks on connected worker ma-
chines, yet allow to connect these in a general Directed Acyclic Graph (DAG). These
tasks can be connected by different communication channels such as, for example, using
network channels or disks. Both Dryad and Nephele, however, do not provide a set of
predefined operators and differ in this to all subsequent distributed dataflow systems we
present here.

SCOPE [23] also allows to use a general DAG for dataflow jobs, yet furthermore pro-
vides a set of pre-defined operators, including for example Map, Reduce, and Join. More-
over, SCOPE incorporates optimizer techniques from parallel databases to generate op-
timized query plans [41, 59]. Consequently, developers can use a high-level scripting
language similar to SQL to write SCOPE programs.

Stratosphere [60] is a platform for distributed data-parallel processing built on top of
the Nephele runtime, adding a set of pre-defined operators with Nephele/PACTs [61].
Furthermore, the Stratosphere platform uses optimization techniques to generate effi-
cient query plans from a high-level scripting language [42, 44, 62]. Stratosphere also
supports incremental processing of converging iterative dataflow programs natively [30],
effectively allowing cyclic dataflow graphs.

Naiad [63] is a similar distributed dataflow system in that it too supports incremental
processing of converging iterative programs natively. Beyond this Naiad can also incre-
mentally re-compute results when inputs change, using an approach called Differential
Dataflow [64].

Spark [6, 65] is a similar system as SCOPE and Stratosphere, also allowing to create
dataflow programs using operators like Map, Reduce, and Join connected to general

1 https://hadoop.apache.org/, accessed 2018-02-16.

https://hadoop.apache.org/

26 Chapter 3. Related Work

acyclic job graphs. Spark’s key feature is its abstraction for distributed datasets called
Resilient Distributed Datasets (RDDs) [66]. RDDs implement fault tolerance using lin-
eage. This can speed up distributed computation significantly, compared to snapshot-
ting intermediate data to disk. Furthermore, RDDs can be cached for faster interactive
and iterative processing. Spark also provides higher-level programming abstractions, in-
cluding for processing relational data, in which case Spark also optimizes query plans
automatically [47, 48]. We used Spark for the experiments presented in Chapter 5, 6,
and 7.

Spark Streaming [67] is a distributed streaming system that is based on the batch pro-
cessing engine of Spark. For this, Spark Streaming uses micro-batches.

Flink [7], which originated from Stratosphere, uses a unified distributed execution en-
gine for both batch and stream processing. It provides low latency stream processing,
including exactly-once-guarantees, but can also be used for batch processing. Flink im-
plements fault tolerance for distributed stream processing by periodically taking snap-
shots of the operators’ state. We used Flink for the experiments presented in Chapter 5.

Google’s Dataflow [68] is a distributed stream processing system, which also can be
used for batch processing as well. Dataflow is unique in that it includes a set of concepts
and core principles for dataflow systems in the context of unbounded, unordered data
stream inputs.

Given this considerable number of similar data analytics systems, Tez [69] was devel-
oped as a framework for building distributed dataflow systems.

3.1.2 Systems Used in Conjunction with Distributed Dataflow Systems

This section describes systems typically used together with distributed dataflow systems.
We first present distributed file systems, then resource management systems.

3.1.2.1 Distributed File Systems

Distributed file systems are systems that provide distributed data storage by splitting
large files into small blocks, which are then stored redundantly across a set of connected
shared-nothing commodity nodes. The blocks can be accessed in parallel on these data
nodes, as done by distributed data-parallel processing systems. How much of a large file
is locally accessible to a distributed data-parallel processing system, which is called the
degree of data locality, can however vary, especially when files are distributed across a
large set of nodes and resources on only a subset of nodes are used for a distributed data-
parallel processing job. Even when the algorithms that schedule containers and task
instances take data locality into account, multiple reasons can lead to varying degrees of
data locality. For example, the resources with the highest degree of data locality might not
currently have sufficient available capacities in shared cluster infrastructures. Thus, data

3.1. Distributed Dataflow Systems and Related Distributed Systems 27

locality varies, leading to runtime variance that needs to be addressed when distributed
dataflow jobs should meet runtime targets with minimal resources.

Google File System (GFS) [70] is a distributed file system optimized for distributed
data processing. That is, GFS focuses primarily on very large files and high throughput
for sequential reads and writes. The file system uses a single master node. This master
node handles the metadata and coordinates data storing as well as data access. A major
implementation of the design of GFS is part of Hadoop and called Hadoop Distributed
File System (HDFS) [71]. We used HDFS for the experiments presented in Chapter 5, 6,
and 7.

Ceph [72] is a distributed file system that provides a near-POSIX interface to its clients.
The file system manages metadata using a distributed metadata cluster for improved
scalability.

GlusterFS [73] provides a fully POSIX-compliant distributed file system. It does not
maintain any metadata servers. Instead, data is located algorithmically using an elastic
hashing algorithm.

Alluxio/Tachyon [74] is an in-memory distributed file system. As such, it provides
high read and write performance for data-local tasks. Tachyon does not rely on repli-
cation for fault tolerance. Instead, lineage data is used to recompute lost datasets. In
addition, a checkpointing algorithm is used to provide an upper bound for the time nec-
essary to recompute data.

There are also other distributed data storages that can be used with distributed data-
flow systems. Spark, for example, is able to ingest data from distributed file systems,
distributed databases, and distributed object stores2. Moreover, the methods we use to
predict runtimes and to address runtime variance do not assume input data to be read
in from a distributed file system. Specifically, while we recognize varying degrees of
data locality as a major reason for runtime variance, which does occur with distributed
file systems, we do not make any assumptions about exact data distribution or replica-
tion. At the same time, we do expect distributed dataflow systems to be typically used
in conjunction with distributed file systems and, therefore, that runtime variance due to
varying data locality needs to be addressed.

3.1.2.2 Resource Management Systems

Resource management systems allow fine-grained sharing of cluster resources among
multiple jobs, users, and distributed processing frameworks. That is, users temporarily
reserve cluster resources in so called containers, which are logical leases of resources on
particular nodes. These containers are often used without resource isolation to achieve
high degrees of overall resource utilization despite the fluctuating resource usage of sin-

2 Spark has multiple source connectors including for example for the local file systems, HDFS, Cas-
sandra, and Amazon S3 https://spark.apache.org/docs/2.0.0/programming-guide.html#
external-datasets, accessed 2018-02-19.

https://spark.apache.org/docs/2.0.0/programming-guide.html#external-datasets
https://spark.apache.org/docs/2.0.0/programming-guide.html#external-datasets

28 Chapter 3. Related Work

gle distributed data-parallel jobs. Yet, the overall cluster utilization and job performance
depend on which job combinations share resources as there can be significant interfer-
ence between workloads. This interference between co-located jobs in shared dedicated
analytics clusters has been identified as a major reason for runtime variance [11, 14, 75],
which needs to be addressed when minimal resources are to be used to meet runtime
targets.

The resource management system Mesos [8] allows users to run jobs of multiple dis-
tributed processing frameworks efficiently in a single shared cluster. Mesos uses a schedul-
ing mechanism, in which the central scheduler offers individual frameworks a number
of nodes, while the frameworks decide which of these offers to accept. When these offers
are accepted, the frameworks schedule tasks onto allocated containers. A key advantage
of delegating container placement to processing frameworks is that the frameworks can
optimize for goals like data locality with considerably more assumptions regarding the
execution model.

YARN [9] was developed to allow Hadoop clusters to be used with other distributed
dataflow frameworks than just Hadoop MapReduce. Users reserve parts of the clusters
by specifying the required number and size of containers. Different distributed data pro-
cessing frameworks can then run in these containers. Similar to Mesos, YARN also moves
scheduling functions towards per-job components for increased scalability. In contrast to
Mesos, however, processing frameworks do not receive resource offers, but request re-
sources from YARN. We integrated our prototype system Ellis with YARN as explained
in Section 4.4.3 and used YARN also for the experiments presented in Chapter 7.

Besides multi-tenancy, the main goals of YARN and Mesos were thus enabling users in
using multiple frameworks and in providing more scalable scheduling solutions. Other
work towards more scalable schedulers for analytics workloads include Omega [76],
Apollo [77], and Borg [78]. All three solutions are based on decentralized schedulers
that are loosely coordinated using optimistic concurrency control.

Omega [76] is based on a lock-free protocol where all participating distributed sched-
ulers can operate in parallel. In Omega all schedulers have full knowledge of the cluster
state by holding a copy of the shared state. Acquiring resources is based on optimistic
concurrency. Schedulers transactionally update the shared state and rollback when colli-
sions are detected.

Apollo [77] is a resource manager where each scheduler has access to the global cluster
state. When a task is scheduled, it is put into the task queue of the respective node. Each
node maintains a wait-time matrix that estimates when specific resource configurations
will be available given the tasks in the queue. The job schedulers combine this matrix
with other factors like data locality and task priority when making scheduling decisions.
Similar to Omega, Apollo relies on optimistic concurrency control. However, Apollo fea-
tures a late collision resolution where task assignments are checked after they are already
put into the queue.

3.1. Distributed Dataflow Systems and Related Distributed Systems 29

Borg [78] uses a centralized resource manager that is replicated to achieve high avail-
ability and multiple distributed task schedulers. Submitted jobs are put into a pending
queue. The distributed schedulers use the shared cluster state to process the job queue
asynchronously and inform the master about task assignments. Optimistic concurrency
is employed as the master checks the assignments.

We present our solution in the context of resource management systems and container
reservations. However, our approach and methods are also applicable for allocating en-
tire nodes or even virtual machines from a cloud provider, given recurring distributed
dataflow jobs and homogeneous worker capabilities, so only the scale-out needs to be
determined. Even when entire nodes are reserved, there is runtime variance due to for
instance shared network links in hierarchical datacenter networks, failures of workers,
and potentially varying degrees of data locality. Similarly, while virtual machines pro-
vide resource isolation, there is still interference with co-located workloads, for example
when accessing shared I/O [79]. Therefore, even in these execution environments, run-
time variance would need to be addressed. The methods we use to address runtime vari-
ance, namely matching of similar previous executions as a basis for runtime prediction
models and dynamic adjustments of resource allocations after assessing a job’s progress
towards its runtime target, are not specific to resource-managed clusters and job exe-
cution in temporarily reserved containers. At the same time, we do expect production
batch jobs that are scheduled periodically, such as on a daily or even hourly basis, and
have specific runtime targets to typically run in dedicated shared clusters.

3.1.3 Related Parallel and Distributed Computing Systems

This section describes related systems for massively parallel computation besides dis-
tributed dataflow systems. We present other distributed data-parallel processing sys-
tems, describe parallel databases, and discuss high-performance computing systems. For
each of these three categories we highlight differences to distributed dataflow systems
and describe the applicability of our approach and methods.

3.1.3.1 Other Distributed Data-parallel Processing Systems

Many systems similar to distributed dataflow systems have been developed for large-
scale distributed data-parallel computations. These systems have key characteristics in
common with distributed dataflows: Data-parallel computations are executed on data
that has been partitioned among parallel workers, typically running on clusters of com-
modity nodes. Moreover, these systems also usually provide restricted programming
models that work in defined subsequent steps or iterations. For example, PowerGraph [26]
requires users to express algorithms in its Gather, Apply, Scatter (GAS) programming
model, while BSP steps are called super-steps. At the same time, these systems are fun-
damentally different in that they do not adhere to a dataflow execution model. Specif-
ically, there is no re-partitioning and shuffling of the intermediate data in-between sub-

30 Chapter 3. Related Work

sequent stages of data-parallel operators. Instead of data flowing through distributed
data-parallel tasks in this way, data is typically partitioned initially and then messages are
exchanged between the workers that hold partitions of the data. Examples for distributed
data-parallel processing systems include for instance multiple systems for the analysis of
large graph structures such as Pregel [25] and the mentioned PowerGraph. Other exam-
ples of distributed data-parallel processing systems include systems for distributed ma-
chine learning such as Parameter Server [28], GraphLab [80], Distributed GraphLab [27].

The modeling and the similarity matching techniques we presented in Chapter 5 and 6
are principally applicable as long as there is scalable distributed data-parallel process-
ing and, therefore, the question of how many resources to use for a job with a specific
runtime target. However, without re-partitioning and shuffling of the intermediate data
in-between subsequent stages, dynamically allocating resources for each stage as Ellis
does is not directly applicable. Moreover, the similarity measures of Cutty that capture
the runtime behavior of jobs such as the runtimes and the average resource utilizations
of stages are only applicable when there are defined subsequent processing steps like
stages. Still, it should be possible to use the approach and methods presented in this the-
sis to allocate resources initially for distributed data-parallel processing systems besides
distributed dataflow systems. That is, Bell can be used to model the scale-out behavior
of entire jobs, instead of using it at the granularity of stages as presented in Section 7.1.
Such models could be trained on similar previous executions of jobs selected using the
methods we presented in Section 6.2 for Cutty, only using similarity measures applicable
for the execution model at hand. Trained job-level scale-out models could then be used
to allocate resources for jobs on submission, following the greedy approach presented for
Ellis in Section 7.2.1.

A special case are distributed data-parallel processing systems that do not provide a
dataflow programming model, yet in the end translate programs to the execution model
of distributed dataflows such as GraphX [49, 81], a distributed graph processing system
built on top of Spark. For these systems our approach and methods should be fully
applicable, including runtime adjustments after estimating remaining runtimes, when
integrated on the level of distributed dataflow execution.

3.1.3.2 Parallel Databases

Database systems allow to store and to query data. The most prominent group are
relational database management systems (RDBMSs), which are database systems that op-
erate on relational data and offer declarative query languages. Indexing and automatic
plan optimization of declarative queries are used to make query execution efficient. Some
of these systems are optimized for transactional workloads, which consist of large num-
bers of insertions, updates, and retrievals of single elements. Other systems are instead
optimized for analytical workloads, which consist of more complex queries, typically
aggregating large groups of elements. This latter class of RDBMSs is more related to dis-
tributed dataflow systems than the class optimized for transactional data management.

3.1. Distributed Dataflow Systems and Related Distributed Systems 31

Parallel RDBMSs provide a single-instance interface, yet run on multiple machines that
jointly store and query data. Teradata and Tandem [82, 83] are examples of early commer-
cial parallel RDBMSs. More recent systems include Greenplum [84] and Aster Data [85].
These systems support massively parallel query execution and also feature efficient fault-
tolerant runtimes. Furthermore, they support more generic programming models than
pure SQL, so that users can include user code into queries. Moreover, some databases fea-
ture full dataflow engines such as AsterixDB [86] with its Hyracks distributed dataflow
engine [87], effectively combining distributed dataflow systems with data management
capabilities such as storage and indexing.

At the same time, many techniques for efficient data-parallel processing that have been
developed for databases and parallel databases have been transferred to distributed data-
flow systems. These techniques include high-level and declarative query languages, au-
tomatic query optimization, as well as distributed data-parallel operators and partition-
ing methods. Examples of distributed dataflow systems that support these techniques
include Dryad with DryadLINQ [40], Hadoop MapReduce using Pig [45] or Hive [46,
88], Spark using Shark [47] or SparkSQL [48], SCOPE [41, 59], and the Stratosphere plat-
form [42, 44, 62].

The main difference between parallel databases and distributed dataflow system re-
mains that databases also store and manage data, while distributed dataflow systems
only provide distributed data-parallel processing. The approach and methods presented
in this thesis is in general applicable to processing engines that work similarly to dis-
tributed dataflow engines. Thus, when there are subsequent job stages of data-parallel
operators that can be modeled and monitored as well as data that is being re-partitioned
and shuffled between these subsequent stages, so different scale-outs and sets of re-
sources can be used for each stage, our solution should be usable for dynamic resource
management for parallel database engines.

3.1.3.3 Systems for High-Performance Computing

HPC can be characterized as using high performance hardware with low-level program-
ming abstractions for problems with low latency requirements. Users typically express
both parallelism and inter-process communication explicitly. In comparison, distributed
dataflow systems feature a more restricted data-parallel programming model, automatic
task parallelization and distribution, typically a set of pre-defined data-parallel opera-
tors, and also more comprehensive fault-tolerant distributed runtime environments. The
problems solved with HPC technology also often exhibit more coupling between depen-
dent computations, compared to the problems that naturally fit distributed dataflow ab-
stractions.

Among many techniques used for HPC, Message Passing Interface (MPI) [32] is the
most prominent. MPI is a specification of an interface for message passing among paral-
lel workers. It supports point-to-point and global communication primitives. Implemen-
tations of this standardized interface are available for different hardware platforms, in-

32 Chapter 3. Related Work

cluding for different methods for communication, ranging from TCP and shared memory
to high-performance networks such as InfiniBand. That is, while MPI can be used with
commodity hardware, there are also optimized implementations for high-performance
computers and networks. Distributed dataflow systems, in comparison, have been ex-
plicitly designed for shared-nothing commodity nodes and Ethernet [2, 36]. Furthermore,
MPI only defines message passing among workers, which makes it applicable to more
classes of problems, in comparison to the restricted programming model that distributed
dataflow systems offer.

The approach and methods presented in this thesis are not generally applicable to
MPI programs. First, we assume the data parallelism and the scalability of distributed
dataflows that results from the restricted programming model, automatic parallelization,
and effective data partitioning. This scalability not only first poses the question of which
scale-out and number of containers to use for a job and a given runtime target, but is the
basis for our scale-out models, specifically the parameterized model of distributed pro-
cessing that we use. Second, we assume an execution of stages as well as re-partitioning
and shuffling in-between subsequent stages. This execution model allows to monitor,
model, match previous executions, and allocate resources at the granularity of individ-
ual stages. Due to these assumptions our approach is not generally applicable to MPI
and other HPC technologies such as OpenMP [34] and PVM [33].

3.2 Runtime Prediction and Resource Allocation for
Runtime Targets

This section presents approaches and systems, including the state of the art, for esti-
mating the progress, predicting runtimes, and allocating resources according to runtime
targets for distributed dataflow jobs. As these solutions are alternatives to the approach
and methods presented in this thesis, we compare them to Ellis, Bell, and Cutty.

First, we present work on purely estimating the runtime or progress of a distributed
dataflow job. The major difference to this work is that, while Ellis also estimates the
progress by predicting the remaining runtime of a distributed dataflow job, Ellis further
uses its estimations to dynamically allocate resources to meet a specific runtime target.

Second, we present work on allocating resources for runtime targets that is specific to
particular distributed dataflow systems. The major difference to this work is that we use
black-box models to capture the scale-out behavior of jobs and, thereby, support different
distributed dataflow systems.

Third, we present work on allocating resources for runtime targets using black-box
prediction models. These solutions are most comparable to our approach and methods.
For each of these approaches and systems, we therefore describe major differences to
Ellis, our main prototype system. The shortcomings in comparison to our solution can be
summarized as ineffective training, static allocation, and impractical scope as explained
in Section 4.1.

3.2. Runtime Prediction and Resource Allocation for Runtime Targets 33

3.2.1 Pure Runtime and Progress Estimation

This section presents approaches and systems for estimating the runtime or progress of
distributed dataflow jobs. Compared to our approach and methods, the related work
presented here is either specific to MapReduce, application domain-specific, or otherwise
not generally applicable to distributed dataflow jobs, while Ellis uses black-box models
that support different distributed dataflow systems and application domains. Moreover,
Ellis uses its runtime prediction and progress estimation to dynamically manage resource
allocations in order to meet a specific runtime target despite considerable performance
variance.

Parallax and ParaTimer estimate the runtime of MapReduce jobs. Parallax predicts
the runtime of sequences of MapReduce jobs compiled from Pig programs [45], which is
an SQL-like programming abstraction compiling to Hadoop MapReduce programs. The
runtime prediction of Parallax uses a simple model of parallelism, cardinality estimates
from Pig’s query optimizer, and profiling runs on user-defined samples of the input data.
ParaTimer builds upon Parallax. It extends Parallax in that it allows a general DAG
of MapReduce jobs, not just sequences. For this, ParaTimer identifies the critical path
in a job graph and estimates the runtime of that, effectively ignoring all other paths.
ParaTimer also handles skew and failures by providing a set of estimates for different
scenarios.

PREDIcT [89] estimates the runtimes of iterative distributed dataflow jobs that operate
on homogeneous graph structures and have a global convergence condition. It uses a
profiling run on a sample of the input data: the distributed dataflow job is executed on
a subgraph and key characteristics such as the number of messages sent per iteration are
extrapolated to the whole dataset. However, this only works if the subgraph preserves
the relevant properties for the given algorithm. Also, any algorithm parameters must be
adjusted for the sample run by the user.

There is also work on estimating the progress of distributed dataflow jobs by propagat-
ing the progress through the job graph [90]. In particular, this approach relies on adding
specific markers to the input datasets, which are then used to detect when a particular
percentage of the original input data has reached a certain task in the dataflow graph.
The approach supports multiple inputs to tasks by averaging the progress information
received by all predecessor tasks and then propagating this average to all successor tasks.
The applicability of this approach is, however, limited as it can only be used for fully
pipelined jobs, yet does not support jobs containing operators like a Reduce or a Join.
That is, the approach can only indicate the progress of a single stage of a distributed
dataflow job.

3.2.2 System-Specific Automatic Resource Allocation

This section presents approaches and systems for resource allocation based on predicted
runtimes, yet these solutions use white-box models supporting only specific distributed

34 Chapter 3. Related Work

dataflow systems. In comparison, Ellis uses black-box models for capturing the scale-out
behavior of distributed dataflow jobs by relying on Bell, as explained in Chapter 5, and
also uses similarity matching techniques generally applicable to distributed dataflow sys-
tems by using Cutty for selecting training data, as explained in Chapter 6. Furthermore,
the system architecture presented in this thesis integrates our approach and methods on
the level of the resource management system, not a specific distributed dataflow system.

Aria [16] uses a simple MapReduce performance model to select resources given an
input data size and runtime target. Specifically, Aria estimates the amount of execution
slots necessary for meeting runtime targets, using its system-specific performance model
and detailed runtime statistics from previous runs. Aria also estimates the impact of fail-
ures on job runtimes and it implements a SLO-based scheduler for Hadoop that submits
jobs ordered by their deadline. Aria was first presented to work with both historic data
and dedicated profiling, yet the authors later built on their work [91], adding dedicated
sample runs to explore how well jobs scale for different input sizes.

Elastisizer [92], part of the Starfish [93] system for automatically tuning Hadoop clus-
ters, answers cluster sizing queries of users for MapReduce jobs. Given detailed job pro-
filing information, Elastisizer simulates the runtime and costs of executing a job using a
certain configuration using relative modeling [94]. For this, the user needs to specify the
search space such as available resource types and system configuration options.

AROMA [17] is a system for provisioning MapReduce jobs with deadlines in clouds.
AROMA first clusters previously executed MapReduce jobs based on their resource uti-
lization. It then trains a performance model for each of these clusters that can be used to
select from heterogeneous resources and to configure different system parameters. The
performance model is based on regression accompanied by a systematic feature selection.
Incoming jobs are consequently profiled on subsets of the input data in a staging cluster
and matched against one of the clusters to be used for provisioning and configuration.

Bazaar [95] also uses a simple MapReduce performance model to assign resources to
jobs. It predicts job runtimes using a function of the scale-out, the network bandwidth,
and input size. Bazaar uses sample runs to profile jobs and gather necessary runtime
statistics for its performance model. It then selects the number of instances and network
bandwidth to assign to a MapReduce job given a runtime target. Bazaar uses additional
slack to address performance variance and failures.

The Jockey resource allocator and scheduler [14] was built for SCOPE [23]. Jockey uses
a simulator and detailed job statistics from previous runs to predict the runtime of a job’s
stages. For selecting resources, users have to specify a utility function, which is used to
model deadlines and penalties. Using precomputed simulations and an estimation of a
job’s progress at runtime, Jockey adapts resource allocations dynamically when a job is
not performing as predicted.

OptEx [96] estimates the runtime of Spark jobs given the size of the input data, the
number of iterations, and the number of nodes. OptEx has developers categorize jobs
into distinct application classes and select a representative job per category. OptEx then

3.2. Runtime Prediction and Resource Allocation for Runtime Targets 35

creates a profile per job category by running the representative job. Each of these profile
is then used to extrapolate from short sample runs on a single node to larger scales for
jobs of the category.

3.2.3 Resource Allocation Based on Black-Box Prediction Models

This section presents approaches and systems that can be used for automatic resource
allocation, are generally applicable for distributed dataflow systems, and use runtime
prediction to select scale-outs that meet runtime targets. These solutions are the most
similar related work to the approach and methods presented in this thesis. We therefore
provide a short comparison to using Ellis with Cutty and Bell for each of these approaches
and systems.

Quasar [15] uses classifications to determine the impact of resources and interference
with other workloads when scheduling jobs to heterogeneous cluster nodes. Quasar
takes users performance requirements into account and selects resources for these per-
formance goals. For batch analytics jobs, Quasar lets users express runtime targets, while
Quasar also supports latency-critical user-facing applications, for which latency require-
ments can be expressed. Quasar jointly performs resource allocation and assignment,
before continuously monitoring application performance at runtime and, if necessary,
adjusting resource allocations dynamically. For this, the system re-classifies jobs when
their performance deviates from expressed goals and adjusts resource allocations at run-
time when classification assignments change. Quasar does, however, assume full control
over both resource allocation and assignment. It further does not use models specific for
distributed dataflow systems, yet is a fully generic system for all kinds of applications
running in datacenters. Moreover, using Cutty we select similar previous executions as a
basis for performance prediction, while Quasar requires dedicated profiling runs.

Ernest [97] is a job submission tool that automatically allocates cloud resources for
distributed dataflow jobs with given runtime targets. When a job is submitted, Ernest
runs the job on subsets of the input data and different sets of resources, training a simple
model of distributed processing. The combinations of samples are selected using ideas
from optimal experiment design [98]. In comparison, Ellis does not rely on isolated dedi-
cated training runs, but aims to make the most of available workload data of recurring
jobs using Bell and Cutty. Moreover, while Bell’s parametric regression model is based on
the model proposed with Ernest, Bell automatically switches to nonparametric regression
when the available data and prediction task allow this. Ellis, furthermore, also monitors
jobs at runtime and, if necessary, adjusts resource allocations to meet runtime targets de-
spite performance variance. For this, Cutty also enables us to select previous runs with a
similar runtime behavior, so the current cluster state is reflected in updated predictions
at runtime.

PerfOrator [18] predicts the runtime performance of distributed dataflow jobs based
on multiple profiles. First, PerfOrator executes a set of pre-defined queries to model
different hardware resources, capturing the time it takes to perform reads, writes, and

36 Chapter 3. Related Work

data shuffling. Second, it takes as input a parallelization profile of the distributed data-
flow system, currently supporting Hadoop MapReduce and Tez, but with the possibil-
ity to support further systems by describing the parallelism of their execution models.
Third, Perforator profiles incoming jobs on samples of the data. Finally, it uses all three
profiles and non-linear regression to translate performance requirements into resource
allocations. PerfOrator requires more information than many black-box systems such as
runtimes and CPU cycles spent processing for each stage measured in profiling runs. Per-
fOrator is, however, then able to make predictions for job runtimes and resource skylines
on different hardware resources, whereas our solution focuses on homogeneous clusters.
In contrast to PerfOrator, Ellis monitors job progress at runtime and adjusts allocations
dynamically, if necessary, thereby addressing performance variance. Furthermore, we
use Cutty to match similar previous executions of recurring production jobs and avoid
dedicated profiling runs. Cutty also allows to update prediction models at runtime based
on previous executions with similar runtime behavior, effectively incorporating the cur-
rent cluster state into predictions at runtime.

Justice [99] is a resource allocator and admission control system for resource manage-
ment systems like YARN and Mesos, aiming to fulfill completion deadlines in shared
resource-constrained cluster environments by resource allocation, admission control, se-
lecting from queued jobs, and stopping running jobs. Based on historic data from pre-
viously executed jobs, Justice uses a black-box prediction model to allocate resources for
jobs. Justice prevents jobs likely to miss their deadline from starting and consuming re-
sources wastefully. It also tracks jobs that already violate their deadline and selectively
drops some of these to avoid further waste of resources. In comparison to our approach
and methods, Justice optimizes the overall fulfillment of job deadlines in a resource-
constrained cluster environment, not meeting a single job’s runtime target with minimal
resources. Consequently, Justice also assumes control over job admission, the execution
order of jobs, and the ability to stop jobs. In contrast to our methods, Justice does neither
adjust prediction models nor resource allocations for specific jobs at runtime.

CherryPick [100] is a system for allocating cloud resources for distributed analytics jobs
according to users’ performance goals. Given a user’s constraints and a representative
workload, CherryPick searches for the optimal cloud configuration in terms of number
of virtual machines and type of virtual machine instance. A user’s constraints can in-
clude a cost budget and a maximum running time as well as a preferred instance type
and constraints for the overall cluster size. CherryPick builds a performance model us-
ing dedicated sample runs. For this, it uses the Bayesian Optimization framework along
with a Gaussian Process. Since Bayesian Optimization can estimate a confidence inter-
val for its predictions, CherryPick can judge which cloud configuration it should profile
next and when to stop sampling. Compared to our solution, CherryPick aims at select-
ing among heterogeneous cloud resources on the basis of dedicated profiling runs, while
we use Bell and Cutty to model the scale-out behavior of recurring jobs based on similar
previous executions. Furthermore, Ellis continuously monitors a job’s progress towards

3.3. Adaptive Resource Management 37

its runtime target and addresses runtime variance by adapting resource allocations dy-
namically, if necessary.

3.3 Adaptive Resource Management
This section presents related work on adaptive resource management for distributed
dataflow jobs. The approaches and systems presented here use runtime statistics, ei-
ther recorded in previous runs of recurring jobs or dedicated profiling runs, to model the
behavior of distributed dataflow jobs. The resulting job profiles are subsequently used to
adaptively schedule containers and tasks for optimal data locality, interference between
co-located workloads, bandwidth between task instances that exchange most data, or re-
source utilization. Compared to our approach and methods, the work presented in this
section is related in its objectives, aiming at automatically configuring resource usage for
optimal utilization and adherence to performance goals, yet does not estimate the run-
times of jobs or allocate resources according to runtime targets, in contrast to Ellis.

SCOPE [23] alters the task parallelism at runtime based on recorded statistics [43, 101].
SCOPE also uses these statistics to continuously optimize program plans, to select op-
timal physical operators, and to adapt the partitioning at runtime. These optimizations
are, however, only based on data statistics and the solution selects the configuration of the
next stage based on statistics from the previous stage. That is, SCOPE does not employ
scale-out models trained on previous or sample runs.

ThroughputScheduler[102] is a scheduler for Hadoop workloads that uses a Bayesian
learning scheme to adaptively match jobs to nodes with heterogeneous compute capabil-
ities. It derives server capabilities by initially running a set of probe jobs on the available
hardware. The requirements of submitted jobs, on the other hand, are determined on the
fly. For this, the ThroughputScheduler uses a MapReduce-specific performance model.

Paragon [103] profiles incoming jobs, matches them to classes of similar jobs with re-
spect to the impact of heterogeneous hardware and interference with co-located work-
loads, and uses these classifications to assign jobs to specific cluster resources. Paragon
performs collaborative filtering, specifically singular value decomposition, to identify
similarities between new and previously executed jobs. It then minimizes interference
and maximizes resource utilization when scheduling applications based on its model of
the impact of heterogeneity and workload interference.

In the context of distributed dataflow systems that process continuous inputs, there
is work for Storm [104] that adaptively places and migrates tasks at runtime based on
recorded traffic statistics [105]. This online task scheduler for Storm continuously moni-
tors the traffic between tasks of the jobs graphs and repeatedly calculates which assign-
ment of tasks to worker nodes yields the minimal inter-node network traffic. When there
is a new schedule with less network traffic, the online scheduler applies it transparently
to the Storm cluster.

38 Chapter 3. Related Work

Gemini [106] is an adaptive scheduler for the YARN resource management system.
Gemini creates a model of the performance improvement and the fairness loss when com-
binations of jobs share cluster resources without resource isolation. This model reflects
the degree of complimentary resource demands of job combinations. It uses historic data
on the executed workload of a cluster to train this model. Gemini then automatically
calculates the fairness loss of using a policy that only aims at optimizing the resource
utilization of the cluster instead of Dominant Resource Fairness [107] and then decides
whether fairness should be sacrificed for performance based on a user’s setting of re-
quired fairness.

Nephele Streaming [108] is a distributed dataflow system based on Nephele [58], yet
for processing continuous input streams. Nephele Streaming takes latency constraints
into account and optimizes the resource usage adaptively towards fulfillment of these
SLOs, while also attempting to use as few resources as possible. For this Nephele Stream-
ing mainly employs three strategies: adaptive output buffer sizing, dynamic task chain-
ing, and dynamic scaling [109]. Dynamic buffer sizing adaptively sets the size of output
buffers, which are filled before output elements are send to another worker. Smaller out-
put buffer sizes translate to lower latencies as output is sooner transmitted to subsequent
tasks. However, this reduces throughput as more packets need to be transmitted. Task
chaining merges certain tasks into the same thread, eliminating the need for queues and
data handover, which reduces the latency, yet also at the cost of throughput, as fewer
threads run in parallel. Dynamic scaling, which Nephele Streaming does automatically
based on a queueing theoretic latency model, uses more compute resources to alleviate
compute bottlenecks. That is, dynamic scaling is an optimization that does not decrease
throughput, but increases costs.

Morpheus [11] is a system for resource allocation and scheduling of periodically run-
ning jobs. Morpheus infers deadlines for these repeatedly scheduled batch jobs from
execution logs. It then uses recorded resource utilization data from previous executions
of these jobs to infer the maximal usable resources for the jobs, effectively assuming over-
provisioning by users. Subsequently, Morpheus allocates these resource skylines for sub-
sequent runs. Morpheus further attempts to run scheduled jobs together with the same
other periodical jobs to decrease runtime variance due to interference between co-located
workloads. Morpheus also monitors jobs at runtime and dynamically adjusts resource al-
locations when resource usage deviates from expected demand.

Another approach for scheduling recurring batch jobs adaptively based on resource
usage and interference applies reinforcement learning [53]. The approach learns over
time which combinations of recurring jobs exhibit the least interference and achieve the
highest resource utilization when running co-located on the same nodes. For its measure
of co-location goodness, the approach takes CPU, disk, and network usage as well as I/O
wait into account. It then uses its model of co-location goodness to schedule the job that
utilizes the available resources best given the jobs currently running on the cluster.

4 Problem and Concepts
Contents

4.1 Problem and State of the Art . 39

4.2 Assumptions and Requirements . 42

4.2.1 Batch Processing Jobs . 42

4.2.2 Distributed Dataflow Systems . 42

4.2.3 Dedicated Analytics Clusters . 44

4.2.4 Requirements for a Practical Solution 45

4.3 Approach and Methods . 45

4.3.1 Solution Overview . 45

4.3.2 Application to Iterative Jobs . 49

4.4 System Architecture . 50

4.4.1 Architecture Overview . 51

4.4.2 Prototype Components . 52

4.4.3 Integration with YARN and Spark 55

This chapter describes the problem and concepts of this thesis. We first present the
problem we address with this thesis in detail, including the state of the art and its critical
limitations. Subsequently, we discuss observations that we treat as assumptions for a
practical solution of the identified problem. Then we continue with an overview of our
methods, which are presented in full detail in the following three chapters. The chapter
concludes with presenting our system architecture, the implementation of our prototype
components, and how these integrate with existing systems.

4.1 Problem and State of the Art
Estimating the performance of distributed dataflow jobs upfront is difficult [11, 17, 18,
95]. This is due to the many factors the runtime performance depends on, including com-
plex task dependencies, arbitrary user-defined functions, program parameters, dataset
characteristics, properties of physical hardware as well as virtualization, and system con-
figuration. Anticipating the impact that each of these factors has on job performance is
hard. Moreover, for adhoc data processing, there is often little information available
for some of these factors before processing. For example, there are often no detailed

39

40 Chapter 4. Problem and Concepts

data statistics available for files processed directly from distributed file systems. How-
ever, without detailed knowledge of data characteristics such as key value distributions,
which would indicate data skew, it is unclear how well a particular data partitioning
scheme will work for a specific level of parallelism.

Moreover, besides the difficulty of estimating runtimes, there is also significant vari-
ance in job performance [11, 14, 110]. Even when running the same program on the same
dataset with an equal set of containers, the runtime of the job can vary considerably. A
study of the variance of recurring jobs on a production cluster at Microsoft [14] showed
that even runs that processed similar-sized input datasets exhibit considerable variance:
the executions of 50% of the recurring jobs had a coefficient of variation of 0.20 for execu-
tions processing inputs that differed at most 10% in size. That is, the executions of half of
the jobs deviate from the mean runtime by on average 20%. Some of this variance is due
to factors emerging from sharing of resources like varying degrees of data locality [55,
56], competing access to data [75, 111], and interference between jobs through resource
contention as well as adjacent usage of spare resources [14, 53]. Besides this sharing-
induced variance, there is also inherent variance in runtimes due to stragglers, worker
failures, and updates to data and code [11, 13, 112–118].

However, users often have specific requirements for the performance of their produc-
tion jobs [10, 11, 14]. One real-world example for an expressed requirement from the
company Twitter is updating the indices for search query completion on terabytes of log
data within a maximum of ten minutes [12]. These SLOs are regularly formulated in
SLAs, which are SLOs that have been negotiated and agreed upon by the stakeholders,
typically with financial penalties due in case of noncompliance. Thus, missing perfor-
mance objectives often has not just a negative effect on the usability of services, but also
a financial impact. Even if SLOs have not been formally recorded, users often have clear
expectations for the performance of their jobs. Arguably, expressing a runtime target for
a job is also much more tangible for users than selecting resources [95].

Given specific runtime targets despite the fact that users have a hard time in antici-
pating the performance of distributed dataflows, users considerably over-provision re-
sources for their important production jobs. This results in low overall utilization of clus-
ter resources, with industry-wide utilization being estimated to be somewhere between
6% and 12% [15]. Studies of the resource utilization of cluster resources used exclusively
for scalable data analytics at particular companies report higher average resource utiliza-
tion, specifically values ranging from below 20% to 35% for CPU utilization and 40% to
50% for memory utilization [13, 15]. However, the reserved capacities were still reported
to be two to five times higher than the actually used capacities. Resource utilization
this low does not only yield unnecessarily high costs for operation and maintenance, but
also needlessly large infrastructures in the first place. Furthermore, over-provisioning is
problematic in regard to energy consumption and scalability. Overall, users often have
no problem in meeting their runtime targets, yet they over-provision significantly and,
thus, are ineffective in allocating minimally necessary sets of resources for their goals.

4.1. Problem and State of the Art 41

A lot of previous work addressed the problem of meeting SLOs, especially runtime
targets, despite the difficulty of anticipating the performance of distributed dataflow jobs.
These previous efforts fall short in at least one of the following four categories:

System-specific models A lot of these systems [14, 16, 17, 91, 92, 95, 96] were designed
for specific distributed dataflow systems, while resource-managed clusters typi-
cally run multiple distributed dataflow systems [8, 9]. Moreover, even detailed
performance models are imprecise given the runtime variance in shared clusters,
yet capturing detailed statistics requires extensive instrumentation and therefore
can impose overheads on job runtimes. For example, capturing detailed key value
distributions is an instrumentation that adds significant overheads [119], but these
statistics are important for many cost models [41].

Ineffective training Many systems that model job performance are based on dedicated
isolated profiling runs using small scale-outs and samples of the input [15, 18,
91, 95–97], even though extrapolating to full datasets and larger scale-outs is not
straightforward [89]. These training runs of course impose an overhead not just
in terms of time, but also in terms of cluster resources required solely for model
training. Some systems instead model performance using previous executions as
training data, yet apply simplistic mechanisms for selecting relevant previous runs
as a basis for prediction models [11, 99]. These systems match only metrics avail-
able before job execution, not capturing factors that are hard to predict but reflected
in runtime statistics and can have a significant impact on runtimes. Examples in-
clude the convergence of iterative jobs, which can for instance depend not just on
dataset characteristics, but also considerably on program parameters.

Static allocation Many of the previously presented systems only statically allocate re-
sources once prior to execution and do not monitor the performance of jobs at run-
time [16–18, 91, 92, 95–97, 99, 100]. However, given the inherent runtime variance
of distributed dataflow jobs in shared environments, these systems either need to
conservatively over-provision resources or users have to accept runtime target vio-
lations due to performance variance.

Impractical scope Some approaches also assume control over more than just resource
allocation [11, 15, 16, 99]. These systems for example additionally schedule jobs or
place containers onto nodes, yet switching to entirely different schedulers or even
resource managers is usually an immense effort for organizations.

To the best of our knowledge there is no practical solution that (1) supports distributed
dataflow jobs in general, (2) using runtime prediction models trained on specifically se-
lected samples, and that (3) also monitors jobs at runtime and dynamically adjusts re-
source allocations, if necessary. In addition to these three main points of criticism of the
state of the art, solutions also fall short as (4) they arguably unnecessarily require control
over more than just resource allocation.

42 Chapter 4. Problem and Concepts

4.2 Assumptions and Requirements
In this section we first discuss those observations that we treat as assumptions regard-
ing batch processing jobs, distributed dataflow systems, and dedicated analytics clusters.
Then, we derive requirements for a practical solution for the previously described prob-
lem of users having difficulties to allocate minimally necessary sets of resources for their
runtime targets.

4.2.1 Batch Processing Jobs

For batch data processing jobs we make two key observations:

• Users often have runtime targets for their production batch jobs.

• Production batch jobs are often recurring such as scheduled periodically on an
hourly, daily, or weekly basis.

Users often have specific performance requirements or goals for their batch produc-
tion jobs [10, 11, 14]. A study of the analytics batch jobs executed on a Microsoft cluster
not only shows that most jobs that are executed are production jobs, but also that most
complaints in form of ticket escalation are related to job performance or performance pre-
dictability [11]. Some of these performance objectives stem from contractual agreements
with external partners, typically ensuing financial penalties if missed. Other performance
objectives are derived from usability requirements. For example, user-facing online con-
tent such as current search trends has to be up-to-date to be useful. Otherwise, users will
eventually stop using the services of a vendor and move on to competing offers, ensuing
revenue loss. Even if neither external partners nor end-users are directly affected, users
of analytics clusters often have notions of desired runtimes. At the very least, it is almost
always easier for them to state runtime targets than to decide on appropriate resources
for their jobs.

Production jobs are often recurring. These are typically periodically scheduled batch
jobs that run repeatedly on updated or at least similar datasets [10, 11, 14, 16]. Such jobs
have been reported to make up 60% of the larger clusters at Microsoft [11]. Of these
jobs more than 40% run on a daily basis, while other frequently used periods are fifteen
minutes, an hour, and twelve hours. Another study showed that recurring jobs make up
40.32% of the jobs as well as 39.71% of the cluster hours on all production clusters used
for Microsoft’s Bing service [10].

4.2.2 Distributed Dataflow Systems

For distributed dataflow systems we make two key observations:

• Distributed dataflow systems provide scalable data-parallel processing, so that a
multitude of scale-outs can be reasonably used for jobs.

4.2. Assumptions and Requirements 43

• Distributed dataflow systems run most batch jobs in multiple stages and allow to
use different resources for stages.

Distributed dataflow systems process large datasets with data-parallel operators. For
each data-parallel operator, a number of parallel task instances is scheduled, deployed,
and executed on a set of connected shared-nothing commodity nodes. Typically, sys-
tems allow to set the degree of parallelism (DOP) for a job, a stage, or a single operator.
Worker nodes offer execution slots to run a specific number of parallel task instances.
Typically nodes offer as many of these execution slots to a distributed dataflow job as
processing cores were reserved for the job. This data-parallel execution model of dis-
tributed dataflow systems is implemented by distributed runtime environments, which
include efficient implementations of data-parallel operators and effective data partition-
ing mechanisms. Consequently, a multitude of different scale-outs can be reasonably
used for a distributed dataflow job. Furthermore, depending on the input data, the job,
and the resources different scale-outs yield different runtimes for a job.

Multiple subsequent operators that are executed together are called a stage of a dis-
tributed dataflow job. Most batch jobs consist of multiple such stages. The extent of a
stage is limited by operators that require particular elements to be available at the same
task instances and, thus, usually shuffling of the data. Some systems actually schedule,
deploy, and run the stages of a job separately. Others schedule and deploy entire jobs at
once, yet still only one stage is typically executed at any time. Distributed dataflow sys-
tems at least allow to set the DOP for each stage. Some also allow to allocate different sets
of resources for each stage. However, even with systems that do not support this kind of
dynamic scaling, every job can be split into multiple jobs to have its stages run separately
and on different sets of resources. This allows to dynamically scale the resource usage of
all distributed dataflow jobs that have multiple stages.

We do not assume a specific distributed dataflow system. There are many different dis-
tributed dataflow systems used for scalable general-purpose processing of large datasets.
These implement for example different methods for fault tolerance, ranging from snap-
shotting intermediate results to annotating lineage for selective re-computation or even
no fault tolerance at all. Such design decisions have an impact on the performance of
jobs, reducing throughput for the failure-free case or requiring more recovery in case of
failures. Distributed dataflow systems also provide different programming interfaces.
Users might already be familiar with one interface or have existing code tied to a specific
system. In addition, the systems come with different libraries of already implemented al-
gorithms. Furthermore, in production settings, systems often have to be integrated with
specific resource management systems, distributed file systems, messaging systems, and
databases. All these factors are important reasons for users to choose one system over
another, possibly one system for one job and a different one for the next, or even multiple
systems for a pipeline of jobs. Therefore, multiple dataflow systems should be supported
by a resource allocation system.

44 Chapter 4. Problem and Concepts

4.2.3 Dedicated Analytics Clusters

For dedicated analytics clusters we make two key assumptions:

• Dedicated analytics clusters are built using large numbers of homogeneous com-
modity nodes and standard software.

• Resources of dedicated analytics clusters are typically shared by multiple users and
jobs.

When data processing is at the core of an organization’s processes, organizations usu-
ally operate their own cluster infrastructures. These dedicated clusters typically consist
of large numbers of shared-nothing commodity machines. The clusters are often entirely
homogeneous or at least have subsets that are homogeneous. In fact, many distributed
dataflow systems expect worker nodes to be homogeneous. Besides using commodity
hardware for nodes and networks, standard software is used for the operating system,
virtualization, cluster resource management, and distributed file systems. Compared to
specialized parallel computers, this setup is less expensive, but also typically less reliable.
Given the scale of infrastructures, failures are to be expected and distributed data pro-
cessing systems consequently implement mechanisms to tolerate hardware and software
failures. However, even when recovered, failures at the granularity of workers and tasks
introduce inherent variance to job runtimes. Moreover, it is hard to provide throughput
guarantees with commodity hardware and standard software. For these reasons, the per-
formance provided by compute resources in these clusters is not completely predictable,
but varies.

To achieve high resource utilization and in turn cost-efficiency, clusters are typically
shared among multiple users running multiple jobs. Users reserve parts of the resources
of a shared cluster via containers, which are an abstraction of resources, for example a
number of virtual cores and amount of main memory. These containers run on specific
nodes. On large clusters users typically have container reservations that span only sub-
sets of the entire cluster. Therefore, data locality varies depending on the distribution
of input datasets and the specific container reservations. Moreover, containers are of-
ten executed without isolation, even when containers of multiple jobs run on the same
nodes. Given the fluctuating resource demands of long-running analytics jobs, running
multiple jobs co-located in this way increases resource utilization and overall throughput
due to statistical multiplexing [13, 54]. Yet, this also leads to interference between work-
loads. Thus, the performance of jobs can also vary depending on which other jobs are
concurrently executed.

We do not assume the availability of a dedicated staging cluster to profile new jobs.
Such a dedicated cluster adds costs. The dedicated staging cluster infrastructure also
needs to be bought, operated, and maintained. Furthermore, profiling new jobs prior to
their execution adds an overhead to the runtime of jobs. This overhead can be reduced
significantly when profiling runs are executed using a sample of the actual input. How-
ever, accurately extrapolating from sample inputs and small scale-outs to processing the

4.3. Approach and Methods 45

actual input datasets at scale is not trivial. This is consequently done either with simpli-
fying models [97] or for specific domains [89].

We do not assume control over job admission, execution order of jobs, or container
placement. That is, we only focus on resource allocation, not resource management in
its entirety. Switching to completely different schedulers or resource managers is a sig-
nificant effort for organizations. There are also many considerations besides runtime
targets to be taken into account when scheduling applications in cluster environments
such as fairness, job priorities, and data locality. For these reasons, we focus on selecting
the scale-out of a single distributed dataflow job and present a system architecture that
allows our solution to be used for the resource negotiation of a single application.

4.2.4 Requirements for a Practical Solution

We argue that certain requirements for practical solutions that manage resource alloca-
tions on the basis of users’ runtime targets follow from our observations on jobs, systems,
and cluster setups. The four key requirements we identified are:

• Solutions should use black-box models to generally support distributed dataflow
systems, so users can continue to choose the most appropriate tool for their tasks.

• Solutions should carefully select training data for performance models, indepen-
dent of whether they use dedicated profiling runs or learn from previous executions
of recurring jobs, so that predictions are accurate.

• Solutions should continuously monitor jobs and dynamically adjust resource allo-
cations, so that the performance variance of distributed dataflows in shared cluster
environments is addressed.

• Solutions should be designed as pluggable tools that focus on resource allocation,
so users can benefit from solutions even with existing cluster setups, given the im-
mense organizational effort of switching cluster software.

Based on these requirements, we developed our approach, methods, and system archi-
tecture.

4.3 Approach and Methods
In this section we first present our approach and an overview over our methods for dy-
namically allocating resources for distributed dataflow jobs. We then describe the appli-
cation of our approach to iterative distributed dataflow jobs.

4.3.1 Solution Overview

Users often have specific runtime targets for their production batch jobs, yet at the same
time it is difficult for them to allocate sets of resources that meet their demands without

46 Chapter 4. Problem and Concepts

reverting to significant over-provisioning. For this reason, we argue that users should not
be required to make resource reservations themselves, but should be able to express their
constraints to a system that automatically reserves minimally necessary sets of resources
for their runtime targets. This system should use a runtime prediction model that sup-
ports multiple distributed dataflow systems, should train its model on carefully selected
similar executions, and should address runtime variance continuously through dynamic
scaling.

Dynamic Resource Allocation

Performance Modeling

Run

Stage

Scale-out

Runtime

Workload History

1 1 1

1 2 3

12 12 12

200s 100s 110s

Similarity Matching Resource Allocation

0

5

10

15

20

2 7

Runtime

Scale-out

Runtime statistics (per Stage)

Scale-Out (per Stage)

Synchronization Barriers

Dataflow Task

use

use

discard

Job +
Constraints

Stage 1 Stage 2 Stage 3

0

10

20

0 5 10
0

10

20

0 5 10
0

10

20

0 5 10

Run

Stage

Data Size

Records

Run

Stage

CPU %

I/O %

1 1 1

1 2 3

40 76 12

74 22 80

1 1 1

1 2 3

5 GB 2 GB 1 MB

9999 4000 20

Job Execution Input Data Resource Utilization

Figure 4.1: Dynamic resource allocation based on similar previous executions of recurring batch
jobs to meet users’ runtime targets.

Figure 4.1 shows an overview of our approach. A user submits a job with additional
constraints for both the resources and the job runtime. A system for resource allocation
receives this as input. The system selects resources for the submitted job and constraints
in a three step process:

1. First, it matches the submitted job to similar previous executions. Similar previous
executions are available for recurring batch jobs and allow to predict the runtime of
a job.

2. Second, it uses matched previous executions to train a black-box runtime prediction
model for the submitted job. Specifically, the system models the scale-out behavior
of the job’s stages to be able to predict the runtimes of distinct parts of the job.

4.3. Approach and Methods 47

3. Lastly, the system uses the scale-out models of stages to select minimal sets of re-
sources predicted to provide the required runtime. This is done for each stage: Af-
ter each stage the system decides the next stage’s scale-out based on the currently
elapsed and predicted remaining time.

The system uses a black-box model for predicting the performance of a job based on
actually observed runtimes. This is possible for jobs that are repeatedly executed, such as
daily or weekly batch jobs. Since many important production jobs are typically scheduled
periodically, runtime statistics on previous executions are available for a large fraction of
jobs, especially those jobs that users have clear performance expectations for. The system
uses these statistics to carefully match similar previous executions as a basis for runtime
prediction models.

The system continuously monitors the running job, models its performance based on
matched previous executions, and adapts reserved resources for subsequent stages at
the synchronization barriers in-between stages, if necessary. As more runtime statistics
become available during the execution of a job, the system can match similar previous
executions more accurately based on the actual runtime behavior. It then re-trains the
scale-out models of the running job on the new selection of similar previous executions
at runtime. This way, the prediction of the remaining runtime of a job can become more
accurate as a job progresses.

In the following we briefly describe our main methods, before we present how we
implemented our approach and methods in multiple components and as a pluggable job
submission tool.

4.3.1.1 Workload History

Various information on the execution of jobs is used for matching similar previous exe-
cutions and modeling the scale-out behavior of these. This information is recorded for
all executions on a cluster and stored in a central repository. For modeling the scale-out
behavior of the individual stages, we require the runtimes and scale-outs of the stages
of a job. To effectively match similar previous executions, which form the basis for the
scale-out modeling, we additionally require information on the input dataset, the conver-
gence, and the utilization of resources. For distributed dataflow or resource management
systems that do not log these information, additional monitoring of the distributed jobs
is required.

4.3.1.2 Similarity Matching

Since our approach is to model a recurring job’s performance based on its previous exe-
cutions, our system selects similar previous runs of the submitted job from the workload
history database, assuming that these allow to accurately predict the runtime of the sub-
mitted job. However, it is usually not the exact same job that is executed, even with

48 Chapter 4. Problem and Concepts

periodically running batch jobs. Usually at least the dataset and selections of resources,
but possibly also program parameters and system configurations are slightly different.
Such static factors are considered when selecting previous executions to predict the per-
formance of a submitted job. Yet, it is hard to estimate beforehand what effect changes to
these factors will have on a job’s runtime. However, the effect of these changes is reflected
in runtime statistics like stage runtimes and convergence. For this reason, we not only use
static factors like statistics on the input dataset, but also match statistics on the current
execution of a job like stage runtimes. Therefore, the matching of similar previous exe-
cutions becomes more accurate as a job progresses and gets closer to its runtime target.
In turn, when matched previous executions are continuously used to update prediction
models, predictions become more accurate as well. Since different similarity measures
are important for the runtime behavior of different jobs, we use job-specific thresholds
and weights for combining multiple measures into an overall assessment of similarity.
Moreover, we train these parameters on the history of each job, so users do not have to
configure these heuristics manually.

4.3.1.3 Performance Modeling

Our approach for runtime prediction is to model the scale-out behavior of jobs. In par-
ticular, we model the scale-out behavior of individual job stages to be able to predict the
runtimes of distinct parts of jobs for certain resource allocations. This way, we can for
example predict the runtime of the remaining stages at the synchronization barriers in-
between stages. We use black-box models, modeling the scale-out behavior only using
the scale-outs and runtimes of previous executions of recurring jobs. To optimally sup-
port both different distributed dataflow systems and varying densities of available train-
ing data, we use two different regression models. First, we use a simple parameterized
model of distributed processing, applicable to distributed dataflows. Second, we also
use nonparametric regression, which can be used to accurately fit arbitrary scale-out be-
havior, given dense training data. Yet, training data density can vary significantly when
previous executions of periodically scheduled batch jobs are used as samples. Moreover,
nonparametric regression is not usable for extrapolation. Therefore, our system automat-
ically chooses between the two regression models.

4.3.1.4 Resource Allocation

Given constraints for both the resources and the runtime, the system automatically selects
a minimal necessary set of resources for a submitted job. For this, we use the scale-out
models of the job stages, which link used resources to resulting runtimes. In particular,
our approach is to search for the smallest scale-out within the user-provided bounds
that is predicted to meet the user’s runtime target, assuming more resources ensue more
costs. Since this search space, namely the possible values for the scale-out, is discrete,
we greedily search for such a scale-out, starting with the minimal scale-out and stopping

4.3. Approach and Methods 49

with the maximal scale-out specified by the user. If no scale-out within these bounds is
predicted to meet the runtime target, we select the scale-out with the lowest predicted
overall job runtime.

4.3.1.5 Runtime Adjustments

Our approach to monitoring a job’s progress towards its runtime target is to predict the
remaining runtime for the current resource allocation using the scale-out models of the
individual job stages. Then we compare the predicted remaining runtime to the elapsed
runtime and the runtime target. If the job is predicted to meet its runtime target, we do
not change the scale-out. However, if the job is predicted to exceed the runtime target,
we search for a scale-out that is predicted to meet the target. If instead the job’s predicted
overall runtime is below the runtime target, we search for a smaller scale-out to free sur-
plus resources. This assessment happens at each synchronization barrier in-between sub-
sequent job stages such as in-between subsequent iterations of iterative jobs. First, stages
are distinct parts of jobs, which we can model separately and thus predict runtimes for.
Second, distributed dataflow systems allow to use different DOPs for separate stages.
Also, at synchronization barriers in-between stages the tasks of the previous stage have
finished, while the tasks of the subsequent stage have not yet been started. Thus, there
is no operator state to be migrated, only intermediate data, which often has to be shuf-
fled for subsequent stages anyway. Stage barriers consequently allow to scale jobs with
maintainable overheads [120]. Yet, as changing the scale-out of distributed dataflows
at runtime is not entirely without overheads, even at synchronization barriers, we only
adjust resource allocations if the predicted remaining runtime deviates significantly and
add additional slack for establishing a new scale-out.

4.3.2 Application to Iterative Jobs

A particularly interesting class of distributed dataflow jobs for applying our approach are
iterative workloads. This class includes, for example, many widely used machine learn-
ing and graph analysis algorithms. Iterative distributed dataflow jobs execute stages re-
peatedly, either for a fixed number of iterations or until a convergence criteria is met. That
is, not only are many important algorithms iterative, but iterative distributed dataflow
jobs often execute a high number of overall stages. Since we monitor and predict remain-
ing runtimes on the basis of stages, iterative jobs therefore provide numerous points for
assessing a job’s progress and adapting allocations dynamically, if necessary. Moreover,
since selection and aggregation reduce the data size considerably, subsequent stages in
non-iterative distributed dataflow programs are often shorter, yet iterations of iterative
distributed dataflow programs often have similar lengths. Thus, adapting the resources
during the runtime of iterative jobs can have a large impact, even after a few stages have
already finished execution. This is especially true for bulk iterations, which process the
same dataset in each iteration.

50 Chapter 4. Problem and Concepts

Besides bulk iterations, there are also delta iterations. Delta iterations process datasets
incrementally, considering a decreasing number of active elements from one iteration
to the next. For example, many iterative algorithms allow to consider only those parts
of the data that have changed in the last iteration. This fact can be used to speed up
processing [30] but also yields considerably different runtimes for iterations, even though
the same dataflow stages are executed.

0

5

10

15

20

0 5 10
0

5

10

15

20

0 5 10

Iteration iPre-processing Post-processing

0

5

10

15

20

0 5 10
0

5

10

15

20

0 5 10

Dataflow Task

Stage Barrier

Stage Scale-out Model

Figure 4.2: Stage-wise modeling of an iterative dataflow.

Figure 4.2 shows our approach applied to iterative jobs. The scale-out behavior of the
stages of each iteration is modeled, enabling our solution to predict the runtime of the re-
maining iterations and adapt resource allocations in-between iterations, if necessary. We
apply our approach directly to repeatedly executed stages since the runtimes of iterations
can vary significantly, especially in case of incremental processing with delta iterations.
Therefore, we do not create a single model for repeatedly executed stages, but model all
stages separately.

Even modeling the stages of subsequent iterations separately is still an approximation.
Convergence, including how many iterations are executed until a given convergence cri-
teria is met, can vary considerably and depends on multiple factors such as dataset char-
acteristics, program parameters, and the DOP. This is addressed by matching similar
previous executions of the iterative job also based on its actual runtime behavior.

4.4 System Architecture
In this section we first present an architecture overview for implementing our approach
to dynamic resource allocation as a job submission tool. Then, we describe the features
and the implementation of our main prototype components. Finally, we show how we
integrated our prototype components with YARN and Spark.

4.4. System Architecture 51

4.4.1 Architecture Overview

Dynamic resource allocation for resource-managed shared analytics clusters can be im-
plemented as a job submission tool. Figure 4.3 shows a system architecture for this imple-
mentation strategy. The system for resource allocation is used for submitting jobs to the
resource management system. It selects and adjusts the resource allocation of a single job
using available interfaces for job submission, progress monitoring, and dynamic scaling.
This design has the advantage that the solution can be used by a single user and for a
single job, without requiring invasive changes to the cluster setup. Therefore, our system
works with existing cluster setups, specifically resource managers and schedulers.

Worker

Automatic
Resource
Allocation

Resource Management System

Application ContainerC

Resource Allocation System

Worker

C

Worker

Master

C

C C

C C

C C

Monitoring

C C

C C

Job
Submission

Job &
Constraints

Runtime
statistics

Runtime
statistics

Stage &
Scale-out

Stage
runtimes

Workload
History

Figure 4.3: Automatic resource allocation based on historic workload data implemented as a job
submission tool for resource-managed clusters.

Our allocation system wraps the cluster manager’s existing submission tool and trans-
lates abstract user-level performance constraints into specific resource allocations. A user
can then submit a job with constraints for the runtime and resources to our allocation sys-
tem. The user specifies a runtime target as well as a minimal and a maximal number of
containers. Based on these constraints, our system selects the scale-outs that it communi-
cates to the cluster manager.

As we model and predict the performance of recurring distributed dataflow jobs based
on similar previous executions, our allocation system requires access to a repository of
workload statistics. This monitoring data on previously executed job runs can either be
provided by the cluster manager or by an additional monitoring system. In either case,
our allocation system is connected to a database containing workload statistics.

52 Chapter 4. Problem and Concepts

Our allocation system selects resources for each of a job’s stages at runtime to miti-
gate the impact of runtime variance. It either submits a job stage-by-stage with specific
scale-outs or dynamically manages resource allocations for a job submitted in its entirety.
While it is possible to split each job along its stages and to have each stage be sched-
uled, deployed, and executed as a separate job using different levels of parallelism and
resources, system support for dynamic scaling has advantages. When dynamic scaling
is supported, distributed workers remain running and also keep the intermediate data
in memory as far as possible. In either case, our system adapts the current resource
allocation at the synchronization barriers in-between stages and, therefore, requires noti-
fications about the end of stages from the cluster manager.

4.4.2 Prototype Components

We implemented our approach and methods in a set of prototype components. These
components are shown in Figure 4.4. On the one side, there is Ellis, the prototype system
implementing our approach to automatic resource allocation. On the other side, there is
Freamon, the monitoring system we developed to record resource utilization statistics for
the containers of distributed applications.

Resource
Allocation

Ellis

Bell
Runtime

Prediction

Cutty
Similarity
Matching

Freamon

Distributed
Application
Monitoring

Workload
History

Monitoring System Automatic Allocation System

Figure 4.4: Components for automatic resource allocation.

Given a runtime target for a recurring job, Ellis initially selects and dynamically ad-
justs resource allocations. For this, Ellis contains logic for selecting resources based on
predicted runtimes. For these runtime predictions Ellis uses the components Bell and
Cutty. Bell is a system for modeling the scale-out behavior of distributed dataflow jobs,
using a black-box approach which supports multiple distributed dataflow systems in-
stead of relying on a system-specific model. Cutty is a system for selecting those similar
previous executions of a recurring job that allow accurate predictions of the runtime of
the job. Ellis uses Cutty to select similar previous executions as training data for Bell.

Since we built Ellis for applications running on YARN, which does not record all the
runtime statistics we are using to select training data and model performance on, we use
our own monitoring system Freamon. Freamon records not only the runtimes of jobs
and individual job stages, but also records the resource utilization at the granularity of

4.4. System Architecture 53

application containers. Freamon stores these statistics in a database and makes them
available to Ellis.

In the following we briefly describe the features and the implementation of Bell, Cutty,
and Ellis.

4.4.2.1 Component Descriptions

Bell is a system for modeling the scale-out behavior of distributed dataflow jobs based
on previous executions of recurring jobs. Bell learns how the runtime of a job depends
on the scale-out from available samples. It uses a black-box model and, thus, is a gen-
eral solution that works with multiple analytics frameworks, acknowledging the fact that
users need to be able to choose the best tool for their tasks. In particular, Bell fits a func-
tion of the scale-out that can be used for predicting the job runtime using regression. As
the number of previous runs that are available for training a job model varies even for
periodically scheduled jobs, Bell aims to make the most of the historic data for each job.
For this reason, Bell uses two different models and automatically chooses between them:
highly flexible nonparametric regression and also parametric regression with a simple
model of distributed processing, applicable to distributed dataflows. That is, Bell uses
one model for interpolating arbitrary scale-out behavior, given dense training data, and
another model as a robust fallback, to be able to provide reasonable predictions from a
few data points and to extrapolate. Bell automatically chooses between these two models
depending on the prediction task and the available historic data using cross-validation.

Cutty is a system for selecting similar previous executions of distributed dataflow
programs based on their similarity to a currently running job, matching those previous
executions that provide accurate performance estimation. Executions of the same pro-
gram can exhibit considerably different runtime behavior in terms of runtimes, resource
utilization, and convergence depending on input datasets, program parameters, system
configurations, and specific resources used. Selecting executions with a similar runtime
behavior is, however, a prerequisite for accurate prediction models. Using techniques
we proposed with a system for estimating the runtimes of recurring iterative dataflow
jobs, Cutty matches previous executions based on multiple similarity measures. Statis-
tics for some of these measures are available offline, yet some measures are based on
runtime statistics such as the runtimes of stages and convergence rates. These measures
are only available at runtime. Cutty incorporates runtime statistics as they become avail-
able, allowing the selection of similar previous executions to become more accurate as
jobs progress and get closer to their runtime targets. Since it depends on the job which
of the different similarity measures are most useful for selecting previous executions as a
basis for performance estimation, Cutty automatically trains thresholds and weights for
the similarity measures on all of a job’s previous executions.

Ellis is a system for initially selecting and dynamically adjusting resource allocations
based on scale-out models. Given a user’s runtime target, Ellis uses Bell and Cutty to se-
lect as few resources as necessary to meet the target. Specifically, Ellis uses Cutty to select

54 Chapter 4. Problem and Concepts

similar previous executions of a job. Ellis then provides data on these previous execu-
tions to Bell and uses Bell to create separate scale-out models for each of the job’s stages.
Subsequently, Ellis is able to predict the runtimes of separate stages and thus also the
runtime of the remaining stages for a running job. Ellis predicts the remaining runtime
at all synchronization barriers in-between stages. When the predicted runtime for the
remaining stages significantly deviates from the runtime target, Ellis uses the stage-wise
models to search for a scale-out that is predicted to meet the runtime target. Ellis then
adjusts resource allocations at stage barriers, effectively scaling the distributed dataflow
jobs dynamically and thereby addressing the inherent variance in job performance. As
Ellis supplies runtime statistics for the currently running job to Cutty and has Bell update
models at runtime, predictions become increasingly accurate as jobs progress and more
runtime statistics can be matched against previous executions.

The methods implemented with each of these three components are described in detail
in the following three chapters.

4.4.2.2 Component Implementation

For the implementation of our prototype components, we used the Scala programming
language. Key libraries we employed for our automatic resource allocation system are
BOBYQAOptimizer, which is part of the Apache Commons library1 and which we used
for Cutty’s optimization of the similarity matching, and Breeze2, which is a numerical
processing library for Scala that we used to implement the regression models of Bell.
Other than that, Ellis uses a database connector for access to a database with statistical
data on previous executions.

Our monitoring system Freamon consists of distributed monitoring agents, which we
implemented using Akka3, and a central database for recorded statistics, for which we use
the MonetDB column-store database4 [121]. The distributed monitoring agents use differ-
ent Linux tools for recording resource utilization statistics of the processes of application
containers:

• The virtual file system /proc for recording CPU and memory utilization.

• Nethogs5 for recording the network utilization.

• PidStat6 for recording the disk and CPU utilization, broken down into CPU utiliza-
tion attributed to users and the system.

1 https://commons.apache.org/, accessed 2017-11-15.
2 https://github.com/scalanlp/breeze, accessed 2017-11-15.
3 https://akka.io/, accessed 2017-11-15.
4 https://www.monetdb.org/, accessed 2017-11-15.
5 https://github.com/raboof/nethogs, accessed 2017-11-15.
6 https://github.com/sysstat/sysstat, accessed 2017-11-15.

https://commons.apache.org/
https://github.com/scalanlp/breeze
https://akka.io/
https://www.monetdb.org/
https://github.com/raboof/nethogs
https://github.com/sysstat/sysstat

4.4. System Architecture 55

• Dstat7, which itself is a frontend for multiple Linux resource utilization monitoring
tools and which we use to also capture the overall resource utilization of worker
nodes.

By default, Freamon uses only /proc for recording CPU and memory utilization. All
other monitoring is optional.

4.4.3 Integration with YARN and Spark

YARN Spark JobEllis Freamon Cluster Node

Resource Manager Node ManagerNode Manager

App Master

Ellis
App WorkerFreamon

Database

Freamon Master Freamon
Agent

Freamon
Agent

Node Manager

Freamon
Agent

Node Manager

App Worker

Freamon
Agent

Node Manager

App Worker

Freamon
Agent

Node Manager

App Worker

Freamon
Agent

Node Manager

Freamon
Agent

Figure 4.5: Deployment with a Spark application on a YARN cluster.

We integrated our prototype components with YARN and Spark to demonstrate the
practicability of our approach and evaluate our methods. Following the general approach
of implementing dynamic resource allocation as a pluggable job submission tool, we in-
tegrated Ellis with YARN and Spark on a per-job basis. Specifically, we implemented
Ellis as a system to be used from an Application Master, which is the first process started
for each YARN application. The Application Master process is responsible for resource
negotiation and contains an application’s driver program, which executes the stages of
a distributed dataflow job. Since YARN does not provide application monitoring on the
necessary granularity, we also developed Freamon. Freamon is a distributed monitoring

7 http://dag.wiee.rs/home-made/dstat/, accessed 2017-11-15.

http://dag.wiee.rs/home-made/dstat/

56 Chapter 4. Problem and Concepts

system that periodically records resource utilization statistics for all the containers of a
YARN application. Ellis is connected to Freamon’s central database component.

Figure 4.5 shows how Ellis and Freamon are deployed with a YARN cluster and used
by a Spark application. There are six cluster nodes. One acts as master node, while five
act as worker nodes. The master node runs YARN’s master, which is called Resource
Manager. It also runs the master of our monitoring system, which coordinates its worker
agents and manages the central database that contains recorded workload statistics. Each
of the worker nodes runs YARN’s worker manager and Freamon’s worker agent. In
the example shown in Figure 4.5, five YARN worker execute a single container each,
belonging to a single Spark YARN job. One worker runs the Application Master of this
job, which is started first, negotiates the resources for the Spark job, and contains the job’s
driver program. The Application Master integrates Ellis for selecting resource allocations.

Ellis is used on job submission to initially select the number of containers the job uses.
Moreover, Ellis is used after each completed stage. At this point, Ellis assesses whether
the job is still predicted to finish within the bounds of a runtime target with the current
resource allocation. If this is not the case, Ellis searches for a scale-out that is predicted
to yield an overall job runtime within these bounds. If a job is executing faster than pre-
dicted, Ellis also searches for a smaller scale-out predicted to meet the target, so surplus
resources become available for other YARN jobs. Ellis accesses Freamon’s database for
information on previous executions, which it uses to model and predict the runtime of
job stages.

4.4.3.1 Integration through a Spark Job Listener

Ellis is integrated into Spark as a JobListener. The Spark system notifies this listener
when a stage ends. The listener can be added to the driver program of a Spark job to have
Ellis manage resource allocations dynamically. Listing 4.1 shows this for an exemplary
Spark job.

Listing 4.1: The beginning of an exemplary Spark job that integrates Ellis by using our job listener.
1 val appConf = new PageRankArgs(args)
2 val appSignature = "PageRank"
3

4 val sparkConf = new SparkConf().setAppName(appSignature)
5 val sparkContext = new SparkContext(sparkConf)
6 val listener = new StageScaleOutPredictor(
7 sparkContext,
8 appSignature,
9 appConf.dbPath(),

10 appConf.minContainers(),
11 appConf.maxContainers(),
12 appConf.maxRuntime())
13 sparkContext.addSparkListener(listener)

4.4. System Architecture 57

In Line 6, a StageScaleOutPredictor is created at the beginning of the job. This is
the Spark listener subclass that integrates Ellis. The StageScaleOutPredictor is ini-
tialized with the current execution context, application metadata, the path to Freamon’s
database, and the user’s performance constraints. These constraints are a minimal and a
maximal number of Spark workers, which are called executors, as well as a target run-
time. Finally, in Line 13, the listener instance is added to the execution context, which
activates the listener.

When the listener is created, it first computes an initial scale-out for the job as part of
its initialization routine. The listener is also called whenever a stage ends as it overrides
the onJobEnd hook. In this procedure, the listener assesses the job progress and adjusts
the current resource allocation as described above.

This listener can be used for a single job, requiring modest changes to the driver pro-
gram of the job. In fact, not counting the line-by-line enumeration of the arguments
supplied when creating our listener, only two lines need to be changed to use Ellis for a
Spark job.

4.4.3.2 Dynamic Scaling of a Spark YARN Job

YARN allows running applications to request more containers and to return some of the
reserved containers. Specifically, while a job is running, the job’s Application Master
can re-negotiate resources with YARN’s Resource Manager and thereby adapt the cur-
rent allocation. Spark also supports dynamic scaling at runtime. There is an interface
to change the number of executors that run a job. When Spark is executed on YARN,
both features are integrated. A driver program can request more executors for its job at
runtime, for which Spark then requests more containers from YARN, before it first starts
new executors in these containers and then has these executors run additional parallel
task instances. A driver program can also discard executors, which Spark then stops,
before returning the container resources to YARN again.

Spark’s dynamic scaling is by default managed by an auto-scaling policy, which com-
putes the number of executors for a job based on currently pending tasks and idle execu-
tors. We deactivate this policy to manage the number of executors based on predicted
runtimes.

When a Spark executor shuffles data as it does before new stages start, the executor
sorts the intermediate results by key and serves these to all the executors of the next stage.
Usually when an executor is discarded before its shuffle outputs have been fetched by all
the executors of the next stage, Spark would recompute the outputs of the discarded
executors. To make sure executors are decommissioned gracefully, an external shuffle
service can be used. An external shuffle service is a standalone application, running
on all worker nodes outside Spark’s executor processes. It manages the shuffle output
independently of the availability of executor processes. If an external shuffle service is
used, executors will fetch shuffle outputs from this service instead of from each other,

58 Chapter 4. Problem and Concepts

allowing executors to be decommissioned as soon as they finished processing and before
the subsequent stage has finished reading in the entire intermediate data.

5 Modeling the Scale-Out Behavior of
Batch Jobs

Contents
5.1 Scaling out Distributed Dataflows . 59
5.2 Scale-Out Models for Distributed Dataflows 64

5.2.1 Parametric Regression . 64
5.2.2 Nonparametric Regression . 66
5.2.3 Automatic Model Selection . 67

5.3 Evaluation . 67
5.3.1 Cluster Setup . 67
5.3.2 Experiments . 68
5.3.3 Results . 69

This chapter presents Bell, which we published in [122] (© 2016 IEEE). Bell is a system
for predicting the runtime of distributed dataflow jobs. We use a black-box approach for
modeling the scale-out behavior of jobs based on previous executions. Therefore, Bell
supports different distributed dataflow systems. In particular, Bell uses two different
univariate regression models to find a function that captures the scale-out behavior of
a job. The function takes a scale-out as input and outputs the job’s runtime. Bell uses
one model for interpolating arbitrary scale-out behavior, given dense training data. It
uses another model as a robust fallback and for extrapolation, able to provide reasonable
predictions from a few data points. Depending on the available training samples and the
prediction task, Bell automatically chooses between these two models.

This chapter first describes how distributed dataflow jobs can be scaled out to more
cluster resources. The chapter then presents the two regression models Bell uses for mod-
eling the scale-out behavior of distributed dataflows and how Bell automatically selects
between the two models using cross-validation. Finally, the chapter presents an evalua-
tion of Bell using six different exemplary Flink and Spark jobs.

5.1 Scaling out Distributed Dataflows
Distributed dataflows are data-parallel operator pipelines, where operators execute UDFs
on a single stream of inputs or even merge multiple dataflows using operators like Joins.

59

60 Chapter 5. Modeling the Scale-Out Behavior of Batch Jobs

Each operator is executed data-parallely, so that work is distributed among data-parallel
task instances of an operator. Each of the data-parallel task instances processes a par-
tition of the data. The task instances are executed by worker processes on connected
nodes. Worker processes on multi-core nodes run multiple data-parallel task instances in
parallel, using multiple threads. The data parallelism is increased when jobs are executed
on more resources, usually in direct relation to the number of available processing units.
Consequently, task instances potentially process smaller partitions, when a higher scale-
out is used while the input stays the same. Therefore, scaling out distributed dataflows to
more resources can speed up the execution of distributed dataflow jobs as more execution
units work on smaller partitions.

Resources are usually reserved through containers. Containers in this context are an
abstraction of compute capabilities for scheduling and reservation. To make a container
reservation, users specify the amount and the size of containers. The size of a container
could, for example, specify the amount of memory and the amount of cores users want
to use with each container. While main memory is assigned to a particular container,
usage of the other resources such as CPU cores, disks, and the network is typically not
isolated. In fact, containers are often just processes running data-parallel task instances of
a job. It is only the distributed dataflow system’s scheduling of task instances that gives
meaning to the specification of for example a particular number of reserved CPU cores.
The systems denote each available core as an execution slot and assign data-parallel task
instances to each of these slots.

Dataflow Task Node with one of four containers
assigned to the dataflow job

Figure 5.1: Scaling out a distributed dataflow job.

Figure 5.1 shows a distributed dataflow job that is deployed on a cluster of four nodes
that each run four containers. In this example the dataflow job uses the same level of
parallelism for each of its task, so each task has the same number of data-parallel task
instances. Moreover, each container offers capabilities for a single execution slot, to which
the distributed dataflow system schedules pipelines of subsequent task instances. In the
example, a scale-out of two is used for the job at first. Therefore, the job first runs two
pipelines of subsequent task instances in two containers, shown in more saturated colors
and with solid lines in Figure 5.1. Adding another container and also a parallel task

5.1. Scaling out Distributed Dataflows 61

instance for each task is shown in less saturated colors and with dashed lines. How
much a particular job is sped up by using more containers depends on the program, the
input datasets, the distributed dataflow system, and the computing infrastructure.

Since we are interested in predicting the runtime of a given job, the problem size is
fixed by the given input datasets and an algorithm implementation in a particular dis-
tributed dataflow framework. That is, we are interested in the strong scaling behavior,
the relationship between the scale-out and a job’s runtime, which we call scale-out be-
havior. The scale-out refers to the specific number of containers used for executing the
job. We assume that containers run on homogeneous hardware, so each node and the
network connections between nodes principally provide the same performance. A job is
defined by running the same algorithm implementation using the same distributed data-
flow system. To be able to estimate the runtime of jobs using a particular scale-out we
need to capture the relative speed up [123] that is achieved by scaling out the same job onto
more containers. In particular, we want to find a function f for a given job that takes the
scale-out x as input and returns the runtime t.

Containers

R
un

tim
e

[m
]

Containers

R
un

tim
e

[m
]

Figure 5.2: Two examples for the scale-out behavior of distributed dataflow jobs.

Figure 5.2 shows two examples for the scale-out behavior of distributed dataflow jobs.
One job exhibits a scale-out behavior that is close to linear relative speed-up, which is
an easily predictable scale-out behavior. The other job’s scale-out behavior is more com-
plicated, with some higher scale-outs even yielding significantly higher runtimes than
lower scale-outs, which can for example result from a job’s partitioning.

Whether increasing the scale-out for a particular distributed dataflow job speeds up its
execution depends on many factors. The scale-out behavior of a job is determined by the
program, the input data, the distributed dataflow system, and the resources used:

Programs A prerequisite for speeding up a job through scaling it out to more resources
is that the job is mainly data-parallel [5, 124, 125]. Necessary serial computation on
a single element or a single group of elements does not benefit from increasing the
parallelism. The job has to execute the same operations on many input elements,
so that the elements can be effectively split up among parallel workers and pro-
cessed independently. This is the case for stateless operators like Maps and Filters,
which compute on single elements. Some operators such as aggregations or Joins

62 Chapter 5. Modeling the Scale-Out Behavior of Batch Jobs

need groups of elements to be available, requiring synchronization and communi-
cation among parallel workers. If data is not already partitioned into the necessary
groups, the data needs to be shuffled between all workers or even send to a sin-
gle point of aggregation. This requires either all-to-all or all-to-one communication,
before each group can be processed in parallel. Whether a program scales well
with more resources depends on the UDFs of operators and the necessary com-
munication between parallel task instances. For example, if a job only consists of
a single data-parallel Map operator that searches for a particular string in a large
text dataset, the job will scale well with more compute resources, only limited by
the rate at which data can be ingested by the distributed dataflow system. If in-
stead a job iteratively executes stages that mainly require communication between
workers, using more worker nodes and therefore more cores and memory will not
necessarily speed up the job considerably. This is for example often the case for
iterative graph algorithms that use label propagation, computing for instance the
connected components of a graph. In general, programs that predominantly require
CPU resources are known to scale well [24, 126].

Datasets The work needs to be distributed equally among data-parallel task instances.
That is, each data-parallel task instance should receive and process roughly the
same number of elements, assuming that the computation on each element has
comparable computational costs. Partitions of similar size can always be estab-
lished for operators that do not require particular partitions. Whether similarly
sized partitions can be established for operators that do require particular parti-
tions, be it for reducing a group of elements or for joining elements of multiple
dataflows with the same keys, depends on the input data. In particular, it depends
on the value distributions of the keys used for grouping or joining elements. First,
the level of parallelism is limited by the number of different key values. Second,
how the elements distribute across groups and how these groups are assigned to
data-parallel task instances can lead to significantly different workloads among
parallel workers. Yet, all workers are synchronized with each shuffling for such
partition-dependent operators. These operators need to wait for all elements with
a particular key. Therefore, they need to wait for all predecessor task instances to
finish and for all the input data to be transmitted. In these steps, the slowest task in-
stance determines the overall runtime. Therefore, the overall throughput is reduced
when individual workers receive considerable more work than others. The values
in particular fields of elements are also crucial for operators that filter or select only
some elements. Such operators include Filters and Joins. Without detailed knowl-
edge about both value distributions and the selectivity of the operators, estimating
the workload for subsequent operators is difficult.

Systems The scale-out behavior also depends on the distributed dataflow system. Dif-
ferent distributed dataflow systems apply slightly different execution models. For
example, how parallel task instances exchange data and synchronize is determined
by a system’s execution model. Many distributed dataflow systems apply a BSP

5.1. Scaling out Distributed Dataflows 63

model for their parallel computations. Yet, systems can also relax this model to
some extent for specific workloads such as iterative converging algorithms, which
makes these jobs more scalable [127]. System may also provide different operator
implementations and different partitioning methods. Furthermore, some systems
automatically optimize execution plans and even incorporate the scale-out into the
plan optimization. That is, with a different scale-out a job could use a different or-
der of operators or a different operator implementation. This can have a significant
impact on the job’s performance. Moreover, distributed dataflow systems imple-
ment a range of different approaches to fault tolerance. Some systems exchange in-
termediate results between workers through distributed file systems that store the
data redundantly on disk for fault tolerance. Other systems instead optimize the
failure-free case, only annotating intermediate data with linage information to be
able to re-compute particular partitions. These design decisions determine which
resources are used for a job and, therefore, how well a job scales with more compute
resources.

Resources When distributed dataflow jobs are scaled out, more compute resources be-
come available to the jobs. That is, more memory and cores are available for pro-
cessing the same overall number of elements. Therefore, given data is partitioned
effectively, each execution unit processes a smaller partition. At the same time, in-
gestion rates are often limited. The input data for a job is usually stored on the
disks of particular nodes and reading in this data can be the bottleneck of a job. If
the nodes already read-in elements at maximal capacity and slower than elements
can be processed by workers, using even more compute resources will not speed up
the computation. Instead using more compute resources will only reduce the uti-
lization of CPU cores. Similarly, the network can be the bottleneck of a job. For ex-
ample, when hierarchical networks aggregate traffic on higher-level links and these
are already fully saturated, adding more compute resources that also exchange data
over these links, will also not speed up a job’s execution. Thus, depending on the
cluster network, the costs of communication and synchronization between workers
can vary considerably. More generally, the relative speed of computation compared
to the speed of ingress and egress of a particular computing infrastructure impacts
the scale-out behavior of jobs. These ratio between compute and I/O speeds often
also depends on system configurations. For example, users can adjust how much
memory should be used for buffers and how much for task state or pick among
multiple compression methods.

In summary, the actual performance and scaling behavior depends on many factors:
programs, datasets, systems and system configurations, and hardware resources. Conse-
quently, estimating the runtime of a specific scale-out of a job statically is difficult. Such
upfront estimation would require a complex model as well as detailed statistics on both
the program and the input datasets. An estimation system would then need to accu-
rately model the selectivity of tasks, partitioning among parallel task instances, average
task runtimes, and critical paths in job graphs. However, even such a detailed model

64 Chapter 5. Modeling the Scale-Out Behavior of Batch Jobs

would only be accurate for a specific distributed dataflow system, while detailed statis-
tics typically require instrumentation and dedicated profiling runs. For these reasons, we
propose to learn the scale-out behavior from actual executions of a job using black-box
models. These black-box models of course still need to accurately capture the scale-out
behavior of distributed dataflow jobs.

5.2 Scale-Out Models for Distributed Dataflows
Bell learns how the runtime of a job depends on the scale-out from given samples. The
scale-out models need to support multiple distributed dataflow systems, since various
distributed dataflow systems are used today, each with its own feature set and avail-
able libraries. Therefore, Bell uses a black-box model, fitting a function that predicts the
runtime of a job only based on the scale-out. Moreover, Bell either uses a simple param-
eterized model of distributed processing, applicable to distributed dataflow systems, or
nonparametric regression, which is able to fit arbitrary scale-out behaviors.

We use regression to find a function that models the scale-out behavior based on pro-
vided examples. Formally, regression is the task to estimate the relationship between an
output variable ŷ, given an input x such that ŷ is close to the true value y for a defined er-
ror measure. A regression model is represented by a function f : X → Y and learned by a
regression algorithm. Bell uses both parametric and nonparametric regression. Paramet-
ric regression fits a parameterized model to the training data by choosing weights that
are optimal for a defined error measure. Nonparametric regression instead fits the data
assuming locally defined behavior, without taking a parameterized model as input.

Bell trains these regression models for recurring jobs using the available historic data.
This data, specifically the scale-outs and runtimes of previous executions, is consequently
required as input to Bell, before it can be used for runtime prediction. Using cross-
validation, Bell automatically selects between its models based on the available training
data. Since nonparametric regression is not usable for extrapolation, this model selection
step is only necessary for interpolation.

5.2.1 Parametric Regression

Parametric regression requires a parameterized model in addition to training data and
then learns the model’s parameters such that the model optimally fits the training data
according to a defined error measure. As such a parameterized model, Bell uses Equa-
tion 5.1, which is based on the model proposed with Ernest [97], another system for
predicting the runtimes of distributed dataflow systems. In comparison to the model
proposed with Ernest, we use no factor for the scale of the datasets, since Bell is used
to train the model on similar previous executions instead of relying on isolated profiling
runs on samples of the actual input data.

5.2. Scale-Out Models for Distributed Dataflows 65

f = θ0 + θ1 ·
1

containers
+ θ2 · log(containers) + θ3 · containers (5.1)

Equation 5.1 is a model of distributed computation and communication applicable to
distributed dataflows. It consists of four additive terms, each representing an aspect of
parallel computation and communication of a certain number of containers that collab-
oratively process data. Each term has one parameter θi to be learned for some training
data. As shown in the equation, the four terms represent:

• serial computation, independent of any parallelism through multiple containers

• parallel computation, split between the containers working in parallel

• communication patterns for step-wise aggregation such as tree-based aggregation

• overheads that increase with the number of containers such as for scheduling and
all-to-one communication.

Containers

R
un

tim
e

θ0

θ1 · 1x

θ2 · log(x)

θ3 · x
f

Figure 5.3: Exemplary model terms of Bell’s parameterized model of distributed processing.

Figure 5.3 shows example graphs for each of the four model terms and the resulting
overall model. For this demonstration, we selected the following values for the parameter
θi: θ0 = 2.5 for constant serial computation time (blue), θ1 = 20 for reciprocal parallel
computation time (red), θ2 = 1.5 for logarithmic time for step-wise aggregation in (gray),
and θ3 = 0.05 for linearly increasing time for scaling overheads in (orange). The overall
model of the runtime f is shown in black.

Since all terms of the model represent costs in terms of runtime, each one only adds to
the overall runtime of a job. Therefore, the parameters θi should all be non-negative. For
this reason, Bell uses non-negative least square (NNLS) to estimate the parameters when
fitting a curve to given training data points.

66 Chapter 5. Modeling the Scale-Out Behavior of Batch Jobs

Parametric regression, especially with a simple univariate model, can be used for both
interpolation and extrapolation. Moreover, compared to nonparametric models it allows
to make reasonable predictions from a few data points.

However, the parameterized model is a simple model of distributed processing. It is,
consequently, applicable to all distributed dataflow systems and robust. Yet, its model-
ing accuracy when applied to real jobs running on real systems, even given high density
training data, can be limited. For example, it is possible that specific scale-outs result in
an overall parallelism, for which the data partitioning is considerably less effective than
nearby scale-outs, which this simple model does not capture well. To be able to model
such scale-out behavior more accurately, given dense training data, Bell also applies non-
parametric regression.

5.2.2 Nonparametric Regression

In addition to the parameterized model of distributed processing, Bell also uses nonpara-
metric regression, since the parametric model might not capture all possible scale-out
behaviors well. Nonparametric regression does not require a specific model. Instead
it infers the model automatically by assuming locally defined behavior in the training
data. In line with the parametric model, this also supports different distributed dataflow
systems.

Bell uses local linear regression (LLR) with a Gaussian kernel [128] to estimate the re-
gression function. To give an intuition, Figure 5.4 shows a dataset, for which the regres-
sion function is evaluated at a specific point, shown in gray, by fitting a linear function to
the surrounding samples. The samples used for this linear regression are weighted by a
Gaussian kernel of a specific width. As a result, the smaller the distance of the samples
is to the evaluated point, the more weight is given to them. Bell selects the kernel width
automatically using cross-validation.

0

training sample

local linear regression function

evaluated point

Figure 5.4: Local linear regression.

Nonparametric regression requires dense training data to fit functions that accurately
model the scale-out behavior of a job. This is due to the locally optimized fitted curves.

5.3. Evaluation 67

Also, nonparametric regression can only be used for interpolating, not extrapolating.
However, when interpolating the scale-out behavior of a distributed dataflow job based
on dense training data, nonparametric regression allows to model arbitrary scale-out be-
havior accurately.

5.2.3 Automatic Model Selection

With parametric and nonparametric regression Bell uses two different methods for mod-
eling the scale-out behavior of distributed dataflow jobs. Given dense training data, non-
parametric regression allows to accurately model arbitrary scale-out behavior. Yet, when
only few training data points are available, parametric regression might provide better
results. Moreover, as we use Bell to model the scale-out behavior of recurring jobs based
on previous executions of the jobs, we need to expect training data of varying density.
Therefore, Bell first performs a model selection step to decide which prediction model to
use for the given training data, aiming to make the most of the available historic data for
a specific job.

Bell selects between the two regression models using cross-validation. We repeatedly
learn and test both models, using the majority of available data points for training and the
remaining points for testing the prediction accuracy. Bell then selects the model with the
smallest cross-validation error for interpolation. Specifically, Bell performs k-fold cross-
validation, given k unique scale-outs in the available data. However, the two folds for
the smallest and largest scale-out are not used as test folds, since the goal is to assess
the interpolation performance. They are only used for training. All other folds are used
either for training or testing in this cross-validation. By partitioning our dataset this way,
we test the prediction performance for scale-outs that have not already been used for
training.

Nonparametric regression is only usable for interpolation and not for extrapolation,
due to the local optimization. Therefore, Bell uses only parametric regression for esti-
mating the runtime for lower or higher number of containers than have been previously
used.

5.3 Evaluation
We evaluated our approach to scale-out modeling, which we implemented with Bell,
with six different exemplary distributed dataflow jobs using both Flink and Spark, show-
ing both the resulting scale-out models and reporting mean relative errors.

5.3.1 Cluster Setup

All experiments were done on a cluster of 60 machines. Each of the nodes is equipped
with a quad-core Intel Xeon CPU 3.30 GHz (4 physical cores, 8 hardware contexts), 16 GB

68 Chapter 5. Modeling the Scale-Out Behavior of Batch Jobs

RAM, and three 1 TB disks (RAID 0). All nodes are connected through a single switch
and 1 Gigabit Ethernet.

Each node runs Linux (Kernel 3.10.0) and Java 1.8.0. For the experiments we used
Hadoop 2.7.1, Flink 1.0.3, and Spark 2.0.0. We used Spark’s GraphX and MLlib libraries
in the versions 1.6.0 and 1.1.0 respectively.

5.3.2 Experiments

We evaluated Bell with six different jobs and five datasets. We executed each of these
jobs repeatedly, using different scale-outs, to have a history of runs for each job. We
then fitted the two models that Bell supports, the simple parameterized model of dis-
tributed processing and nonparametric regression, showing how both individual models
support different jobs. We also utilized this history of runs for a random sub-sampling
cross-validation. We used different numbers of randomly selected training samples and a
randomly selected test sample to show how the individual models and Bell perform with
different amounts of available training data in terms of relative prediction error. Bell au-
tomatically selects between the two individual models in an initial model selection step.

The jobs we used cover different application domains, including search, relational
queries, graph processing, and supervised as well as unsupervised machine learning.
The datasets cover different types of data, various data sizes, and are generated using
different data generators.

5.3.2.1 Jobs

Table 5.1 shows the six benchmark jobs we used, three Spark and three Flink jobs. Except
SGD and PageRank, all jobs come with the examples of the frameworks. The SGD job we
used is from Spark’s MLlib, a library for scalable machine learning. The PageRank job is
from GraphX [49], a graph processing system implemented on top of Spark.

Table 5.1: Overview of Benchmark Jobs.
Job System Dataset Input Size Parameters
Grep Spark Wiki 250 GB filtering for word “Berlin”
WordCount Flink Wiki 250 GB —
TPC-H Query 10 Flink Tables 200 GB —
K-Means Flink Points 50 GB 5 clusters, 10 iterations
SGD Spark Features 10 GB 100 iterations, step size = 1.0
PageRank GraphX Graph 3.4 GB 5 iterations

© 2016 IEEE [122]

5.3. Evaluation 69

5.3.2.2 Datasets

For the five datasets used in these experiments, we used five data generators. For graph
and text data, we used generators from the Big Data Generator Suite (BDGS) [129]. These
data generators scale real datasets while preserving key characteristics of the data. For
relational data we used the data generator of the TPC-H benchmark suite1. In addi-
tion, we implemented a data generator for three-dimensional points and one for multi-
dimensional feature vectors. Using these data generators, we produced the following
five datasets:

Wiki The Wiki dataset was generated using the text generator of BDGS, which applies
latent dirichlet allocation (LDA) [130] to create large datasets based on articles from
the English Wikipedia, while preserving topic and word distributions. We created
250 GB of text data.

Graph The Graph dataset was generated with the graph generator of BDGS, which uses
the Kronecker graph model [131] and a real graph of linked Web pages as a ba-
sis. Using 25 Kronecker iterations we created a 3.4 GB large graph with 33,554,432
nodes and 213,614,240 directed edges.

Tables The Tables dataset was generated using the TPC-H data generator, which gener-
ates tables representing customers, nations, orders, and line items. We set the scale
factor of the generator to 200, resulting in around 200 GB of table data.

Features The Features dataset was generated using our own generator, explicitly creat-
ing a Vandermonde matrix to generate multi-dimensional feature vectors that fit a
polynomial model of a certain degree with added Gaussian noise. We generated
20,000,000 points, each with 20 features, resulting in 10 GB of data.

Points The Points dataset was generated using our own generator to produce
4,216,562,650 three-dimensional points following a Gaussian mixture model of five
normal distributions with random cluster centers and equal variances, resulting in
50 GB of data.

5.3.3 Results

To assess the prediction performance, we acquired runtime data for the six benchmark
jobs. In particular, each job was executed using 15 different and equally spaced scale-outs
ranging from 4 to 60 nodes. For every scale-out the job was run 7 times, out of which we
dropped the fastest and the slowest runs, resulting in a total of 75 data points per job.

To begin with, every dataset was fitted using the parametric and nonparametric regres-
sion models. Figure 5.5 summarizes the results for each of the jobs. NNLS and LLR are
the parametric and nonparametric models, respectively. The parametric model provides
a good fit for Grep, K-Means, and Word Count. Yet, it falls short when jobs exhibit more

1 http://www.tpc.org/tpch/, accessed 2018-02-19.

http://www.tpc.org/tpch/

70 Chapter 5. Modeling the Scale-Out Behavior of Batch Jobs

complicated runtime behaviors. This is the case for SGD, PageRank, and TPC-H Query
10. In these cases, the nonparametric model provides the better fit.

4 12 20 28 36 44 52 60

Scale-Out

0
2
4
6
8

10
12
14
16

R
un

tim
e

[m
]

Grep (Spark)

4 12 20 28 36 44 52 60

Scale-Out

0

2

4

6

8

10

12

R
un

tim
e

[m
]

SGD (Spark)

4 12 20 28 36 44 52 60

Scale-Out

0

5

10

15

20

25

30

R
un

tim
e

[m
]

PageRank (Spark)

4 12 20 28 36 44 52 60

Scale-Out

0

10

20

30

40

50

60

R
un

tim
e

[m
]

K-Means (Flink)

4 12 20 28 36 44 52 60

Scale-Out

0

2

4

6

8

10

R
un

tim
e

[m
]

TPC-H Query 10 (Flink)

4 12 20 28 36 44 52 60

Scale-Out

0
5

10
15
20
25
30
35
40
45

R
un

tim
e

[m
]

Word Count (Flink)

NNLS LLR

Figure 5.5: Runtimes of 75 runs of the six benchmark jobs along with the fitted curves. © 2016
IEEE [122].

However, while the nonparametric model seems superior in the presence of these
amounts of training data, it might suffer from high variance when interpolation is done
using only a few data points. For this reason, we evaluated the prediction performance
of the models with different numbers of available training data points. In particular, for
each model and number of training data points we calculated the mean relative predic-
tion error using random sub-sampling cross-validation. For every amount of training
data points, random training points are selected from the dataset such that the scale-outs
of the data points are pairwise different. Then, to perform an interpolation benchmark,
a test point is randomly selected such that its scale-out lies in the range of the training
points. The runtime prediction at the test scale-out is then compared with the true run-
time, calculating the relative prediction error. This random sub-sampling procedure is
repeated 2000 times for every amount of training points used and the mean relative pre-
diction error is reported. Figure 5.6 shows the results. NNLS is again the parametric and
LLR the nonparametric model. Bell is performing model selection via cross-validation
beforehand.

As expected, with increasing amounts of training data points and hence higher den-
sity of the training dataset, the nonparametric method outperforms the parametric one.
On the other hand, the nonparametric model is outperformed by the parametric one for
smaller datasets.

5.3. Evaluation 71

3 6 9 12 15

Data Points

0.00

0.05

0.10

0.15

0.20

R
el

at
iv

e
Er

ro
r

Grep (Spark)

3 6 9 12 15

Data Points

0.00

0.05

0.10

0.15

0.20

R
el

at
iv

e
Er

ro
r

SGD (Spark)

3 6 9 12 15

Data Points

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

R
el

at
iv

e
Er

ro
r

PageRank (Spark)

3 6 9 12 15

Data Points

0.00

0.05

0.10

0.15

0.20

0.25

R
el

at
iv

e
Er

ro
r

K-Means (Flink)

3 6 9 12 15

Data Points

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

R
el

at
iv

e
Er

ro
r

TPC-H Query 10 (Flink)

3 6 9 12 15

Data Points

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

R
el

at
iv

e
Er

ro
r

Word Count (Flink)

NNLS LLR Bell

Figure 5.6: Mean relative prediction error for each benchmark job as reported by the repeated
random sub-sampling cross-validation. © 2016 IEEE [122].

We also calculated the averages of the mean prediction errors for every amount of
training data points over all six benchmark jobs. These averages are shown in Figure 5.7
and Table 5.2. Compared to the parametric model, Bell has a slightly higher mean pre-
diction error with less than six training data points, but then outperforms the model.
Compared to the nonparametric model, Bell has a significantly lower mean prediction
error when there are less than seven training data points, while it performs similarly

3 6 9 12 15

Data Points

0.00

0.05

0.10

0.15

0.20

0.25

R
el

at
iv

e
Er

ro
r

NNLS
LLR
Bell

Figure 5.7: Mean relative prediction error over all benchmark jobs, averaging the mean relative
errors of the repeated random sub-sampling cross-validations.

72 Chapter 5. Modeling the Scale-Out Behavior of Batch Jobs

to the model for datasets with a higher density. For our benchmark jobs Bell needs on
average ten similar previous runs for a mean relative prediction error of less than 5%.
Moreover, for all tested amounts of available training data Bell predicts the runtimes of
the benchmark jobs on average with a mean relative prediction of less than 10%.

Table 5.2: Mean Relative Prediction Error Over All Benchmark Jobs.
Data Points NNLS [%] LLR [%] Bell [%]

3 5.63 20.23 8.93
4 6.01 14.59 9.44
5 6.83 11.59 7.91
6 7.12 9.21 7.08
7 7.21 7.35 6.34
8 7.99 6.42 5.98
9 8.21 5.37 5.42

10 8.45 4.73 4.97
11 8.80 4.02 4.57
12 9.18 3.75 4.41
13 9.30 3.15 3.91
14 9.74 2.94 3.73
15 9.90 2.49 3.49

We conclude that it is crucial to combine the flexibility of the nonparametric model
with the robustness of the parametric model and, therefore, to incorporate a mechanism
that switches automatically between these two models. By using cross-validation to se-
lect between models, our approach is able to detect the better performing model with
increasing amounts of training points. At the same time, our approach keeps the relative
prediction error for small amounts of training data within reasonable bounds. In partic-
ular, for datasets where the parametric model already provides a good fit, Bell achieves
a relative error that is closer to the one of the parametric model than the nonparametric
model.

Finally, to evaluate the overhead that using Bell can introduces to resource manage-
ment, we fitted the 75 data points of each of the six benchmark jobs 10 times. The median
runtime for this microbenchmark ranges from 91 to 100 ms per job. Depending on the
deployment of Bell and the workload repository, there is additional overhead for fetch-
ing the runtimes of previous runs. Yet, both overheads are relatively small compared to
the seconds that it takes for a job to be scheduled and deployed as well as the minutes to
hours that many jobs run.

6 Estimating Job Runtimes Based on
Similar Previous Executions

Contents
6.1 Predicting Job Performance Based on Previous Executions 74
6.2 Assessing the Similarity of Job Executions 76

6.2.1 Similarity Measures . 76
6.2.2 Similarity Quality . 80
6.2.3 Training Job-Specific Thresholds and Weights 83

6.3 Estimating the Remaining Runtime of Recurring Iterative Jobs 84
6.3.1 Estimate Inference . 85
6.3.2 Final Estimate . 86
6.3.3 Outlier Iterations . 86

6.4 Evaluation . 87
6.4.1 Cluster Setup . 87
6.4.2 Experiments . 87
6.4.3 Results . 89

This chapter presents Cutty and SMiPE, which we published in [132] (© 2017 IEEE).
Cutty is a system that selects previous runs of a job as a basis for performance estimation.
Specifically, Cutty matches previous runs of a job based on their similarity to the current
job. It uses multiple different measures of similarity including statistics on the input data,
job stages, and resource usage. Some of these measures, for example basic information
on the input datasets, are available offline. Yet, estimating the impact of differences in
these measures on the actual runtime behavior of jobs is usually not straightforward.
Other factors, such as stage runtimes and resource utilization statistics, are only available
when a job runs but do effectively capture the runtime behavior of a job. Cutty uses
as many measures as are available to match job executions. In turn, Cutty’s similarity
matching is able to become more accurate as a job progresses and more statistics become
available. Since similarity in different measures can be useful for accurately estimating
a job’s runtime, we use thresholds and weights when combining individual similarity
measures into an aggregated overall measure of similarity. Cutty trains these parameters
for each job and thereby automatically adapts to the characteristics of jobs.

We originally developed Cutty for SMiPE, as published in [132]. SMiPE is a system that
estimates the progress of iterative distributed dataflow jobs based on similar previous job

73

74 Chapter 6. Estimating Job Runtimes Based on Similar Previous Executions

executions. For selecting these similar previous executions, SMiPE uses Cutty. SMiPE
estimates the remaining runtime of iterative distributed dataflows by extrapolating the
runtime behavior of the current execution on the basis of the iteration runtimes of the
matched previous executions. It creates an estimate for each similar previous executions,
before creating a weighted overall estimation from the individual estimates.

Cutty can be used with different performance estimation systems, including Bell, the
runtime prediction system we presented in the previous chapter. Cutty is more general
than SMiPE in that it supports non-iterative jobs by matching statistics on stages, instead
of iterations. We use Cutty as a component of Ellis, as presented in the overall system
architecture in Chapter 4.4, without the estimation component of SMiPE, to select training
data for predicting the runtimes of general distributed dataflow jobs with Bell.

This chapter first describes the general approach of predicting the runtime of a dis-
tributed dataflow job based on similar previous executions. Second, the chapter presents
the methods we implemented with Cutty: different similarity measures and how we as-
sess the overall similarity, including how weights and thresholds used for combining
individual similarity measures into an overall assessment of similarity can be trained au-
tomatically on the history of a job. Then, the chapter describes how SMiPE estimates the
remaining runtime of iterative distributed dataflow jobs based on the iteration runtimes
of similar previous job executions. Finally, the chapter presents an evaluation of Cutty
and SMiPE and a workload of multiple Spark jobs.

6.1 Predicting Job Performance Based on Previous
Executions

When a job is executed repeatedly, previous executions of the job can be used to model
and predict the performance of the job, assuming the job will behave as before. However,
it is usually not the exact same job that is executed, even with periodically running batch
jobs. Usually the dataset and the selected resources, but possibly also the program code,
parameters, and system configurations, differ slightly. Yet, it is hard to estimate the effect
that such changes have on the performance of a job. For this reason, multiple runtime
prediction systems use black-box approaches to performance modeling. These systems
require only basic information about sample executions for their models. For instance,
the prediction system we presented in the previous chapter trains its models exclusively
using pairs of scale-outs and runtimes. These black-box prediction systems only assume
that a job will behave similar to the examples used for training. However, this requires
that a job’s performance is modeled on previous executions that actually behaved similar
and thus allow to accurately estimate the performance of the job that is to be executed.
Therefore, it is essential that previous job executions with a similar runtime behavior are
selected as a basis for black-box models.

Before a job is executed only limited statistics are available to match similar previ-
ous executions. These offline statistics concentrate on factors like the input data and the

6.1. Predicting Job Performance Based on Previous Executions 75

resources used. As soon as a job executes, though, statistics on the runtime behavior
become available. Important runtime statistics are for example the runtime of stages,
dataset convergence across subsequent stages, and resource utilization. Such runtime
statistics reflect the impact that updates of datasets, changes to programs, and adapted
system configurations have on the performance of distributed dataflow jobs. Therefore,
runtime statistics allow to match previous executions based on the actual runtime be-
havior. Moreover, such runtime statistics also reflect changes to the cluster state. For
instance, failures and congested resources in shared commodity clusters can impact the
runtimes of stages significantly.

Multiple statistical measures can be used to assess the similarity between two job exe-
cutions. Yet, it is not clear that a similarity in a particular measure actually correlates with
a similar runtime behavior and in turn similar job runtimes. For a job that only searches
for particular elements in the input, the size of the input datasets will significantly deter-
mine the job’s runtime. While for relational queries the selectivity and thus convergence
across subsequent stages is an important factor for the runtime, which is often highly
dependent on particular program parameters. This is similar for iterative jobs that com-
pute incrementally on a shrinking active dataset. We approach this problem in two ways.
First, we combine multiple measures of similarity into an overall measure. Second, we
use weights and thresholds when combining multiple measures, taking into account that
some measures are more important than others and that a certain extent of similarity is
required for a previous execution to be useful for an estimation task. These weights and
thresholds can be set for each job as it depends on the job which factors have a significant
impact on its runtime behavior.

In fact, it depends on both the job and the estimation system, whether a particular mea-
sure of similarity is useful for estimating the runtime behavior of a distributed dataflow
job. We define that a particular similarity measure is useful for performance estimation,
when a high similarity in the measure correlates with similar runtime behavior and there-
fore accurate estimations. We call this characteristic of a measure of similarity between
job executions similarity quality. Similarity quality is not universal, but valid for a par-
ticular estimation system and a particular job history. To assess the similarity quality a
specific similarity measure has, we thus require a particular estimation system. Specifi-
cally, we test the accuracy of estimations when one job execution is estimated based on
another one. Given an estimation for one of the executions based on the other one and
the actual performance for the estimated execution, we compute the accuracy of the es-
timation and use this for assessing the similarity quality of the similarity measure. If the
computed similarity quality suggests that a similarity measure is not useful for selecting
previous executions, this does not necessarily mean that the measure is never useful. It
is possible that the particular estimation system is not sophisticated enough to make use
of the properties that the similarity captures.

Given the entire history of executions for a recurring job, we can automatically deter-
mine weights and thresholds that combine individual similarity measures into an overall

76 Chapter 6. Estimating Job Runtimes Based on Similar Previous Executions

similarity measure with a high similarity quality. This overall similarity measure can then
be used to match previous executions of a job that provide accurate runtime estimations.

Job History

Similarity Matching

Current job

Performance Estimation

Matched jobs

Estimation
accuracy

Figure 6.1: Using similar previous executions of recurring jobs as a basis for performance estima-
tion, while configuring the similarity matching based on feedback from the estimation
system.

Figure 6.1 shows our idea of similarity matching for performance estimation. First, for
a current job we select previous executions in a step we call similarity matching. These
executions are the input to a performance estimation step, which uses the matched previ-
ous executions to model and estimate the performance of the current job. The estimation
system returns the estimation accuracy to the matching system. This feedback is used by
the matching system to determine the usefulness of similarity measures. Based on this
assessment, the matching system automatically configures weights and thresholds used
for combining multiple similarity measures into an aggregated overall similarity mea-
sure. Specifically, the matching systems trains these parameters using the entire history
of previous executions of a job.

6.2 Assessing the Similarity of Job Executions
In this section we describe Cutty, a system for selecting previous executions that are sim-
ilar to a currently running job with the goal of performance estimation. First, we present
five different measures for the similarity between job executions. Afterwards, we present
a method for assessing whether a similarity measure is useful for performance estima-
tion, which is the property we call similarity quality. Finally, we show how we use the
similarity quality and all previous executions of a job to automatically set the thresholds
and weights used for combining individual similarity measures.

6.2.1 Similarity Measures

Various measures can be used to rate the similarity of two job executions. These measures
are statistics on factors that either determine or capture the performance of distributed
dataflow jobs such as statistics on the program, the input data, and the resource allocation
or statistics on the execution of particular stages and the resource utilization.

6.2. Assessing the Similarity of Job Executions 77

With our matching system Cutty, we use five similarity measures:

• Input Similarity,

• Runtime Similarity,

• Scale-Out Similarity,

• Convergence Similarity,

• and Resource Utilization Similarity.

These similarity measures are used to compare a current job execution excur to a previ-
ous execution exprev. Four of these five similarity measures cover runtime statistics. For
these measures, we record and compare statistics for job stages. That is, we compare the
current job execution to previous executions at a particular stage xcur and assume that
statistics on already finished stages are also available for the current job.

6.2.1.1 Input Similarity

The Input Similarity compares the input datasets. Recurring jobs often process the same
evolving datasets. The datasets these jobs process are consequently similar in both size
and other key characteristics. As a measure of the similarity of the inputs we compare
the absolute numbers of the records in the input datasets.

The Input Similarity is defined as

sim
(
excur, exprev

)
= max

(
0, 1 −

| records (excur)− records
(
exprev

)
|

records (excur)

)
,

where records(ex) returns the number of records in the input dataset of execution ex.
We use the maximum function to ensure that the similarity values are in the range be-
tween 0 and 1.

6.2.1.2 Runtime Similarity

The Runtime Similarity compares the runtimes of stages up to the last stage finished
by the current job execution. The intuition behind this measure is that if the runtimes of
stages have been similar in two executions so far, they are probably going to be similar for
the remaining stages as well. For the Runtime Similarity measure we calculate the relative
deviations of the runtimes of the stages of the two executions for each stage finished by
the current execution. We then calculate the average of these deviations of the stage
runtimes. If the two executions were not executed using the same number of containers,
we first use a scale-out model to adjust the stage runtimes of the previous execution.
Specifically, we use Bell, which we presented in the previous chapter, to model and adjust
the stage runtimes.

78 Chapter 6. Estimating Job Runtimes Based on Similar Previous Executions

The Runtime Similarity is defined as

sim
(
excur, exprev, xcur

)
= max

(
0, 1 − 1

xcur

xcur

∑
i=1

∆r
(
excur, exprev, i

))
,

where

∆r
(
excur, exprev, x

)
=

| runtime (excur, x)− runtime
(
exprev, x

)
|

runtime (excur, x)
.

The stage-wise average of all relative deviations is taken. As less deviation means greater
similarity, we subtract this average from 1. We again use the maximum function to ensure
that the similarity values are between 0 and 1.

6.2.1.3 Scale-Out Similarity

The Scale-Out Similarity compares the number of containers used for execution. Al-
though using a model of the scale-out behavior of a job allows to adjust runtimes ac-
cording to their scale-out, this may introduce inaccuracies, making it worth to compare
jobs also in regard to their resource allocations. In particular, we compare the average
number of containers used for the stages up to the last stage finished by the current job
execution.

The Scale-Out Similarity is defined as

sim
(
excur, exprev, xcur

)
=

min
(
containersavg (excur, xcur) , containersavg

(
exprev, xcur

))
max

(
containersavg (excur, xcur) , containersavg

(
exprev, xcur

)) ,

where containersavg (ex, x) returns the average number of containers used by all stages
up to the current stage x. The minimum and maximum functions are again used for a
value between 0 and 1.

6.2.1.4 Convergence Similarity

The Convergence Similarity compares the number of records processed by each stage of
an execution. The convergence behavior is mainly influenced by the input datasets and
the algorithm parameters, but can also depend on the partitioning and the parallelism.
Similar to the idea behind the runtime similarity, we assume that if the convergence is
similar to the convergence in previous executions up to a stage, the convergence will also
be similar in the remaining stages. For this similarity measure, we use the average of the
differences in the number of records actively processed by each of the job stages, up to
the last stage finished by the current execution.

6.2. Assessing the Similarity of Job Executions 79

Similar to the Runtime Similarity, the Convergence Similarity is defined as

sim
(
excur, exprev, xcur

)
= max

(
0, 1 − 1

xcur

xcur

∑
i=1

∆a
(
excur, exprev, i

))
,

where

∆a
(
excur, exprev, x

)
=

| activeRecords (excur, x)− activeRecords
(
exprev, x

)
|

activeRecords (excur, x)

and activeRecords (ex, x) returns the number of records actively processed by stage x of
execution ex.

6.2.1.5 Resource Utilization Similarity

The Resource Utilization Similarity captures how executions utilize hardware resources.
We use the utilizations of CPU cores, disks, and network links. For these resources, we
record the average utilization for every container and each stage. For comparison be-
tween two executions that were executed on the same amount of containers, we use the
values from all containers of the previously finished stage. In particular, we sort these
averages and compare them pairwise, averaging the deviations between all pairs. This is
based on the observation that how the hardware utilization is distributed across workers
is more characteristic of an execution than a global average. If, however, two execu-
tions were executed using different numbers of containers, we fall back to comparing the
global average.

We define utilcontainer (ex, x, hw, c) as the arithmetic mean of all utilization values of the
hardware component hw attributed to a container c and gathered during execution ex,
from the beginning of the execution until stage x. We further define utilSeq (ex, x, hw) as
the sorted sequence of the values utilcontainer(ex, x, hw, c) for all containers used by a job
execution. It is then possible to compare the values of two executions individually, in the
same way as runtimes are compared for the Runtime Similarity.

The Resource Utilization Similarity of a hardware component hw is defined as

sim
(
excur, exprev, xcur

)
= max

(
0, 1 − 1

containers

containers

∑
i=1

∆h
(
excur, exprev, xcur, i

))
,

where containers is the number of containers used in the execution and

∆h
(
excur, exprev, x, c

)
=

| utilSeq (excur, x, hw) [c]− utilSeq
(
exprev, x, hw

)
[c] |

utilSeq (excur, x, hw) [c]
.

Note that this comparison is only possible for two executions that have been using
the same number of containers for the entire duration of their execution. If this is not

80 Chapter 6. Estimating Job Runtimes Based on Similar Previous Executions

the case, we fall back to comparing the global average utilization. For this, we define
utilavg (ex, x, hw) as the arithmetic mean of the utilcontainer values of all containers used in
the execution ex for a hardware component hw and up to a stage x. The global average
of the Resource Utilization Similarity of a hardware component hw is then defined as

sim
(
excur, exprev, xcur

)
= max

(
0, 1 − ∆h

(
excur, exprev, xcur

))
,

with

∆h
(
excur, exprev, xcur

)
=

| utilavg (excur, xcur, hw)− utilavg
(
exprev, xcur, hw

)
|

utilavg (excur, xcur, hw)
.

6.2.2 Similarity Quality

The similarity measures capture similarities between job executions that are potentially
useful for selecting previous executions as samples for an estimation system. Whether
a particular similarity measure is useful depends on both the job and the estimation
systems. The performance of some jobs highly depends on convergence, while others
depend more on the size of the input and the resources used. Moreover, whether jobs
have to be similar in a particular dimension for accurate estimations also depends on the
estimation system. For example, a black-box estimation system that only uses pairs of
scale-outs and runtimes depends much more on the similarity of its training data than a
white-box system that incorporates the differences into its model. To capture the useful-
ness similarity measures have for a job and an estimation system, we use what we call
similarity quality: Similarity measures have a high quality for selecting previous execu-
tions as a basis for estimating the performance of jobs, when a high similarity in the mea-
sure also yields a high average estimation accuracy. Thus, similarity quality is a measure
of the relationship between similarity and accuracy. Consequently, we use the similarity
quality to assess which similarity measures are useful in estimating the performance of a
job with a particular estimation system.

To determine the similarity quality a similarity measure has for a job and an estimation
system, we analyze the job’s history. Specifically, we compute the similarity between all
previous executions and the estimation accuracy when one execution is estimated based
solely on the other. For this, we simulate that an execution j from the job history is
currently running and has just finished a particular stage x. Then, we select another
execution k from the job history. First, we calculate s, the value of a similarity measure
for the similarity between j and k. Then we request an estimate from the estimation
system for the remaining runtime after stage x of execution j, based only on k. We know
the actual remaining runtime of j and, therefore, can calculate the estimation accuracy a.
We repeat this process for all job executions k and j in the history, using different values
for the current stage x. As a result we get P, a set of points (s, a), where s is the similarity
between the simulated current execution j and the selected execution k, and where a is the
estimation accuracy when the runtime of j is estimated solely based on k. The points in P

6.2. Assessing the Similarity of Job Executions 81

show the relationship of the similarity in a specific similarity measure and the estimation
accuracy, when the runtime of executions is estimated based on previous executions, for
a specific job and a specific estimation system.

We define three metrics based on the points (s, a) in P for the similarity quality:

cumulative histogram h (t) := avg { a | (s, a) ∈ P, s ≥ t },

point share n (t) :=
| { a | (s, a) ∈ P, s ≥ t } |

|P| , and

normalized similarity quality q (i) := h (y) , with n (y) = 1− i .

These metrics indicate the similarity quality of a selection t, selecting points (s, a) of P
where s ≥ t. First, there is the cumulative histogram h (t), which is the average accuracy
of points (s, a) for a specific selection threshold t. Second, there is the point share n (t),
which is the share of points selected for a specific selection threshold t. Third, there is a
measure we call normalized similarity quality q (i), which combines the histogram and the
point share into one measure to make similarities more comparable.

A similarity measure is useful for a job and an estimation system, if it is possible to
find a threshold t for which the histogram h (t) indicates a high average accuracy, while
the point share n (t) indicates that enough previous executions will be matched as a basis
for performance estimation. We use the histogram and point share for training weights
and thresholds.

Figure 6.2 shows the points (s, a) of P of an example similarity measure and job. Be-
sides showing the points in P, the chart also shows the cumulative histogram and the
point share. If the similarity threshold t is set to a high value such as t2, the histogram
shows that a high average accuracy can be expected. However, the point share would be
very low. Therefore, it might be difficult to find previous executions similar enough to
be matched for a current execution. However, estimating the performance of a current
job based on similar previous executions is not possible, when no or too few previous
executions are selected. In comparison, a lower value t1 still yields accurate estimations,
but is expected to match considerably more executions. We therefore need to consider
both the average accuracy and the point share that a specific selection threshold t yields.

The normalized similarity quality combines the histogram and the point share of a
similarity measure into a single metric. It normalizes the histogram on the point share,
returning the average accuracy of each point share. The normalized similarity quality
is shown in Figure 6.3 for the same exemplary similarity measure and job we used for
Figure 6.2.

The input of the normalized similarity quality metric, 0 < i < 1, denominates the
share of points (s, a) that are most similar. We deduct i from 1 as we compare the average

82 Chapter 6. Estimating Job Runtimes Based on Similar Previous Executions

0

1

0 1

ac
cu

ra
cy

/ s
ha

re
/

similarity

av
er
ag
e

ac
cu

ra
cy

t2t1

Figure 6.2: Similarity quality histogram (red), point share (green), and points (blue) of an example
similarity measure. © 2017 IEEE [132].

0

1

0 11 - point share

no
rm

al
iz

ed
si

m
ila

rit
y

qu
al

ity

Figure 6.3: Normalized similarity quality of the example similarity measure.

accuracy of a particular point share, which increases as the similarity threshold increases
and is limited by 1. For example, using the value 0.75 for i means we are comparing the
average accuracy of points of a point share of 0.25, which are the 25% most similar exe-

6.2. Assessing the Similarity of Job Executions 83

cutions. Consequently, the normalized similarity quality allows to compare the average
accuracy that similarity measures have at the same relative similarity, for example the
average accuracy of the most similar 25% of executions, and we thus use the normalized
similarity quality for the evaluation of similarity measures.

6.2.3 Training Job-Specific Thresholds and Weights

We are using multiple individual similarity measures to assess the similarity of two exe-
cutions of a job. We combine these individual measures into an overall similarity measure
using thresholds and weights. That is, each similarity has a threshold t and a weight w.
These two parameters of each individual similarity measure configure which jobs are
matched by Cutty. The thresholds determine which jobs are discarded. The weights of
the individual similarities determine the overall similarity. That is, the overall similarity
measure is a weighted average of the individual similarity measures. Instead of setting
the weights and thresholds manually, we make use of a job’s history and optimization to
select values for these parameters automatically.

6.2.3.1 Similarity Thresholds

The similarity thresholds determine which jobs are matched for the estimation system.
There is a threshold for each individual similarity measure, discarding jobs that are not
similar enough in a particular dimension. Additionally, there is a threshold for the overall
similarity measure, discarding jobs that are not similar enough in total.

We use the job history and the similarity quality measures to train the thresholds. We
set a minimum average accuracy hmin. Additionally, we set a minimum point share nmin
to avoid having a threshold for which not enough executions are matched. Then, for
each similarity measure we search for and choose the highest threshold t that fulfills both
h (t) ≥ hmin and n (t) ≥ nmin. That is:

t = max {t ∈ [0, 1] | h(t) ≥ hmin ∧ n(t) ≥ nmin} .

We choose the highest threshold t that fulfills both constraints in order to maximize
the average estimation accuracy. If all executions are discarded, the thresholds of the
similarity measures are lowered. This is achieved by multiplying each threshold by a
factor fred < 1. This procedure is repeated until at least one similar job execution can
be matched, but not more than m times. If still no executions can be matched after m
executions of this procedure, the estimation system returns an error.

6.2.3.2 Similarity Weights

For the executions not discarded, a weighted average is calculated from the individ-
ual similarity values. We make use of optimization to find weights that provide the

84 Chapter 6. Estimating Job Runtimes Based on Similar Previous Executions

highest average accuracy. That is, an optimal solution must be found for the vector
w = (w1, w2, ..., wn), where each wi weights an individual similarity measure. We make
use of simulations for this: For every execution of a job, we simulate the execution is cur-
rently running at a particular stage, using different values as current stage, and estimate
the remaining runtime based on all other executions of the job, matched with different
weights. To find optimal weights we use numerical optimization, specifically Powell’s
BOBYQA algorithm [133]. We use the mean relative estimation error of the set of simula-
tions as objective function o:

o(w) = avg
{
|actual − estimate(w)|

actual
| (estimate(w), actual) ∈ S(w)

}
The set S(w) contains the results of the simulations in the form (estimate(w), actual).

estimate(w) is the result of the estimation algorithm using w as the weights vector. actual
is the actual remaining runtime known from the job history. As BOBYQA allows negative
solutions, the objective function is adjusted by a large value, thereby forcing positive
solutions. We perform the optimization repeatedly with different initial values for the
weights. The result is a weights vector w yielding a minimized mean relative estimation
error.

Using Powell’s BOBYQA algorithm has the advantage that the objective function is
specified as a black box. That is, no assumptions about its form such as linearity are
required.

6.3 Estimating the Remaining Runtime of Recurring
Iterative Jobs

In this section we describe SMiPE, a system for estimating the remaining runtime of cur-
rently running iterative distributed dataflow jobs. SMiPE estimates the runtime of the
remaining iterations of the current job on the basis of the iteration runtimes of similar
previous executions. For selecting these similar previous executions, SMiPE uses Cutty,
the similarity matching system we presented in the previous section.

SMiPE is a system specifically for estimating the remaining runtime of iterative dis-
tributed dataflow jobs. As such, it does not operate at the granularity of stages, but
matches job executions and estimates the remaining runtime based on previous and re-
maining iterations. This allows, for example, to more accurately match the convergence
of incremental iterative processing and also to detect outlier iterations.

Figure 6.4 shows a conceptual overview of SMiPE’s approach. The approach is divided
into three steps: (1) similarity matching, (2) estimation inference, and (3) final estimate.
As SMiPE uses Cutty for similarity matching, we only describe how SMiPE infers indi-
vidual estimates and then aggregates these into a final estimate in the following.

6.3. Estimating the Remaining Runtime of Recurring Iterative Jobs 85

estimate

2

Job History

1

exprevexcur Similarity Matching

2

exprev 1 2 3 . . . n m

excur

previous actual

current

3 Weighted Average

current
previous

estimatefinal

actual

?1 2 3 . . . n

estimate estimate

use

discard
exprev exprev exprev

Infer

f =

exprev exprev exprev

Figure 6.4: Overview of estimating the remaining runtime of currently running iterative dis-
tributed dataflow jobs based on similar previous executions. © 2017 IEEE [132].

6.3.1 Estimate Inference

SMiPE estimates the remaining runtime of the current execution of an iterative job based
on matched similar previous executions. Specifically, SMiPE assumes that the remain-
ing iterations of the current job will have runtimes comparable to the iterations of the
matched previous executions. Based on each matched execution, SMiPE creates an es-
timate for the runtime of the remaining iterations. These individual estimates are later
combined into a final estimate.

SMiPE calculates the estimate based on a single matched execution as follows. First,
SMiPE assumes that the current execution will have the same number of iterations as the
matched execution. The current job execution probably behaves slightly different than
the historic job execution, since it usually will not be the exact same job and the exact
same situation in the cluster. For this reason, we first compare the differences in iteration
runtimes of the current execution and the matched previous execution, by calculating
fi = runtimecurrent/ runtimesimilar for each finished iteration i of the current execution.
We assume that the differences in runtimes up to the current iteration will on average
also be true for the remaining iterations. Thus, we compute the average difference for

all the iterations up to the current iteration xcur: ftotal =
∑xcur

i=1 fi
i . As the overall estimate

for the remaining runtime of the current job, we now take the runtimes of the matched
previous execution’s remaining iterations and adjust the sum of these runtimes by ftotal .

86 Chapter 6. Estimating Job Runtimes Based on Similar Previous Executions

To account for the differences in resource allocations, the runtimes of the matched pre-
vious executions that used a different scale-out are adjusted to be applicable for estimat-
ing the runtime of the current execution. For this, we use a scale-out model that captures
how runtimes change with the number of containers. Specifically, we use Bell, which we
presented in the previous chapter, to model the scale-out behavior of iterations. We use
the scale-out model for calculating the factor by which the runtimes of two executions
differ and adjust the runtime of the similar previous execution by this factor. We perform
the adjustment iteration-wise and, thus, support jobs that dynamically adjust resource
allocations during the execution. The adjustment of the matched previous execution is
not only done for the iterations up to the current iteration xcur, but also for the remain-
ing iterations. By default, SMiPE assumes that the current execution will continue using
the same resource allocation as in the current iteration. If the estimator was, however,
to be used in conjunction with a system that dynamically manages resource allocations,
the dynamic allocation system could supply the number of nodes as a parameter to the
estimator, which would in turn be able to estimate the remaining runtime based on the
actually used resources.

Lastly, SMiPE weighs iterations, giving more weight to more recent iterations, assum-
ing that recent trends in iterations runtimes due to for example changes in the cluster state
will hold for the following iterations. SMiPE uses the inverse function 1/x for weighting
more recent iterations.

6.3.2 Final Estimate

The set of estimates based on individual matched previous executions, which we cal-
culated in the previous step, are now combined into a final estimate using a weighted
average. As weights, the overall similarity values of the matched executions are used.
That is, matched previous executions more similar to the current execution contribute
more to the final estimate.

Due to the thresholds used in selecting previous executions, the differences in the over-
all similarity values can be relatively small. For this reason, the overall similarity values
can be adjusted using the function simb (b > 1) for the final estimate, increasing the dif-
ference between weights to make the weighting more effective. By default SMiPE uses
the value b = 50.

6.3.3 Outlier Iterations

Sometimes executions have iterations with runtimes that deviate drastically from ex-
pected values. This can have many reasons such as resource congestion due to interfer-
ence between co-located workloads or failures. We call these iterations outlier iterations.
Outlier iterations can have a negative effect on the accuracy of the estimation system.

6.4. Evaluation 87

Outliers before the current iteration lead to distorted iteration factors as the factors are
based on iteration-wise differences in runtimes. For this reason, SMiPE ignores outlier
iterations in the calculation of the average iteration factor. Specifically, we consider an
iteration factor value fi to be an outlier, if it is greater than n times the mean value of all
iteration factors.

Outliers after the current iteration lead to distorted values for the remaining runtime.
These outliers therefore also negatively impact the estimation accuracy. SMiPE addresses
this issue by reducing the final similarity value of executions with outliers in iterations
after the current iterations. For that, the outliers in the remaining iterations are counted.
An iteration is considered an outlier if its runtime is more than n times that of the previous
iteration. The final similarity value sim f inal is then reduced in relation to the number of
outliers by multiplying it with

1− number of outliers in iterations after icur

number of iterations after icur
.

Executions with outliers consequently contribute less to the overall estimation without
being discarded completely.

6.4 Evaluation
We evaluated Cutty and SMiPE with multiple exemplary Spark jobs. First, we present
the similarity quality of the individual similarity measures, showing that different simi-
larity measures are useful for estimating the performance of jobs. Second, we show the
overall estimation accuracy when SMiPE is used to estimate the remaining runtime of
currently running iterative distributed dataflow jobs based on previous executions that
were matched by Cutty.

6.4.1 Cluster Setup

All experiments were done on a cluster of 40 machines. Each of the nodes is equipped
with a quad-core Intel Xeon CPU 3.30 GHz (4 physical cores, 8 hardware contexts), 16 GB
RAM, and three 1 TB disks (RAID 0). All nodes are connected through a single switch
and 1 Gigabit Ethernet.

For the experiments, we used Linux (Kernel 3.10.0), Java 1.8, Spark 2.0.0, and Hadoop
2.7.1. With Spark we used the libraries GraphX and MLlib in the versions 1.6.0 and 1.1.0,
respectively. For the collection of hardware statistics, we used Dstat 0.7.2.

6.4.2 Experiments

Table 6.1 gives an overview of all experiments, showing the algorithms, datasets, and
parameters we used. Each setting was executed on up to 40 nodes and repeated mul-

88 Chapter 6. Estimating Job Runtimes Based on Similar Previous Executions

tiple times: four times for SGD, six times for PageRank, and nine times for Connected
Components.

Table 6.1: Overview of Benchmark Jobs.
Algorithm Input Dataset Size Parameters

PageRank

LiveJournal 1.00 GB d=.01, d=.001, d=.0001
Kronecker24 1.52 GB d=.01, d=.001
Kronecker25 3.43 GB d=.01, d=.001
Wiki 5.74 GB d=.09, d=.01

Connected
LiveJournal 1.00 GB

–
Components

Kronecker24 1.52 GB
Kronecker25 3.43 GB
Wiki 5.74 GB

SGD

50-100M 99.4 GB

step size = 1.0
25-250M 124.1 GB

convergence delta = 0.001
25-500M 247.9 GB
50-500M 497.0 GB
50-750M 745.5 GB

© 2017 IEEE [132]

6.4.2.1 Jobs

We used the algorithms PageRank, Connected Components, and SGD in the experiments.
PageRank calculates the importance of every vertex within a graph. The Connected Com-
ponents algorithm finds all connected components of a graph using iterative label prop-
agation. SGD iteratively finds the minimum or maximum of an objective function, using
gradient approximation for increased efficiency. We used Spark’s GraphX implementa-
tion for PageRank and Connected Components and Spark’s library MLlib for SGD. For
PageRank, we used different convergence deltas d.

6.4.2.2 Datasets

We used both real-world and generated datasets of different sizes:

Wiki The Wiki dataset is a real graph of encyclopedia pages taken from the English
Wikipedia, with edges representing links between pages. The dataset is part of
the KONECT graph collection [134].

LiveJournal The LiveJournal dataset is a real graph from the LiveJournal social network,
with edges representing friendship relationships. It is also part of the KONECT
graph collection.

6.4. Evaluation 89

Kronecker The two Kronecker datasets we used were generated with the graph genera-
tor of the BDGS generator suite [129] with 24 and 25 iterations, respectively. We call
these two datasets Kronecker24 and Kronecker25.

Feature-Points The Feature-Points datasets were generated using our own generator, ex-
plicitly creating a Vandermonde matrix to generate multi-dimensional feature vec-
tors that fit a polynomial model of a certain degree with added Gaussian noise.
The generated datasets contain 100 to 750 million points and 25 or 50 features. The
dataset name 50-100M stands for a dataset with 50 features and 100 million points.

6.4.3 Results

In the following we present the results of our evaluation of Cutty and SMiPE.

6.4.3.1 Similarity Measures

We evaluated the similarity measures by using the normalized similarity quality mea-
sure that we defined. In the following, it is simply referred to as similarity quality. We
evaluated each of the three jobs using all previous executions. The results are shown
in Figure 6.5. CC and PR are the Connected Components and Page Rank algorithms,
respectively.

Figure 6.5 a) shows that the Runtime Similarity increases the expected accuracy signif-
icantly with increasingly small point shares. The differences in the accuracy are greater
for PageRank and Connected Components than for SGD.

The Convergence Similarity, shown in 6.5 b), is compared for PageRank and Connected
Components only. The measure captures the convergence behavior of executions by com-
paring the number of active records per iteration. PageRank and Connected Components
both converge in that they work on a shrinking dataset of active records. SGD, in con-
trast, processes all records in each iteration. Our results suggest that the Convergence
Similarity is effective for both PageRank and Connected Components, but more so for
PageRank. This is not surprising as in the PageRank experiments multiple convergence
delta values were used, which have a significant impact on the job runtime. Distinguish-
ing jobs according to the convergence is therefore important for PageRank.

We present the Resource Utilization Similarity in Figure 6.5 c) to e) for CPU, network,
and disk. For CPU, only very high point share values lead to a higher expected accuracy.
This effect is most visible for PageRank, where the line is flat until it rises sharply for a
point share value close to 1. The network and disk I/O charts show a higher expected
accuracy also for lower point share values. These two measures seem effective for all
three algorithms.

Figure 6.5 f) shows both the Input Similarity (solid lines) and the Scale-Out Similarity
(dotted lines). The Input Similarity is able to distinguish executions according to their
datasets for all algorithms. That is, the lines in the chart are not smooth due to the pair-

90 Chapter 6. Estimating Job Runtimes Based on Similar Previous Executions

0

1

0 1

no
rm

al
iz

ed
 q

ua
lit

y

1 - point share

CC

PR

SGD

(a) Runtime Similarity

0

1

0 1

no
rm

al
iz

ed
 q

ua
lit

y

1 - point share

CC

PR

(b) Convergence Similarity

0

1

0 1

no
rm

al
iz

ed
 q

ua
lit

y

1 - point share

SGD

CC

PR

(c) CPU Similarity

0

1

0 1

no
rm

al
iz

ed
 q

ua
lit

y

1 - point share

SGD

CC

PR

(d) Network-I/O Similarity

0

1

0 1

no
rm

al
iz

ed
 q

ua
lit

y

1 - point share

SGD

CC

PR

(e) Disk-I/O Similarity

0

1

0 1

no
rm

al
iz

ed
 q

ua
lit

y

1 - point share

CC

PR

SGD

Input Similarity
Scale-Out Similarity

(f) Input and Scale-Out Similarity

Figure 6.5: Quality charts of the similarity measures. © 2017 IEEE [132].

6.4. Evaluation 91

wise comparison of the limited number of different datasets. This effect is more notable
for Connected Components and PageRank than for SGD. The Scale-Out Similarity only
leads to a minimal increase in the average accuracy for higher point share values for all
algorithms. A reason for this is that the scale-out property is rather unspecific. For ex-
ample, the group of executions with the same scale-out will include executions with all
input datasets and all algorithm parameters. Yet, the runtimes in that group of executions
are different and the mean accuracy of estimations on the basis of this group will be low
in turn.

0,3

0,5

0,7

0,9

0 1

no
rm

al
iz

ed
 q

ua
lit

y

1 - point share

CC

0,3

0,5

0,7

0,9

0 11 - point share

PR

0,3

0,5

0,7

0,9

0 11 - point share

SGD

 Runtime Input Convergence CPU Network-I/O Disk-I/O Scale-Out

Figure 6.6: Summary of all similarity quality charts. © 2017 IEEE [132].

Figure 6.6 shows the similarity quality charts of all similarity measures for each al-
gorithm. We observe that each algorithm has a distinct profile that determines which
similarity measures are the most useful. For Connected Components, both the Input
and the Convergence Similarity look useful. For PageRank, the Convergence Similarity
seems most useful. For SGD, the Network Similarity looks most useful. This highlights
the importance of the parameter training, which allows Cutty to automatically adapt to
algorithm-specific profiles.

6.4.3.2 Overall Accuracy

For every execution in the job history, we selected representative sample iterations and
calculated the relative error of the runtime estimation by SMiPE. Depending on the exe-
cution’s total number of iterations, up to three sample iterations were chosen with equally
spaced distance between them and an additional padding of 15% of the total iterations
at the beginning and the end of the job execution. For each selected sample iteration,
we first used SMiPE to estimate the remaining runtime using all executions of the job as
job history. We then compared the estimate to the known actual runtime to calculate the

92 Chapter 6. Estimating Job Runtimes Based on Similar Previous Executions

relative estimation error for each selected sample iteration. To judge the overall accuracy,
we calculated the mean relative estimation error for each of the algorithms and datasets.

9,1%

12,1%
10,5%

7,8%

5,6%

7,1%

0%

10%

20%

all

50-100M
25-250M

25-500M
50-500M

50-750M

m
ea

n
re

la
tiv

e
er

ro
r

9,5% 8,6%

13,9%

8,5% 8,1%

all LJ
Kr24

Kr25 WP

13,1%
12,9%

11,5%
12,4%

15,9%

all LJ
Kr24

Kr25 WP

SGD PR CC

Figure 6.7: Mean relative estimation errors by algorithm and dataset. © 2017 IEEE [132].

Figure 6.7 shows the mean estimation relative error for each of the datasets we used
(yellow) and in total for all algorithms (blue). CC is again the Connected Components
algorithm and PR is Page Rank. The whiskers in the graph represent the 95% confidence
interval. SGD has the lowest mean relative error with 9.1%, followed by PageRank with
9.1%. The mean relative error of Connected Components is 13.1%. This is arguably due to
the short runtimes of Connected Components, so that even estimates with a low absolute
error yield high relative errors. The mean absolute error for Connected Components is
only 1.1 seconds.

For individual datasets, the mean relative estimation errors range from 5.6% to 12.1%
for SGD, from 11.5% to 15.9% for Connected Components, and from 8.1% to 13.9% for
PageRank. The highest relative mean estimation error is reported for using PageRank on
the Kronecker24 dataset. The reason for this high error lies in the specific convergence
behavior of PageRank with Kronecker24. The number of active records in the dataset
remains almost constant for the entire execution, but then decreases sharply towards the
end of the job. Thus, the Convergence Similarity cannot distinguish executions with dif-
ferent delta parameters until the very end of the execution. Thus, executions with lower
parameters are considered similar, yet ultimately require more iterations and therefore
have a longer overall runtime, leading to considerable estimation errors.

Figure 6.8 shows the iteration-wise relative estimation error for all iterations for the
three algorithms. Each line represents executions with the same input dataset and the
same algorithm parameters. The x-axis shows the iteration, relative to the total number
of iterations executed for the job, so the curves are comparable regardless of the total
number of iterations executed. The accuracies are mostly between 5% and 15% in the
middle of the executions. Both algorithms exhibit considerably higher errors in the be-
ginning and in the end of the execution. In the beginning, only little runtime statistics

6.4. Evaluation 93

0

10

20

30

0 1

0

10

20

30

0 1

m
ea

n
re

la
tiv

e e
rr

or
 [%

]

relative iteration

SGD
(all datasets)

0

10

20

30

0 1
m

ea
n

re
la

tiv
e e

rr
or

 [%
]

relative iteration

PR
(LJ and WP datasets)

0

10

20

30

0 1

m
ea

n
re

la
tiv

e e
rr

or
 [%

]

relative iteration

CC
(all datasets)

Figure 6.8: Iteration-wise estimation accuracy. © 2017 IEEE [132].

are available for a running execution, so the matching of similar job executions is initially
inaccurate. As the job executions progress and more runtime statistics become available,
the matching can better distinguish between job executions. It takes around 30% of the
total iterations until the estimation reaches peak accuracy. The higher errors at the end of
the executions are due to the smaller remaining runtimes, so even small absolute errors
lead to higher relative errors.

7 Allocating Resources for Jobs With
Runtime Targets

Contents
7.1 Stage-Wise Runtime Prediction . 96

7.2 Selecting Resources for Runtime Targets 97

7.2.1 Resource Allocation Based on Predicted Runtimes 97

7.2.2 Selecting Resources on Job Submission 98

7.2.3 Adjusting Allocations at Runtime 99

7.2.4 Selecting Resources for Jobs with Insufficient Training Data . . . 101

7.3 Evaluation . 101

7.3.1 Cluster Setup . 101

7.3.2 Experiments . 102

7.3.3 Results . 103

This chapter presents Ellis, which we published in [135] (© 2017 IEEE). Ellis is a system
that dynamically manages the resource allocations of distributed dataflow jobs accord-
ing to users’ runtime targets. For this, Ellis uses Bell, the runtime prediction system we
presented in Chapter 5. Specifically, Ellis uses Bell to model the scale-out behavior of
individual job stages to be able to predict the remaining runtime of a running job after
each stage. Based on these predictions, Ellis selects resources that are predicted to meet a
given runtime target. Ellis also dynamically adjusts resource allocations, if the predicted
remaining runtime considerably exceeds the runtime target. Thereby, Ellis addresses the
runtime variance exhibited by distributed dataflow jobs.

This chapter first explains how modeling the scale-out behavior of individual stages
of distributed dataflows allows to predict the remaining runtime of a job. Second, we
present in detail how Ellis initially selects resources based on predicted runtimes and
adjusts resource allocations dynamically in-between stages. We also discuss the strategy
Ellis applies for selecting resources when predictions are not possible due to the absence
of sufficient training data. Third, the chapter presents an evaluation of Ellis using four
different exemplary Spark jobs.

95

96 Chapter 7. Allocating Resources for Jobs With Runtime Targets

7.1 Stage-Wise Runtime Prediction
The key idea is to use a scale-out model not for the entire job, but for the individual
stages of a distributed dataflow job. This allows us to predict the runtime of distinct
parts of a job for particular resource allocations. Thus, we can assess the progress of a
job towards a given runtime target by predicting the runtime of the remaining stages. At
each synchronization barrier in-between subsequent stages, Ellis sums up the predicted
runtimes of all the remaining stages under the current resource allocations and compares
the result to the job’s runtime target.

Distributed dataflow jobs can often be scaled efficiently at synchronization barriers
in-between stages [120]. That is, subsequent stages can have different levels of paral-
lelism, changing the scale-out of a job during its execution. At stage synchronization
barriers, previously running operators finished and new ones are yet to start. With some
distributed dataflow systems, jobs are always scheduled, deployed, and executed stage-
by-stage. Yet, even if this is not the case, no running task state has to be migrated to
new workers. Such task state includes state of UDFs and also internal state of operator
implementations such as hash tables of Joins. However, when the level of parallelism
is changed in-between subsequent stages, only the intermediate data resulting from one
stage and to be consumed by the next stage has to be transferred to a new set of work-
ers. Yet, at this point data is often shuffled anyway as stages usually end when further
pipelining in-between subsequent tasks is no longer possible. This is the case for oper-
ators like Joins and group-wise aggregations that need all elements with the same key
to be available at the same task instance. If the data is not already partitioned this way,
the intermediate results need to be shuffled before the subsequent stage. Shuffling to a
slightly larger or smaller set of nodes instead of to the exact same nodes is often possible
with a maintainable overhead. Therefore, Ellis models the individual stages of jobs both
to assess a job’s progress at runtime and also to dynamically scale jobs, if necessary.

If the predicted runtime of all the remaining stages deviates considerably from the
runtime target, so that the job would either finish later than required or could potentially
do with less resources, Ellis searches for a different scale-out. In particular, Ellis searches
for the smallest scale-out that is within the bounds of the specified minimal and maximal
numbers of workers and also predicted to meet the runtime target.

As presented in Chapter 5, we use Bell for modeling the scale-out behavior of dis-
tributed dataflows. Bell uses a black-box approach for modeling, only taking the scale-
outs and runtimes of previous executions of jobs as training data to fit functions for
these datasets using regression. Moreover, Bell uses two models, a simple parameterized
model and nonparametric regression, and automatically chooses between these models
based on the prediction task und available training data.

Ellis uses Bell to model the scale-out behavior of each stage, as shown in Figure 7.1.
That is, Bell is used to create a separate model for each stage, fitting the given training
data, using either the parameterized model or interpolating the data points using non-
parametric regression.

7.2. Selecting Resources for Runtime Targets 97

Dataflow Task

Stage Barrier

Stage Scale-out Model

0

5

10

15

20

0 3 6
0

5

10

15

20

0 3 6
0

5

10

15

20

0 3 6

Figure 7.1: Modeling the scale-out behavior of the stages of a distributed dataflow job.

For selecting training data, Ellis uses Cutty. Cutty, which we presented in Chapter 6,
selects similar previous executions of recurring jobs using multiple similarity measures.
Some of these measures, such as information on the input datasets or the set of resources,
are available offline. Other measures, including statistics on the runtime and resource
utilization, are only available online. Thus, before a job is executed, we train scale-out
models on previous executions that are similar in regard to measures that can be assessed
offline, while at runtime we add runtime statistics as they become available, matching
previous executions based on their actual runtime behavior. For assessing the similarity
of the runtime behavior we compare stage runtimes, resource utilization of stages, and
the convergence of jobs. That is, we continuously improve the scale-out models of jobs
at runtime by selecting those previous executions as training data that actually behaved
similar.

7.2 Selecting Resources for Runtime Targets
This section first presents the process of selecting resources for a job we use with Ellis.
Then we explain in detail how resources are initially selected when a job is submitted
and how resource allocation are adapted at runtime, if necessary.

7.2.1 Resource Allocation Based on Predicted Runtimes

Ellis uses a greedy approach for selecting resources based on the predicted runtimes of
dataflow stages, conforming to three user-provided constraints. These three constraints
are the runtime target as well as a minimum and a maximum scale-out. When no bounds
for the scale-out are provided by the user, the system uses at least a single resource and
maximally all available resources. Ellis searches for the smallest number of resources in-
between the scale-out bounds predicted to provide a runtime below the runtime target.
For predicting the runtime of each stage, Ellis uses Bell, as explained before.

Figure 7.2 depicts how Ellis selects resources. The curved blue line represents the over-
all predicted runtime for all stages of a distributed dataflow job, the horizontal orange

98 Chapter 7. Allocating Resources for Jobs With Runtime Targets

0

1

2

3

4

5

6

7

4 6 8 10
0

1

2

3

4

5

6

7

4 6 8 10
Scale-out

0

1

2

3

4

5

6

7

4 6 8 10

R
un

tim
e

[m
]

Scale-out Scale-out

A B C
Runtime Prediction

Scale-out Limit

Runtime Target

Potential Solution

Figure 7.2: Process used by Ellis to select resources. © 2017 IEEE [135].

line shows the job’s runtime target, and the vertical black lines stand for the scale-out lim-
its provided by the user. Ellis sums up the predicted runtime of all stages as it searches
for a single scale-out for all stages, since scaling a job at runtime is not without costs.
The initial situation is shown in (A) of Figure 7.2. As shown in (B), Ellis computes the
predicted overall runtime for the job for each scale-out, starting with the minimal scale-
out and testing each discrete scale-out one by one. Ellis continues this process until the
predicted overall job runtime is below the runtime target, as shown in (C). Basically, Ellis
intercepts the three constraints with the runtime prediction functions to create a set of
potential solutions. From this set, Ellis selects the smallest set of resources, assuming that
more resources have higher costs than less resources.

At the beginning of a job’s execution, Ellis uses this process to select resources for all
stages of a job. At stage barriers, when the predicted runtime of the remaining stages for
the current resource allocation significantly exceeds the runtime target, Ellis only consid-
ers the remaining stages.

7.2.2 Selecting Resources on Job Submission

On job submission, Ellis searches for the smallest scale-out within the bounds of a mini-
mal and a maximal scale-out, for which the predicted runtime of all stages is below the
runtime target. If there is none, Ellis selects the scale-out with the minimal predicted
runtime for running all stages.

More formally, let x(α) be the scale-outs of stage α and y(α) the corresponding runtimes.
We use regression to find a function fα that fits this data. Algorithm 1 then shows the
procedure we use to select the initial scale-out on job submission. The ONJOBSTART

procedure takes the runtime constraint C, the minimal scale-out xmin, and the maximal
scale-out xmax as input. The procedure first fits a regression function for the available
training data. It then computes the set of scale-outs within the range of the provided
minimal and maximal scale-outs predicted to meet the runtime target. If this solution set
is not empty, the procedure uses the minimal scale-out in the solution set. If the solution
set is instead empty, the procedure uses the scale-out with the minimal predicted runtime.

7.2. Selecting Resources for Runtime Targets 99

Algorithm 1 Procedure executed on job submission.

1: procedure ONJOBSTART(C, xmin, xmax)
2: f ← ∑α fα

3: X ← {xmin, . . . , xmax}
4: D ← {x ∈ X | f (x) < C}
5: if D 6= ∅ then
6: x∗ ← min D
7: else
8: x∗ ← arg minx∈X f (x)
9: SETSCALEOUT(x∗)

7.2.3 Adjusting Allocations at Runtime

In-between the stages of a running job, when the distributed dataflows are synchronized
for specific operators like Joins and aggregations, which require all elements of the same
key to be available, Ellis assesses the progress of jobs towards their runtime targets. At
these synchronization barriers, the previous pipeline of tasks is finished and a new one
starts. This subsequent stage of tasks can be started with a different level of parallelism,
often with little overhead as elements need to be shuffled for the semantics of the follow-
ing operator anyway.

Ellis assesses the current job’s progress by predicting the runtime of the remaining
stages for the current resource allocation, which is possible since we model the scale-
out behavior of individual stages. The predicted remaining runtime is then compared
to the actual remaining time, which is the runtime target minus the time the job has
already been running. If the predicted remaining runtime considerably exceeds the actual
remaining time, Ellis searches for the smallest scale-out for which the job is predicted to
finish before the runtime target. If there is no such scale-out, Ellis selects the scale-out that
is predicted to yield the lowest overall runtime for the remaining stages. If the predicted
remaining runtime is considerably below the actual remaining time, Ellis searches for a
scale-out that is lower than the current scale-out, in order to release surplus resources. If
there is no such scale-out, the job’s execution is continued with the current reservation.

More formally, let x(α) again be the scale-outs of stage α and y(α) the corresponding
runtimes. We find a function fα that fits this data using regression. We estimate the re-
maining runtime after stage α′ given a scale-out x′ by summing over the respective stage-
wise predictions. That is, f>α′(x′) = ∑α>α′ fα(x′). Algorithm 2 then shows the procedure
that is used after each stage α, for estimating a job’s progress towards its runtime target
and if necessary adjusting the scale-out. The ONSTAGEEND procedure takes the follow-
ing inputs: the runtime constraint C, the minimal scale-out xmin, the maximal scale-out
xmax, the latest completed stage α′, the current scale-out x, the time the job already ran
t, the relative slack s+tr and absolute slack s+ta for triggering a dynamic scaling, and the
relative slack so for establishing a new scale-out.

100 Chapter 7. Allocating Resources for Jobs With Runtime Targets

Algorithm 2 Procedure executed in-between all stages.

1: procedure ONSTAGEEND(C, xmin, xmax, α′, x, t, str, sta, so)
2: f>α′ ← ∑α>α′ fα

3: r ← f>α′(x) . remaining runtime prediction
4: if r > (C− t) · (1 + str) + sta then
5: X ← {xmin, . . . , xmax}
6: D ← {x′ ∈ X | f>α′(x′) < so · (C− t)}
7: if D 6= ∅ then
8: x∗ ← min D
9: else

10: x∗ ← arg minx′∈X f>α′(x′)
11: SETSCALEOUT(x∗)
12: else if r < (C− t) · (1− str)− sta then
13: X ← {xmin, . . . , x− 1}
14: D ← {x′ ∈ X | f>α′(x′) < so · (C− t)}
15: if D 6= ∅ then
16: x∗ ← min D
17: SETSCALEOUT(x∗)

The procedure first fits a regression function for the available training data. It uses this
function to predict the remaining runtime under the current scale-out x. Then there are
two cases, for which we search for different scale-outs:

• If the predicted remaining runtime exceeds the remaining time to the runtime con-
straint by both the relative and absolute slack for triggering a dynamic scaling
(r > (C − t) · (1 + str) + sta), the procedure searches for a new scale-out predicted
to meet the runtime target with some slack for the overhead of the dynamic scaling
(so). In this case, the procedure first computes the subset of the scale-outs within
the bounds of the minimal and the maximal scale-out for which the overall runtime
is predicted to be below the runtime constraint, reduced by the factor 0 < so ≤ 1 to
compensate for the overheads of establishing a new scale-out. If this solution set D
is not empty, the procedure selects the smallest scale-out in the solution set. If the
solution set D is instead empty, the procedure selects the scale-out with the smallest
predicted remaining runtime.

• If instead the predicted remaining runtime is below the remaining time to the run-
time constraint by both slacks for triggering the scale-out (r < (C− t) · (1− str)−
sta), the procedure searches for a smaller scale-out, so resources are freed. It does
so by computing the same solution set as before, only using the range between the
minimal scale-out xmin and the current scale-out x as subset of valid scale-outs. If
the solution set D is not empty, the smallest scale-out is selected. Otherwise, the
procedure does not set a new scale-out.

7.3. Evaluation 101

If the overall runtime is predicted to be within the bounds of the two slacks s+tr and s+ta of
the runtime constraint C, no dynamic scaling is triggered.

7.2.4 Selecting Resources for Jobs with Insufficient Training Data

Since we model the scale-out behavior of distributed dataflows using previous executions
of recurring jobs, there might not always be sufficient training data to effectively train
prediction models. In that case, we aim to select scale-outs that both meet a job’s runtime
target and explore the solution space, so subsequently not only more training data is
available, but also training samples that cover the range of valid scale-outs between the
user-provided limits. For this, we use a binary-search like approach as long as there are
less than three selected samples for training a prediction model.

• If there are zero training samples for a job, use the maximal scale-out, assuming it
has the best chances of meeting the job’s runtime target.

• If there is one training sample, use the mean scale-out in-between the minimal and
the maximal scale-out: m← xmin+xmax

2 .

• If there are two training samples, we consider the previous running times:

– If the previous runtimes all where below the runtime target, we select a smaller
scale-out than before and use the average in-between the user-provided mini-
mum as well as the mean m: xmin+m

2 .

– If the previous runtimes were not all below the runtime target, we select a
larger scale-out than in previous runs and use the average in-between the
mean m and the user-provided maximum: m+xmax

2 .

If there are more training samples, we train and use a scale-out model for runtime
prediction and resource allocation as described in the previous sections.

7.3 Evaluation
We evaluated how well our approach addresses the variance in distributed dataflow per-
formance by measuring how much less runtime target violations occur when Ellis as-
sesses a job’s progress and adjusts allocations at runtime in comparison to only using
Ellis for initially selecting resources.

7.3.1 Cluster Setup

All experiments were done on a cluster of 60 machines. Each of the nodes is equipped
with a quad-core Intel Xeon CPU 3.30 GHz (4 physical cores, 8 hardware contexts), 16 GB
RAM, and three 1 TB disks (RAID 0). All nodes are connected through a single switch
and 1 Gigabit Ethernet. We used Linux (Kernel 3.10.0), Java 1.8.0, Hadoop 2.7.3, and
Spark 2.1.0 for these experiments.

102 Chapter 7. Allocating Resources for Jobs With Runtime Targets

7.3.2 Experiments

To evaluate the effectiveness of our dynamic adjustments, we compared using Ellis only
for the initial resource allocation to also using it for dynamic adjustments of the resource
allocation in-between stages. In the following, we call using Ellis only initially static mode
and using Ellis also in-between stages dynamic mode.

We started Ellis with an empty history database. Then, an initial ten runs were per-
formed without dynamic adjustments for each of the benchmark jobs. The runtimes of
these ten runs was used as training data for all experiments with each job. For compari-
son, we did 50 static and 50 dynamic runs. Overall we evaluated the effectiveness of our
dynamic adjustments for four iterative Spark jobs and three different generated datasets.
Each job used a scale-out range from 4 to 50 nodes.

7.3.2.1 Jobs

We used four Spark jobs as benchmarks, namely Multilayer Perceptron (MLP), Gradient
Boosted Trees (GBT), SGD, and K-Means. Table 7.1 shows the jobs and the respective
input parameters. The implementations of the jobs are based on Spark MLlib [52], a
library for implementing distributed machine learning algorithms. All jobs were taken
from the examples bundled with the library.

Table 7.1: Overview of Benchmark Jobs.
Job Dataset Input Size Parameters
MLP Multiclass 29 GB 20 iterations, 4 layers with 200-100-50-3 per-

ceptrons
GBT Vandermonde 111 GB 10 iterations, “Regression” configuration
SGD Vandermonde 37 GB 20 iterations
K-Means Points 50 GB 8 clusters, 10 iterations

© 2017 IEEE [135]

7.3.2.2 Datasets

We used three different datasets for the benchmark jobs. All datasets were generated
synthetically.

Multiclass A classification dataset with three classes and 200 features. The dataset was
generated using scikit-learns’ classification generator1.

Vandermonde A regression dataset with 20 features. The dataset was generated using
our own generator by explicitly computing the Vandermonde matrix. For this, data

1 http://scikit-learn.org/, accessed 2017-08-03.

http://scikit-learn.org/

7.3. Evaluation 103

points were randomly generated following a polynomial of degree 19 with added
Gaussian noise.

Points A two-dimensional dataset with points sampled from a Gaussian Mixture Model
(GMM) of eight normal distributions with random cluster centers and equal vari-
ances.

7.3.3 Results

The runtime of the 50 static and dynamic runs of each job is summarized in Figure 7.3. All
jobs show less spikes above the target runtime when using Ellis for dynamic adjustments.
In addition, if there are constraint violations, their magnitude is lower.

10 20 30 40 50

Run

3

4

5

6

7

8

R
un

tim
e

[m
]

MLP

10 20 30 40 50

Run

3

4

5

6

7

8

R
un

tim
e

[m
]

GBT

10 20 30 40 50

Run

3

4

5

6

7

8

R
un

tim
e

[m
]

SGD

10 20 30 40 50

Run

3

4

5

6

7

8

R
un

tim
e

[m
]

K-Means

Static Dynamic Target

Figure 7.3: Comparison of the runtimes of 50 runs of using Ellis only to allocate resources initially
(static) to also using Ellis for dynamic adjustments in-between stages (dynamic) and
to the runtime target (red line). © 2017 IEEE [135].

To quantitatively assess the performance of the implementation we used three metrics.
First, we capture the resource usage of a run by multiplying a stage’s runtime with its
scale-out and summing over all stages of the run. That is, the resource usage of a job run
is defined as R = ∑i yi · xi where xi is the scale-out of stage i and yi the corresponding run-
time. Second, to compare how well the implementation adheres to the runtime constraint
we introduce two metrics. The constraint violation count CVC = ∑j∈{j|Yj>C} 1 captures

104 Chapter 7. Allocating Resources for Jobs With Runtime Targets

how often the constraint C is violated by the job runtimes where Yj is the duration of the
j-th job. Third, the constraint violation sum CVS = ∑j∈{j|Yj>C}(Yj − C) summarizes the
magnitude of the violations. Table 7.2 shows the constraint violation metrics for each of
the four benchmark jobs. For every job both the amount and the intensity of constraint
violations are reduced considerably.

Table 7.2: Constraint Violation Metrics.
Job CVC Static CVC Dynamic CVS Static [s] CVS Dynamic [s]
MLP 13 9 198249 27099
GBT 15 7 192811 56732
SGD 20 5 98586 6631
K-Means 14 5 241925 13219

We also calculated the ratios of the metrics for the static and the dynamic runs, dividing
the metrics of the dynamic runs by the metrics of the static runs. Table 7.3 shows these
ratios for the metrics of our four benchmarks jobs. The ratios show that for every job
the amount and the intensity of constraint violations is reduced, when Ellis estimates
the progress towards the given runtime targets and based on these estimations adjusts
resource allocations at runtime, if necessary. With K-Means the implementation was also
able to reduce the resource usage significantly. On the other hand, for MLP the reduced
constraint violations came at the cost of a higher resource usage. However, compared to
the other three jobs, MLP used smaller scale-outs for the static runs with an average of
11 nodes per run. A 27% higher resource usage then translates to an average of just three
more nodes per run.

Table 7.3: Constraint Violations and Resource Usage Ratios.
Job R Ratio CVC Ratio CVS Ratio
MLP 1.2704 0.6923 0.1367
GBT 0.9985 0.4667 0.2942
SGD 0.9475 0.2500 0.0673
K-Means 0.8003 0.3571 0.0546

© 2017 IEEE [135]

To give an intuition of the dynamic scalings triggered by Ellis to meet a given runtime
target, Figure 7.4 shows two exemplary runs of SGD and two of K-Means. During Run
#12 of SGD Ellis increased the scale-out after the 16th stage, yet released some of the al-
located resources after the 20th stage. In contrast, Ellis did not make any adjustments
to the resource allocation during Run #48. In comparison it is visible that the dynamic
scaling in Run #12 clearly had an effect on the runtime. The adjustments were probably
triggered to compensate for the spikes in the 4th and 11th stage and the run did finish
with an overall runtime below the runtime target. The two exemplary runs of K-Means

7.3. Evaluation 105

5 10 15 20

Stage

0

5

10

15

20

25

30

35

40

Sc
al

e-
O

ut

5 10 15 20

Stage

0

5

10

15

20

25

30

R
un

tim
e

[s
]

SGD

Run #12 Run #48

(a) Two runs of the SGD job.

2 4 6 8 10 12 14 16 18

Stage

0

5

10

15

20

25

30

35

40

Sc
al

e-
O

ut

2 4 6 8 10 12 14 16 18

Stage

0

10

20

30

40

50

60

R
un

tim
e

[s
]

K-Means

Run #54 Run #59

(b) Two runs of the K-Means job.

Figure 7.4: Exemplary runs of two jobs, showing the scale-out selected for each stage in the left
chart and the corresponding runtime in the right chart. © 2017 IEEE [135].

both release a majority of the resources towards the end of the runs. The graph shows
that later stages run faster than earlier stages even with considerably less resources, dis-
playing the converging behavior of the algorithm and explaining the low R ratio reported
for K-Means.

8 Conclusion
This thesis presented an approach and methods for automatically allocating minimal sets
of resources for production batch jobs of distributed dataflow systems with runtime tar-
gets. The approach is based on the idea that repeatedly executed batch jobs present an
opportunity to learn a job’s scale-out behavior on a granularity that allows predicting
the runtimes of individual job stages. Given such fine-grained scale-out models, it is not
only possible to allocate an initial set of resources that is predicted to meet a given run-
time target, but also to continuously monitor jobs by predicting the remaining runtime
after each of a job’s stages. If the predicted remaining runtime then deviates significantly
from a job’s runtime target, the scale-out models of the remaining stages can be used to
dynamically select a new scale-out that is predicted to provide a job runtime within the
bounds of the given runtime target.

The thesis made contributions in three areas. First, we presented two black-box regres-
sion models for capturing the scale-out behavior of distributed dataflow jobs, a simple
parameterized model of distributed processing and a nonparametric model able to inter-
polate arbitrary scale-out behavior. We also showed how cross-validation can be used to
select between these models automatically. Second, we presented methods for selecting
those previous executions of recurring jobs as training data for estimation systems that
allow accurate estimation. We presented multiple measures for assessing the similarity
of distributed dataflow job executions and a method for training similarity matching pa-
rameters on the execution history of a job, automatically optimizing the similarity match-
ing based on estimation accuracy. Third, we presented a method for continuously mon-
itoring and dynamically scaling distributed dataflow jobs with runtime targets. Using a
scale-out model for each of a distributed dataflow job’s stages, the remaining runtime is
predicted after each stage to select a new scale-out when jobs do not perform as initially
predicted.

We implemented prototypes of the methods presented in this thesis and evaluated
them using a number of exemplary Spark and Flink jobs, datasets of different sizes and
domains, and a commodity cluster of 60 nodes. We showed that our methods for pre-
dicting the runtimes of distributed dataflow jobs using two models and automatic model
selection provide a higher mean accuracy than each of the individual models. Further-
more, we demonstrated that our methods for selecting similar previous executions as a
basis for estimating the runtimes of distributed dataflow jobs can be used to estimate re-
maining runtimes with a mean relative estimation error of 9.1-13.1%. Finally, we showed
that dynamic resource allocation on the basis of stage-wise runtime prediction can help

107

108 Chapter 8. Conclusion

significantly in meeting runtime targets. For our test workload the number of runtime
constraint violations was reduced by 30.7-75.0% and the magnitude of runtime constraint
violations by 70.6-94.5% through the dynamic adjustments of resource allocations, while
using between 27% more and 20% less resources for the execution of the jobs. These
results show that the presented approach and methods can be used for automatically se-
lecting minimal sets of resources that meet runtime targets. That is, users no longer need
to accurately estimate the runtimes of their distributed dataflow jobs, which is a difficult
task, or considerably over-provision resources, which incurs needless costs. Moreover,
due to our runtime monitoring and dynamic adjustments, it is no longer necessary to
provision resources for the worst case of significantly variable performance.

Although this thesis already addresses central aspects of automatically allocating min-
imal sets of resources for distributed dataflow jobs with specific runtime targets, there are
several interesting directions for further investigation. These directions can be derived
from the key limitations of our current solution. The first key limitation is the depen-
dence on the availability of previous executions of jobs, where we need on average ten
similar previous runs, each with a different scale-out, for a mean relative prediction error
of less than 5% for our benchmark jobs. Therefore, we would like to investigate methods
that go beyond the simple binary-search approach we currently apply for exploring the
impact of scale-outs when there are only few previous runs as examples. The second
key limitation is the assumption of homogeneous cluster resources, currently requiring
training and usage of separate models when there are multiple types of resources avail-
able. Thus, we would like to investigate how the impact of scale-up can be modeled
more effectively, so our solution becomes more usable when there are heterogeneous re-
sources. There is also a third key limitation, namely that we assume distributed dataflow
systems with stages that can be provisioned separately. However, our black-box methods
are arguably already generic and broadly applicable, while distributed dataflow systems
are majorly popular for general-purpose data-parallel processing. Therefore, we are pre-
dominantly interested in addressing the first two limitations. Improvements in these
directions would make our solution more useful for end-users that run their individual
analytics jobs on resources temporarily leased from cloud providers, helping to further
democratize access to massively parallel computation and analysis of large datasets, in
line with the promises of cloud computing and distributed dataflow systems.

Nevertheless, the results of this thesis already show that the presented approach and
methods for modeling the scale-out behavior, predicting runtimes, and allocating re-
sources for distributed dataflow jobs at the granularity of stages can effectively alleviate
users from the difficult task of estimating the runtime behavior of their jobs, while run-
time targets are met to a high degree and without significant over-provisioning. More-
over, accurate runtime prediction can also be considerably useful for resource manage-
ment systems, allowing to plan schedules ahead. Consequently, applying our results in
practice promises increased efficiency and reduced costs for distributed data analytics on
large shared clusters.

Bibliography
[1] B. Cheng, S. Longo, F. Cirillo, M. Bauer, and E. Kovacs. “Building a Big Data Platform for

Smart Cities: Experience and Lessons from Santander”. In: 2015 IEEE International Congress on
Big Data. BigDataCongress ’15. IEEE, 2015.

[2] J. Dean and S. Ghemawat. “MapReduce: Simplified Data Processing on Large Clusters”. In:
Communications of the ACM 51.1 (2008).

[3] A. S. Das, M. Datar, A. Garg, and S. Rajaram. “Google News Personalization: Scalable Online
Collaborative Filtering”. In: Proceedings of the 16th International Conference on World Wide Web.
WWW ’07. ACM, 2007.

[4] R. W. White, N. P. Tatonetti, N. H. Shah, R. B. Altman, and E. Horvitz. “Web-Scale Pharma-
covigilance: Listening to Signals From the Crowd”. In: Journal of the American Medical Informat-
ics Association 20.3 (2013).

[5] J. Dean and S. Ghemawat. “MapReduce: Simplified Data Processing on Large Clusters”. In:
Proceedings of the 6th Conference on Symposium on Operating Systems Design and Implementation.
OSDI ’04. USENIX Association, 2004.

[6] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. “Spark: Cluster Comput-
ing with Working Sets”. In: Proceedings of the 2Nd USENIX Conference on Hot Topics in Cloud
Computing. HotCloud’10. USENIX Association, 2010.

[7] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas. “Apache Flink:
Stream and Batch Processing in a Single Engine”. In: IEEE Data Engineering Bulletin 38.4 (2015).

[8] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz, S. Shenker, and I.
Stoica. “Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center”. In: Pro-
ceedings of the 8th USENIX Conference on Networked Systems Design and Implementation. NSDI
’11. USENIX Association, 2011.

[9] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T. Graves, J. Lowe,
H. Shah, S. Seth, B. Saha, C. Curino, O. O’Malley, S. Radia, B. Reed, and E. Baldeschwieler.
“Apache Hadoop YARN: Yet Another Resource Negotiator”. In: Proceedings of the 4th Annual
Symposium on Cloud Computing. SOCC ’13. ACM, 2013.

[10] S. Agarwal, S. Kandula, N. Bruno, M.-C. Wu, I. Stoica, and J. Zhou. “Re-optimizing Data
Parallel Computing”. In: In Proceedings of the 9th USENIX Symposium on Networked Systems
Design and Implementation. NSDI ’12. USENIX Association, 2012.

[11] S. A. Jyothi, C. Curino, I. Menache, S. M. Narayanamurthy, A. Tumanov, J. Yaniv, R. Mavlyu-
tov, Í. Goiri, S. Krishnan, J. Kulkarni, and S. Rao. “Morpheus: Towards Automated SLOs for
Enterprise Clusters”. In: Proceedings of the 12th USENIX Conference on Operating Systems Design
and Implementation. OSDI ’16. USENIX Association, 2016.

109

110 Bibliography

[12] G. Mishne, J. Dalton, Z. Li, A. Sharma, and J. Lin. “Fast Data in the Era of Big Data: Twitter’s
Real-time Related Query Suggestion Architecture”. In: Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data. SIGMOD ’13. ACM, 2013.

[13] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch. “Heterogeneity and Dy-
namicity of Clouds at Scale: Google Trace Analysis”. In: Proceedings of the Third ACM Sympo-
sium on Cloud Computing. SoCC ’12. ACM, 2012.

[14] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca. “Jockey: Guaranteed Job La-
tency in Data Parallel Clusters”. In: Proceedings of the 7th ACM European Conference on Computer
Systems. EuroSys ’12. ACM, 2012.

[15] C. Delimitrou and C. Kozyrakis. “Quasar: Resource-Efficient and QoS-aware Cluster Manage-
ment”. In: Proceedings of the 19th International Conference on Architectural Support for Program-
ming Languages and Operating Systems. ASPLOS ’14. ACM, 2014.

[16] A. Verma, L. Cherkasova, and R. H. Campbell. “ARIA: Automatic Resource Inference and Al-
location for Mapreduce Environments”. In: Proceedings of the 8th ACM International Conference
on Autonomic Computing. ICAC ’11. ACM, 2011.

[17] P. Lama and X. Zhou. “AROMA: Automated Resource Allocation and Configuration of Mapre-
duce Environment in the Cloud”. In: Proceedings of the 9th International Conference on Autonomic
Computing. ICAC ’12. ACM, 2012.

[18] K. Rajan, D. Kakadia, C. Curino, and S. Krishnan. “PerfOrator: Eloquent Performance Models
for Resource Optimization”. In: Proceedings of the Seventh ACM Symposium on Cloud Computing.
SoCC ’16. ACM, 2016.

[19] M. Hovestadt, O. Kao, A. Keller, and A. Streit. “Scheduling in HPC Resource Management
Systems: Queuing vs. Planning”. In: Job Scheduling Strategies for Parallel Processing. Ed. by D.
Feitelson, L. Rudolph, and U. Schwiegelshohn. Springer, 2003.

[20] X. Zheng, Z. Zhou, X. Yang, Z. Lan, and J. Wang. “Exploring Plan-Based Scheduling for Large-
Scale Computing Systems”. In: 2016 IEEE International Conference on Cluster Computing. CLUS-
TER ’16. IEEE, 2016.

[21] A. M. Middleton. “Data-Intensive Technologies for Cloud Computing”. In: Handbook of Cloud
Computing. Ed. by B. Furht and A. Escalante. Springer, 2010.

[22] S. Babu and H. Herodotou. “Massively Parallel Databases and MapReduce Systems”. In:
Foundations and Trends in Databases 5.1 (2013).

[23] R. Chaiken, B. Jenkins, P. A. Larson, B. Ramsey, D. Shakib, S. Weaver, and J. Zhou. “SCOPE:
Easy and Efficient Parallel Processing of Massive Data Sets”. In: Proceedings of the VLDB En-
dowment 1.2 (2008).

[24] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B.-G. Chun. “Making Sense of Per-
formance in Data Analytics Frameworks”. In: 12th USENIX Symposium on Networked Systems
Design and Implementation. NSDI ’15. 2015.

[25] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Czajkowski.
“Pregel: A System for Large-Scale Graph Processing”. In: Proceedings of the 28th ACM Sympo-
sium on Principles of Distributed Computing. PODC ’09. ACM, 2009.

Bibliography 111

[26] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. “PowerGraph: Distributed Graph-
Parallel Computation on Natural Graphs”. In: Proceedings of the 10th USENIX Conference on
Operating Systems Design and Implementation. OSDI ’12. USENIX Association, 2012.

[27] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein. “Distributed
GraphLab: A Framework for Machine Learning and Data Mining in the Cloud”. In: Proceed-
ings of the VLDB Endowment 5.8 (2012).

[28] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski, J. Long, E. J. Shekita,
and B.-Y. Su. “Scaling Distributed Machine Learning with the Parameter Server”. In: 11th
USENIX Symposium on Operating Systems Design and Implementation. OSDI ’14. USENIX Asso-
ciation, 2014.

[29] L. G. Valiant. “A Bridging Model for Parallel Computation”. In: Communications of the ACM
33.8 (1990).

[30] S. Ewen, K. Tzoumas, M. Kaufmann, and V. Markl. “Spinning Fast Iterative Data Flows”. In:
Proceedings of the VLDB Endowment 5.11 (2012).

[31] G. Bell and J. Gray. “What’s Next in High-performance Computing?” In: Communications of
the ACM 45.2 (2002).

[32] D. W. Walker. “The Design of a Standard Message Passing Interface for Distributed Memory
Concurrent Computers”. In: Parallel Computing 20.4 (1994).

[33] V. S. Sunderam. “PVM: A Framework for Parallel Distributed Computing”. In: Concurrency:
Practice and Experience 2.4 (1990).

[34] L. Dagum and R. Menon. “OpenMP: an Industry Standard API for Shared-memory Program-
ming”. In: IEEE Computational Science and Engineering 5.1 (1998).

[35] A. Katal, M. Wazid, and R. H. Goudar. “Big Data: Issues, Challenges, Tools and Good Prac-
tices”. In: 2013 Sixth International Conference on Contemporary Computing. IC3 ’13. IEEE, 2013.

[36] S. Jha, J. Qiu, A. Luckow, P. Mantha, and G. C. Fox. “A Tale of Two Data-Intensive Paradigms:
Applications, Abstractions, and Architectures”. In: 2014 IEEE International Congress on Big
Data. BigDataCongress ’14. IEEE, 2014.

[37] G. Fox, J. Qiu, S. Jha, S. Ekanayake, and S. Kamburugamuve. “Big Data, Simulations and HPC
Convergence”. In: Proceedings of the Workshop on Big Data Benchmarks 2015. Ed. by T. Rabl, R.
Nambiar, C. Baru, M. Bhandarkar, M. Poess, and S. Pyne. WBDB 2015. Springer, 2016.

[38] S.J. Lawson and M. Woodgate and R. Steijl and G.N. Barakos. “High Performance Computing
for Challenging Problems in Computational Fluid Dynamics”. In: Progress in Aerospace Sciences
52 (2012).

[39] J. Dongarra, T. Sterling, H. Simon, and E. Strohmaier. “High-Performance Computing: Clus-
ters, Constellations, MPPs, and Future Directions”. In: Computing in Science Engineering 7.2
(2005).

[40] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. K. Gunda, and J. Currey. “DryadLINQ:
A System for General-Purpose Distributed Data-Parallel Computing Using a High-Level Lan-
guage”. In: Proceedings of the 8th USENIX Conference on Operating Systems Design and Implemen-
tation. OSDI ’08. USENIX Association, 2008.

112 Bibliography

[41] J. Zhou, P. A. Larson, and R. Chaiken. “Incorporating Partitioning and Parallel Plans Into the
SCOPE Optimizer”. In: 2010 IEEE 26th International Conference on Data Engineering. ICDE 2010.
IEEE, 2010.

[42] F. Hueske, M. Peters, M. J. Sax, A. Rheinländer, R. Bergmann, A. Krettek, and K. Tzoumas.
“Opening the Black Boxes in Data Flow Optimization”. In: Proceedings of the VLDB Endowment
5.11 (2012).

[43] N. Bruno, S. Jain, and J. Zhou. “Continuous Cloud-Scale Query Optimization and Processing”.
In: Proceedings of the VLDB Endowment 6.11 (2013).

[44] A. Rheinländer, A. Heise, F. Hueske, U. Leser, and F. Naumann. “SOFA: An Extensible Logical
Optimizer for UDF-heavy Data Flows”. In: Information Systems 52.C (2015).

[45] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. “Pig Latin: A Not-So-Foreign
Language for Data Processing”. In: Proceedings of the 2008 ACM SIGMOD International Confer-
ence on Management of Data. SIGMOD ’08. ACM, 2008.

[46] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyckoff, and R.
Murthy. “Hive: A Warehousing Solution over a Map-Reduce Framework”. In: Proceedings of
the VLDB Endowment 2.2 (2009).

[47] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, and I. Stoica. “Shark: SQL and
Rich Analytics at Scale”. In: Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data. SIGMOD ’13. ACM, 2013.

[48] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng, T. Kaftan, M. J.
Franklin, A. Ghodsi, and M. Zaharia. “Spark SQL: Relational Data Processing in Spark”. In:
Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data. SIGMOD
’15. ACM, 2015.

[49] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and I. Stoica. “GraphX: Graph
Processing in a Distributed Dataflow Framework”. In: Proceedings of the 11th USENIX Confer-
ence on Operating Systems Design and Implementation. OSDI ’14. USENIX Association, 2014.

[50] A. Ghoting, R. Krishnamurthy, E. Pednault, B. Reinwald, V. Sindhwani, S. Tatikonda, Y. Tian,
and S. Vaithyanathan. “SystemML: Declarative Machine Learning on MapReduce”. In: 2011
IEEE 27th International Conference on Data Engineering. ICDE ’11. IEEE, 2011.

[51] M. Boehm and M. W. Dusenberry and D. Eriksson and A. V. Evfimievski and F. M. Manshadi
and N. Pansare and B. Reinwald and F. R. Reiss and P. Sen and A. C. Surve and S. Tatikonda.
“SystemML: Declarative Machine Learning on Spark”. In: Proceedings of the VLDB Endowment
9.13 (2016).

[52] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman, D. Tsai, M.
Amde, S. Owen, D. Xin, R. Xin, M. J. Franklin, R. Zadeh, M. Zaharia, and A. Talwalkar. “MLlib:
Machine Learning in Apache Spark”. In: The Journal of Machine Learning Research 17.1 (2016).

[53] L. Thamsen, B. Rabier, F. Schmidt, T. Renner, and O. Kao. “Scheduling Recurring Distributed
Dataflow Jobs Based on Resource Utilization and Interference.” In: 2017 IEEE International
Congress on Big Data. BigDataCongress ’17. IEEE, 2017.

[54] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and I. Stoica. “Delay Schedul-
ing: A Simple Technique for Achieving Locality and Fairness in Cluster Scheduling”. In: Pro-
ceedings of the 5th European Conference on Computer Systems. EuroSys ’10. ACM, 2010.

Bibliography 113

[55] Z. Guo, G. Fox, and M. Zhou. “Investigation of Data Locality in MapReduce”. In: 2012 12th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. CCGrid 2012. IEEE,
2012.

[56] T. Renner and L. Thamsen and O. Kao. “CoLoc: Distributed Data and Container Colocation
for Data-intensive Applications”. In: 2016 IEEE International Conference on Big Data. BigData
2016. IEEE, 2016.

[57] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. “Dryad: Distributed Data-Parallel Pro-
grams From Sequential Building Blocks”. In: Proceedings of the 2Nd ACM SIGOPS/EuroSys Eu-
ropean Conference on Computer Systems 2007. EuroSys ’07. ACM, 2007.

[58] D. Warneke and O. Kao. “Nephele: Efficient Parallel Data Processing in the Cloud”. In: Pro-
ceedings of the 2Nd Workshop on Many-Task Computing on Grids and Supercomputers. MTAGS ’09.
ACM, 2009.

[59] J. Zhou, N. Bruno, M.-C. Wu, P. A. Larson, R. Chaiken, and D. Shakib. “SCOPE: Parallel
Databases Meet MapReduce”. In: The VLDB Journal 21.5 (2012).

[60] A. Alexandrov, R. Bergmann, S. Ewen, J.-C. Freytag, F. Hueske, A. Heise, O. Kao, M. Leich,
U. Leser, V. Markl, F. Naumann, M. Peters, A. Rheinländer, M. J. Sax, S. Schelter, M. Höger, K.
Tzoumas, and D. Warneke. “The Stratosphere Platform for Big Data Analytics”. In: The VLDB
Journal 23.6 (2014).

[61] D. Battré, S. Ewen, F. Hueske, O. Kao, V. Markl, and D. Warneke. “Nephele/PACTs: A Pro-
gramming Model and Execution Framework for Web-Scale Analytical Processing”. In: Pro-
ceedings of the 1st ACM Symposium on Cloud Computing. SoCC ’10. ACM, 2010.

[62] A. Heise, A. Rheinländer, M. Leich, U. Leser, and F. Naumann. “Meteor/Sopremo: An Exten-
sible Query Language and Operator Model”. In: Proceedings of the International Workshop on
End-To-End Management of Big Data. BigData 2012. VLDB Endowment, 2012.

[63] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi. “Naiad: A Timely
Dataflow System”. In: Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles. ACM. 2013.

[64] F. McSherry, D. G. Murray, R. Isaacs, and M. Isard. “Differential Dataflow”. In: Proceedings of
the 6th Conference on Innovative Data Systems Research. CIDR ’13. CIDR 2013, 2013.

[65] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J. Rosen, S. Venkatara-
man, M. J. Franklin, A. Ghodsi, J. Gonzalez, S. Shenker, and I. Stoica. “Apache Spark: A Uni-
fied Engine for Big Data Processing”. In: Commununications of the ACM 59.11 (2016).

[66] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S. Shenker,
and I. Stoica. “Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory
Cluster Computing”. In: Proceedings of the 9th USENIX Conference on Networked Systems Design
and Implementation. NSDI ’12. USENIX Association, 2012.

[67] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica. “Discretized Streams: Fault-
Tolerant Streaming Computation at Scale”. In: Proceedings of the Twenty-Fourth ACM Sympo-
sium on Operating Systems Principles. SOSP ’13. ACM, 2013.

[68] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. Fernández-Moctezuma, R. Lax, S.
McVeety, D. Mills, F. Perry, E. Schmidt, and S. Whittle. “The Dataflow Model: A Practical
Approach to Balancing Correctness, Latency, and Cost in Massive-Scale, Unbounded, Out-
Of-Order Data Processing”. In: Proceedings of the VLDB Endowment 8.12 (2015).

114 Bibliography

[69] B. Saha and H. Shah and S. Seth and G. Vijayaraghavan and A. Murthy and C. Curino.
“Apache Tez: A Unifying Framework for Modeling and Building Data Processing Applica-
tions”. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data.
SIGMOD ’15. ACM, 2015.

[70] S. Ghemawat, H. Gobioff, and S.-T. Leung. “The Google File System”. In: Proceedings of the
19th ACM Symposium on Operating Systems Principles. SOSP ’03. ACM, 2003.

[71] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. “The Hadoop Distributed File System”. In:
2010 IEEE 26th Symposium on Mass Storage Systems and Technologies. MSST 2010. IEEE, 2010.

[72] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn. “Ceph: A Scalable,
High-Performance Distributed File System”. In: Proceedings of the 7th Symposium on Operating
Systems Design and Implementation. OSDI ’06. USENIX Association, 2006.

[73] A. Davies and A. Orsaria. “Scale Out with GlusterFS”. In: Linux Journal 2013.235 (2013).

[74] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica. “Tachyon: Reliable, Memory Speed
Storage for Cluster Computing Frameworks”. In: Proceedings of the ACM Symposium on Cloud
Computing. SOCC ’14. ACM, 2014.

[75] G. Ananthanarayanan, S. Agarwal, S. Kandula, A. Greenberg, I. Stoica, D. Harlan, and E. Har-
ris. “Scarlett: Coping with Skewed Content Popularity in Mapreduce Clusters”. In: Proceedings
of the Sixth Conference on Computer Systems. EuroSys ’11. ACM, 2011.

[76] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes. “Omega: Flexible, Scalable
Schedulers for Large Compute Clusters”. In: Proceedings of the 8th ACM European Conference on
Computer Systems. EuroSys ’13. ACM, 2013.

[77] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian, M. Wu, and L. Zhou. “Apollo: Scalable
and Coordinated Scheduling for Cloud-Scale Computing”. In: Proceedings of the 11th USENIX
Conference on Operating Systems Design and Implementation. OSDI ’14. USENIX Association,
2014.

[78] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes. “Large-Scale
Cluster Management at Google with Borg”. In: Proceedings of the Tenth European Conference on
Computer Systems. EuroSys ’15. ACM, 2015.

[79] D. Battre, N. Frejnik, S. Goel, O. Kao, and D. Warneke. “Evaluation of Network Topology
Inference in Opaque Compute Clouds through End-to-End Measurements”. In: 2011 IEEE 4th
International Conference on Cloud Computing. CLOUD 2011. IEEE, 2011.

[80] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. Hellerstein. “GraphLab: A New
Framework for Parallel Machine Learning”. In: Proceedings of the Twenty-Sixth Conference on
Uncertainty in Artificial Intelligence. UAI ’10. AUAI Press, 2010.

[81] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica. “GraphX: A Resilient Distributed Graph
System on Spark”. In: First International Workshop on Graph Data Management Experiences and
Systems. GRADES ’13. ACM, 2013.

[82] S. Englert, J. Gray, T. Kocher, and P. Shah. “A Benchmark of NonStop SQL Release 2 Demon-
strating Near-linear Speedup and Scaleup on Large Databases”. In: Proceedings of the 1990
ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems. SIGMET-
RICS ’90. ACM, 1990.

Bibliography 115

[83] H. Zeller. “Parallel Query Execution in NonStop SQL”. In: Compcon Spring ’90. Intellectual
Leverage. Digest of Papers. Thirty-Fifth IEEE Computer Society International Conference. IEEE, 1990.

[84] F. M. Waas. “Beyond Conventional Data Warehousing: Massively Parallel Data Processing
with Greenplum Database”. In: Business Intelligence for the Real-Time Enterprise. Ed. by M.
Castellanos, U. Dayal, and T. Sellis. Springer, 2009.

[85] E. Friedman, P. Pawlowski, and J. Cieslewicz. “SQL/MapReduce: A Practical Approach to
Self-describing, Polymorphic, and Parallelizable User-defined Functions”. In: Proceedings of
the VLDB Endowment 2.2 (2009).

[86] S. Alsubaiee, Y. Altowim, H. Altwaijry, A. Behm, V. Borkar, Y. Bu, M. Carey, I. Cetindil, M.
Cheelangi, K. Faraaz, E. Gabrielova, R. Grover, Z. Heilbron, Y.-S. Kim, C. Li, G. Li, J. M. Ok, N.
Onose, P. Pirzadeh, V. Tsotras, R. Vernica, J. Wen, and T. Westmann. “AsterixDB: A Scalable,
Open Source BDMS”. In: Proceedings of the VLDB Endowment 7.14 (2014).

[87] V. Borkar, M. Carey, R. Grover, N. Onose, and R. Vernica. “Hyracks: A Flexible and Extensible
Foundation for Data-Intensive Computing”. In: Proceedings of the 2011 IEEE 27th International
Conference on Data Engineering. ICDE ’11. IEEE, 2011.

[88] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S. Antony, H. Liu, and R.
Murthy. “Hive - a Petabyte Scale Data Warehouse Using Hadoop”. In: 2010 IEEE 26th In-
ternational Conference on Data Engineering. ICDE 2010. IEEE, 2010.

[89] A. D. Popescu, A. Balmin, V. Ercegovac, and A. Ailamaki. “PREDIcT: Towards Predicting the
Runtime of Large Scale Iterative Analytics”. In: Proceedings of the VLDB Endowment 6.14 (2013).

[90] M. Höger and O. Kao. “Progress Estimation in Parallel Data Processing Systems”. In: Proceed-
ings of the IEEE International Conference on Cloud and Big Data Computing. CBDCom 2016. IEEE,
2016.

[91] A. Verma, L. Cherkasova, and R. H. Campbell. “Resource Provisioning Framework for Mapre-
duce Jobs with Performance Goals”. In: Proceedings of the 12th ACM/IFIP/USENIX International
Conference on Middleware. Middleware ’11. Springer, 2011.

[92] H. Herodotou, F. Dong, and S. Babu. “No One (Cluster) Size Fits All: Automatic Cluster Sizing
for Data-Intensive Analytics”. In: Proceedings of the 2Nd ACM Symposium on Cloud Computing.
SOCC ’11. ACM, 2011.

[93] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, and S. Babu. “Starfish: A Self-
Tuning System for Big Data Analytics”. In: Proceedings of the 5th Conference on Innovative Data
Systems Research. CIDR ’11. CIDR 2011, 2011.

[94] M. P. Mesnier, M. Wachs, R. R. Sambasivan, A. X. Zheng, and G. R. Ganger. “Modeling the Rel-
ative Fitness of Storage”. In: Proceedings of the 2007 ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems. SIGMETRICS ’07. ACM, 2007.

[95] V. Jalaparti, H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. “Bridging the Tenant-
Provider Gap in Cloud Services”. In: Proceedings of the Third ACM Symposium on Cloud Com-
puting. SoCC ’12. ACM, 2012.

[96] S. Sidhanta, W. Golab, and S. Mukhopadhyay. “OptEx: A Deadline-Aware Cost Optimization
Model for Spark”. In: 2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing. CCGrid 2016. IEEE, 2016.

116 Bibliography

[97] S. Venkataraman, Z. Yang, M. Franklin, B. Recht, and I. Stoica. “Ernest: Efficient Performance
Prediction for Large-Scale Advanced Analytics”. In: Proceedings of the 13th Usenix Conference
on Networked Systems Design and Implementation. NSDI ’16. USENIX Association, 2016.

[98] F. Pukelsheim. Optimal Design of Experiments. Vol. 50. SIAM, 1993.

[99] S. Dimopoulos and C. Krintz and R. Wolsk. “Justice: A Deadline-aware, Fair-share Resource
Allocator for Implementing Multi-analytics”. In: 2017 IEEE International Conference on Cluster
Computing. CLUSTER ’17. IEEE, 2017.

[100] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and M. Zhang. “CherryPick:
Adaptively Unearthing the Best Cloud Configurations for Big Data Analytics”. In: Proceed-
ings of the 14th USENIX Conference on Networked Systems Design and Implementation. NSDI ’17.
USENIX Association, 2017.

[101] N. Bruno, S. Agarwal, S. Kandula, B. Shi, M.-C. Wu, and J. Zhou. “Recurring Job Optimization
in SCOPE”. In: Proceedings of the 2012 ACM SIGMOD International Conference on Management
of Data. SIGMOD ’12. ACM, 2012.

[102] S. Gupta, C. Fritz, B. Price, R. Hoover, J. Dekleer, and C. Witteveen. “ThroughputScheduler:
Learning to Schedule on Heterogeneous Hadoop Clusters”. In: Proceedings of the 10th Interna-
tional Conference on Autonomic Computing. ICAC ’13. USENIX Association, 2013.

[103] C. Delimitrou and C. Kozyrakis. “Paragon: QoS-aware Scheduling for Heterogeneous Dat-
acenters”. In: Proceedings of the Eighteenth International Conference on Architectural Support for
Programming Languages and Operating Systems. ASPLOS ’13. ACM, 2013.

[104] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulkarni, J. Jackson, K. Gade,
M. Fu, J. Donham, N. Bhagat, S. Mittal, and D. Ryaboy. “Storm@Twitter”. In: Proceedings of the
2014 ACM SIGMOD International Conference on Management of Data. SIGMOD ’14. ACM, 2014.

[105] L. Aniello, R. Baldoni, and L. Querzoni. “Adaptive Online Scheduling in Storm”. In: Proceed-
ings of the 7th ACM International Conference on Distributed Event-Based Systems. DEBS ’13. ACM,
2013.

[106] Z. Niu, S. Tang, and B. He. “Gemini: An Adaptive Performance-Fairness Scheduler for Data-
Intensive Cluster Computing”. In: 2015 IEEE 7th International Conference on Cloud Computing
Technology and Science. CloudCom 2015. IEEE, 2015.

[107] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I. Stoica. “Dominant Re-
source Fairness: Fair Allocation of Multiple Resource Types”. In: Proceedings of the 8th USENIX
Conference on Networked Systems Design and Implementation. NSDI ’11. USENIX Association,
2011.

[108] B. Lohrmann, D. Warneke, and O. Kao. “Nephele Streaming: Stream Processing Under QoS
Constraints at Scale”. In: Cluster Computing 17.1 (2014).

[109] B. Lohrmann, P. Janacik, and O. Kao. “Elastic Stream Processing with Latency Guarantees”. In:
Proceedings of the 35th IEEE International Conference on Distributed Computing Systems. ICDCS
’15. 2015.

[110] Z. Huang, B. Balasubramanian, M. Wang, T. Lan, M. Chiang, and D. H. K. Tsang. “RUSH: A
RobUst ScHeduler to Manage Uncertain Completion-Times in Shared Clouds”. In: 2016 IEEE
36th International Conference on Distributed Computing Systems. ICDCS ’16. IEEE, 2016.

Bibliography 117

[111] C. L. Abad, Y. Lu, and R. H. Campbell. “DARE: Adaptive Data Replication for Efficient Cluster
Scheduling”. In: 2011 IEEE International Conference on Cluster Computing. CLUSTER ’11. IEEE,
2011.

[112] S. Y. Ko, I. Hoque, B. Cho, and I. Gupta. “On Availability of Intermediate Data in Cloud Com-
putations”. In: Proceedings of the 12th Conference on Hot Topics in Operating Systems. HotOS ’09.
USENIX Association, 2009.

[113] G. Wang, A. R. Butt, P. Pandey, and K. Gupta. “A Simulation Approach to Evaluating Design
Decisions in MapReduce Setups”. In: 2009 IEEE International Symposium on Modeling, Analysis
Simulation of Computer and Telecommunication Systems. MASCOTS ’09. IEEE, 2009.

[114] K. V. Vishwanath and N. Nagappan. “Characterizing Cloud Computing Hardware Reliabil-
ity”. In: Proceedings of the 1st ACM Symposium on Cloud Computing. SoCC ’10. ACM, 2010.

[115] J. Tan, X. Pan, E. Marinelli, S. Kavulya, R. Gandhi, and P. Narasimhan. “Kahuna: Problem Di-
agnosis for Mapreduce-based Cloud Computing Environments”. In: 2010 IEEE Network Oper-
ations and Management Symposium. NOMS 2010. IEEE, 2010.

[116] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu, B. Saha, and E. Harris. “Rein-
ing in the Outliers in Map-Reduce Clusters Using Mantri”. In: Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation. OSDI ’10. USENIX Association,
2010.

[117] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica. “Effective Straggler Mitigation:
Attack of the Clones”. In: Proceedings of the 10th USENIX Conference on Networked Systems De-
sign and Implementation. NSDI ’13. USENIX Association, 2013.

[118] N. J. Yadwadkar, G. Ananthanarayanan, and R. Katz. “Wrangler: Predictable and Faster Jobs
Using Fewer Resources”. In: Proceedings of the ACM Symposium on Cloud Computing. SOCC ’14.
ACM, 2014.

[119] T. Mendt. “Cardinality Estimation in Shared-Nothing Parallel Data Flows ”. MA thesis. Tech-
nische Universität Berlin, 2015.

[120] L. Thamsen, T. Renner, and O. Kao. “Continuously Improving the Resource Utilization of Iter-
ative Parallel Dataflows”. In: 2016 IEEE 36th International Conference on Distributed Computing
Systems Workshops. ICDCSW 2016. IEEE, 2016.

[121] P. A. Boncz, M. Zukowski, and N. Nes. “MonetDB/X100: Hyper-Pipelining Query Execution”.
In: Proceedings of the Second Biennal Conference on Innovative Data Systems Research. Vol. 5. CIDR
’05. CIDR 2005, 2005.

[122] L. Thamsen, I. Verbitskiy, F. Schmidt, T. Renner, and O. Kao. “Selecting Resources for Dis-
tributed Dataflow Systems According to Runtime Targets”. In: 2016 IEEE 35th International
Performance Computing and Communications Conference (IPCCC). IEEE, 2016.

[123] S. Sahni and V. Thanvantri. “Performance Metrics: Keeping the Focus on Runtime”. In: IEEE
Parallel Distributed Technology: Systems Applications 4.1 (1996).

[124] W. D. Hillis and G. L. Steele. “Data Parallel Algorithms”. In: Communications of the ACM 29.12
(1986).

[125] J. Hartman and D. Sanders. “Data Parallel Programming: A Transition From Serial to Paral-
lel Computing”. In: Proceedings of the Twenty-Fourth SIGCSE Technical Symposium on Computer
Science Education. SIGCSE ’93. ACM, 1993.

118 Bibliography

[126] I. Verbitskiy, L. Thamsen, and O. Kao. “When to Use a Distributed Dataflow Engine: Evalu-
ating the Performance of Apache Flink”. In: Proceedings of the IEEE International Conference on
Cloud and Big Data Computing. CBDCom 2016. IEEE, 2016.

[127] H. Cui, J. Cipar, Q. Ho, J. K. Kim, S. Lee, A. Kumar, J. Wei, W. Dai, G. R. Ganger, P. B. Gibbons,
G. A. Gibson, and E. P. Xing. “Exploiting Bounded Staleness to Speed Up Big Data Analytics”.
In: Proceedings of the 2014 USENIX Conference on USENIX Annual Technical Conference. USENIX
ATC’14. USENIX Association, 2014.

[128] W. S. Cleveland. “Robust Locally Weighted Regression and Smoothing Scatterplots”. In: Jour-
nal of the American Statistical Association 74.368 (1979).

[129] Z. Ming, C. Luo, W. Gao, R. Han, Q. Yang, L. Wang, and J. Zhan. “BDGS: A Scalable Big Data
Generator Suite in Big Data Benchmarking”. In: Advancing Big Data Benchmarks: Proceedings of
the 2013 Workshop Series on Big Data Benchmarking. Ed. by T. Rabl, N. Raghunath, M. Poess, M.
Bhandarkar, H.-A. Jacobsen, and C. Baru. Springer, 2014.

[130] D. M. Blei, A. Y. Ng, and M. I. Jordan. “Latent Dirichlet Allocation”. In: The Journal of Machine
Learning Research 3 (2003).

[131] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahramani. “Kronecker Graphs:
An Approach to Modeling Networks”. In: The Journal of Machine Learning Research 11 (2010).

[132] J. Koch, L. Thamsen, F. Schmidt, and O. Kao. “SMiPE: Estimating the Progress of Recurring
Iterative Distributed Dataflows”. In: The 18th International Conference on Parallel and Distributed
Computing, Applications and Technologies. PDCAT ’17. IEEE, 2017.

[133] M. J. Powell. “The BOBYQA Algorithm for Bound Constrained Optimization without Deriva-
tives”. In: Cambridge NA Report NA2009/06, University of Cambridge, Cambridge (2009).

[134] J. Kunegis. “KONECT: The Koblenz Network Collection”. In: Proceedings of the 22Nd Interna-
tional Conference on World Wide Web. WWW ’13. ACM, 2013.

[135] L. Thamsen, I. Verbitskiy, J. Beilharz, T. Renner, A. Polze, and O. Kao. “Ellis: Dynamically
Scaling Distributed Dataflows to Meet Runtime Targets”. In: Proceedings of the 2017 IEEE 9th
International Conference on Cloud Computing Technology and Science. CloudCom 2017. IEEE, 2017.

	Introduction
	Problem Definition
	Contributions
	Outline of the Thesis

	Background
	Distributed Data-Parallel Processing
	Distributed Dataflows
	Comparison to High-Performance Computing

	Shared Analytics Cluster Setup
	Distributed File Systems
	Resource Management Systems
	Co-Located Cluster Setup

	Related Work
	Distributed Dataflow Systems and Related Distributed Systems
	Distributed Dataflow Systems
	Systems Used in Conjunction with Distributed Dataflow Systems
	Related Parallel and Distributed Computing Systems

	Runtime Prediction and Resource Allocation for Runtime Targets
	Pure Runtime and Progress Estimation
	System-Specific Automatic Resource Allocation
	Resource Allocation Based on Black-Box Prediction Models

	Adaptive Resource Management

	Problem and Concepts
	Problem and State of the Art
	Assumptions and Requirements
	Batch Processing Jobs
	Distributed Dataflow Systems
	Dedicated Analytics Clusters
	Requirements for a Practical Solution

	Approach and Methods
	Solution Overview
	Application to Iterative Jobs

	System Architecture
	Architecture Overview
	Prototype Components
	Integration with YARN and Spark

	Modeling the Scale-Out Behavior of Batch Jobs
	Scaling out Distributed Dataflows
	Scale-Out Models for Distributed Dataflows
	Parametric Regression
	Nonparametric Regression
	Automatic Model Selection

	Evaluation
	Cluster Setup
	Experiments
	Results

	Estimating Job Runtimes Based on Similar Previous Executions
	Predicting Job Performance Based on Previous Executions
	Assessing the Similarity of Job Executions
	Similarity Measures
	Similarity Quality
	Training Job-Specific Thresholds and Weights

	Estimating the Remaining Runtime of Recurring Iterative Jobs
	Estimate Inference
	Final Estimate
	Outlier Iterations

	Evaluation
	Cluster Setup
	Experiments
	Results

	Allocating Resources for Jobs With Runtime Targets
	Stage-Wise Runtime Prediction
	Selecting Resources for Runtime Targets
	Resource Allocation Based on Predicted Runtimes
	Selecting Resources on Job Submission
	Adjusting Allocations at Runtime
	Selecting Resources for Jobs with Insufficient Training Data

	Evaluation
	Cluster Setup
	Experiments
	Results

	Conclusion

