
Services Transactions on Big Data (ISSN 2326-442X) Vol. 4, No. 1, 2017 1Services Transactions on Big Data (ISSN 2326-442X) Vol. 4, No. 1, 2017 1Services Transactions on Big Data (ISSN 2326-442X) Vol. 4, No. 1, 2017 1

Learning Efficient Co-locations for Scheduling

Distributed Dataflows in Shared Clusters

Lauritz Thamsen, Ilya Verbitskiy, Benjamin Rabier∗, and Odej Kao
Technische Universität Berlin

{firstname.lastname}@tu-berlin.de

Abstract
Resource management systems like YARN or Mesos allow sharing cluster resources by running data-
parallel processing jobs in temporarily reserved containers. Containers, in this context, are logical
leases of resources as, for instance, a number of cores and main memory, allocated on a particular
node. Typically, containers are used without resource isolation to achieve high degrees of overall
resource utilization despite the often fluctuating resource usage of single analytic jobs. However, some
combinations of jobs utilize the resources better and interfere less with each other when running on the
same nodes than others.

This paper presents an approach for improving the resource utilization and job throughput when
scheduling recurring distributed data-parallel processing jobs in shared cluster environments. Using
a reinforcement learning algorithm, the scheduler continuously learns which jobs are best executed
simultaneously on the cluster. We evaluated a prototype implementation of our approach with Hadoop
YARN, exemplary Flink jobs from different application domains, and a cluster of commodity nodes.
Even though the measure we use to assess the goodness of schedules can still be improved, the results
of our evaluation show that our approach increases resource utilization and job throughput.

This is an extended work of Thamsen, Rabier, Schmidt, Renner, & Kao, c© 2017 IEEE, published in
the Proceedings of the 6th 2017 IEEE International Congress on Big Data (BigData Congress 2017).

Keywords: Scalable Data Analytics, Distributed Dataflows, Resource Management, Cluster Scheduling

1. Introduction

Data centers have grown to tens of thousands
of nodes. These nodes are the largest fraction of
the total cost of ownership for datacenters (Bar-
roso & Hölzle, 2007). Therefore, it is important to
use these resources efficiently for cost-effectiveness
and continued scaling. An important class of appli-
cations that runs on such clusters and clouds is dis-
tributed data-parallel processing, using distributed
dataflow frameworks like MapReduce (Dean &
Ghemawat, 2004), Spark (Zaharia et al., 2010), and
Flink (Carbone et al., 2015). However, studies have
shown that these workloads often underutilize
servers with resource utilizations ranging between
10% and 50% (Barroso & Hölzle, 2007; Reiss et al.,
2012; Carvalho et al., 2014; Delimitrou & Kozyrakis,

∗Work done while at Technische Universität Berlin, now at
Nokia Digital Health in Paris, France.

2014; Verma et al., 2015).

Different approaches have been proposed to
increase resource utilization through more fine-
grained sharing of cluster resources. Some
techniques model or profile resource needs of
jobs more precisely for better resource alloca-
tions (Verma et al., 2011; Ferguson et al., 2012;
Delimitrou & Kozyrakis, 2014). Other approaches
attempt to contain interference when scheduling
multiple jobs on nodes to increase server utiliza-
tion (Yang et al., 2013; Lo et al., 2015). While those
approaches work well as many workloads are in
fact overprovisioned and, thus, resources are un-
used, they ignore that different jobs can have com-
plementary resource needs. Yet, by scheduling jobs
with such complementary resource needs together,
it is not only possible to reduce interference, but
also to improve resource utilization. The execu-



Services Transactions on Big Data (ISSN 2326-442X) Vol. 4, No. 1, 2017 2Services Transactions on Big Data (ISSN 2326-442X) Vol. 4, No. 1, 2017 2Services Transactions on Big Data (ISSN 2326-442X) Vol. 4, No. 1, 2017 2

tion of workloads could, therefore, be improved by
changing the order in which jobs are executed in
shared clusters. Since as many as over 60% of the
jobs running on production clusters are reported to
be periodically running batch jobs, dedicated pro-
filing of jobs is not necessary (Jyothi et al., 2016).
Instead, interference and overall resource usage
can be measured during the actual execution for
many important production jobs, improving the
scheduling of subsequent job runs.

The approach presented in this paper is a
scheduling method for recurring jobs that takes
resource utilization and job interference into ac-
count. To increase server utilization, our scheduler
changes the order of the job queue and selects
jobs for execution that stress different resources
than the jobs currently running on the nodes with
available resources. For this, the scheduler uses a
reinforcement learning algorithm to continuously
learn which combinations of jobs should be pro-
moted or prevented. In particular, we use the
Gradient Bandits method for estimating the dis-
tribution of job combination goodness (Sutton &
Barto, 1998). Our metric for goodness takes CPU,
disk, and network usage as well as I/O wait into
account. We implemented our approach on top
of Hadoop YARN (Vavilapalli et al., 2013). The
scheduler selects jobs for execution on the cluster
based on our continuous modeling of the rewards
of scheduling specific job combinations. We eval-
uated our implementation on a cluster with 16
worker nodes and with two different workloads
consisting of different Flink jobs.

Contributions. The contributions of this paper are:

• We motivated the need for adaptive schedul-
ing approaches that take the interference be-
tween co-located workloads into account with
a set of cluster experiments.
• We designed a reinforcement learning so-

lution for scheduling recurring distributed
dataflow jobs in shared clusters based on their
resource usage and interference between jobs.
• We implemented our solution practically

for Hadoop YARN, supporting distributed
dataflow systems that run on YARN such as
Spark and Flink, and evaluated this implemen-
tation using a cluster of 16 commodity nodes
and two workloads of Flink jobs.

Outline. The remainder of the paper is structured
as follows. Section 2 presents the background. Sec-
tion 3 presents a detailed problem analysis. Sec-
tion 4 presents our scheduling approach. Section 5
presents the implementation of our prototype. Sec-
tion 6 presents our evaluation. Section 7 presents
the related work, while Section 8 concludes this
paper.

2. Background

This section first describes distributed dataflow
systems built to process large datasets. It then illus-
trates the design of resource management systems
for such systems.

2.1 Distributed Dataflow Systems

Distributed dataflow systems process data
through a Directed Acyclic Graph (DAG), where
the nodes represent a computation task and edges
the dataflow between these tasks. In more detail,
tasks are configurable versions of pre-defined op-
erators including Map and Reduce, which both
execute user-defined functions (UDFs). Some dis-
tributed dataflow systems also provide specific
variants of these two operators, like Filter and
pre-defined aggregations, such as, sums. Oper-
ators like Join or Cross can be used to combine
two dataflows. Figure 1 shows an exemplary dis-
tributed dataflow program with different data-
parallel operator instances.

MapMapMap
MapMapFilter

MapMapInput 1

MapMapReduce
MapMapOutput

MapMapFlatMap
MapMapInput 2

Figure 1: A distributed dataflow job with different data-
parallel operators.

Data-parallel task instances process partitions of
the data. A partition can either be created by read-
ing a fraction of the input data in from, for exam-
ple, an underlying file system or can be received
from a predecessor task in the dataflow graph.
Sometimes it is necessary that the dataflow needs
to shuffled. For example, operators for group-
based aggregations or for joining two dataflows
require all elements of the same group or identical



Services Transactions on Big Data (ISSN 2326-442X) Vol. 4, No. 1, 2017 3Services Transactions on Big Data (ISSN 2326-442X) Vol. 4, No. 1, 2017 3Services Transactions on Big Data (ISSN 2326-442X) Vol. 4, No. 1, 2017 3

join keys to be available at the same task instance.
In this case, all elements with the same key need
to be moved to the same task instance. Such data
exchange patterns can yield high network traffic,
since the task instances run on networked worker
nodes. In addition, each worker provides execu-
tion slots, representing compute capabilities. Such
a slot can either execute a task or a chain of tasks.

2.2 Resource Management Systems

Resource management systems regulate access
to the resources of a cluster. Figure 2 shows an
overview of such a resource-managed cluster. The
system itself follows the master-slave pattern. The
cluster manager often is a central master unit and
arbitrator of all available resources. In addition,
the cluster manager is responsible for scheduling
workloads in containers on available resources.
The slaves provide compute capabilities and, thus,
host execution containers, in which the distributed
analytics jobs are executed. Distributed dataflow
programs in resource management systems are
running on a per-job basis, whereby the worker
processes run in containers scheduled by the clus-
ter resource manage on to available slave compute
nodes.

Resource
Manager

Worker 
Node

Container of Job 1

Container of Job 2

Worker 
Node

Worker 
Node

Client 1

Client 2 Worker 
Node

Figure 2: Overview of a cluster running a resource manage-
ment system.

Containers can be specified by the number of
cores, memory and storage. In addition, they can
provide different levels of resource isolation. With-
out strict resource isolation, the container spec-
ification are only used for scheduling purposes.
Therefore, a worker process running in a container
can use more or less resources than reserved. Jobs
that run in containers co-located on the same node
can consequently interfere with each other. The
container placement and, therefore, which jobs are
co-located is decided by the scheduler component

of the resource manager. Often resource manager
allow to use different schedulers focusing on dif-
ferent goals such as fairness, throughput, or data
locality.

3. Problem Analysis

To design a scheduler which takes into account
that some co-locations are better than others, it
is necessary to first identify those. Thus differ-
ent co-locations of applications are presented and
analyzed in this chapter.

3.1 Experimental Setup

In this section the setup of the co-location ex-
periments is presented. First the cluster with its
hardware and software setup is described, then the
applications used for the co-locations and lastly
the placement of the applications is explained.

Cluster Setup. The experiments are based on a
forked version of the framework Flink (1.0.0) which
allows to specify the nodes on which containers
should be placed. The resource manager is YARN
(2.7.2) and the data is stored with HDFS (2.7.2)
with a data replication factor of three.

The cluster used in the following co-location ex-
periments is constituted of 21 homogeneous nodes.
Those are connected through a complete graph
topology. The configuration of the nodes is as
follows:

• Quadcore Intel Xeon CPU E3-1230 V2 @
3.30GHz
• 16 GB RAM
• 3 TB RAID0 (3x1 TB HDD disks, Linux soft-

ware RAID)
• 1 GBit Ethernet NIC
• CentOS 7

One node is used to run YARN’s ResourceM-
anager and HDFS’ NameNode. The remaining
containers are used to store data and run the appli-
cations. All containers have a fixed size of 1 CPU
core and 1.5 GB of RAM.

Container Placement. The application execution
times with two different placements are compared.
The first one consists of separating the applica-
tions by avoiding any co-location on the nodes. In



Services Transactions on Big Data (ISSN 2326-442X) Vol. 4, No. 1, 2017 4Services Transactions on Big Data (ISSN 2326-442X) Vol. 4, No. 1, 2017 4Services Transactions on Big Data (ISSN 2326-442X) Vol. 4, No. 1, 2017 4

Table 1: Applications used in the co-location experiments.

Application Data Arguments Abbreviation

K-Means 109 points with 1000 centers 4 iterations K-Means1000
1.25 · 108 points with 500 centers 70 iterations K-Means500

3 iterations CC3Connected Components Twitter social graph 8 iterations CC8

TPC-H Query 10 1 TB of data generated with DBGEN – TPCH10
1000

the second configuration the applications are co-
located on every node with each half of the nodes
containers. In both settings, the applications have
the same number of containers. What is more, in-
dividual runs were performed for each application
to gain insight into the resource usage without any
interference.

3.2 Test Workload

Three types of applications are used in the co-
location experiments. The data for the K-Means
job is generated using the k-means data generator
bundled with Flink. The generator is configured
with a standard deviation of 0.1. For Connected
Components (CC), the Twitter social graph (Kwak
et al., 2010) is used as the input dataset. Finally,
the TPC-H1 query jobs use data generated using
DBGEN. The precise job configurations are sum-
marized in Table 1.

To avoid that an application finishes early, leav-
ing the co-located application with the access to
the whole cluster resources, which would skew the
experiment, the data used and the number of itera-
tions are chosen such as the execution time of each
co-located application is similar. The applications
are always started together in all experiments.

The applications have been selected for their
different resource usage. The different workloads
used can be categorized as:

CPU-intensive. Two different version are used:
K-Means1000, which shows distinct iterations
and thus having phases where CPU is almost
unused, and K-Means500 with shorter itera-
tions leading to higher mean CPU usage of

1The TPC-H specification can be found at http://www.tpc.
org/tpch/spec/tpch2.16.0v1.pdf [accessed 2016-08-25].

80% instead of 60%.

I/O-intensive. TPCH10
1000 is limited by either the

disk or the network as the CPU almost never
exceeds a mean usage of 50%.

Diverse. Connected Components is selected for
its more diverse resource usage. While it is
mostly CPU-intensive, the first stage is con-
strained by the disk and the network is used
considerably all over the execution. Two ver-
sions are used to match the different execution
times of K-Means500 and K-Means1000.

3.3 Results

In this section the results of the different co-
location are presented. First a comparison between
the co-located and the separated placement is pre-
sented, then the different co-locations are com-
pared.

Advantage of co-locating. As the applications ex-
ecution do not overlap exactly, it is necessary to
compare more than the individual duration of each
application. Hence two additional metrics are used
in the following tables, which are defined as fol-
lows:

All. Difference between the duration of both ex-
periments. This is the actual gain if the two
applications are the only ones to be scheduled.

First. Difference between the duration of the
first application to finish in both placements.
As in the reality, more application would need
to be scheduled, it indicates when the next
application could be scheduled

Table 2 presents the experiments with co-
location of applications with a similar resource



Services Transactions on Big Data (ISSN 2326-442X) Vol. 4, No. 1, 2017 5Services Transactions on Big Data (ISSN 2326-442X) Vol. 4, No. 1, 2017 5Services Transactions on Big Data (ISSN 2326-442X) Vol. 4, No. 1, 2017 5

Table 2: Co-location results when scheduling applications with a similar resource usage.

Application # Nodes Duration [s] Duration Comparison

Separated Co-located Individually All First

K-Means500
2

20 676 600 -11% -12% -11%K-Means1000 783 691 -12%

TPCH10
1000 20 625 608 -3% -1% -3%

TPCH10
1000 625 621 -1%

K-Means500 20 919 893 -3% -3% -3%CC8 858 830 -3%

K-Means500 10 1500 1494 0% -4% -14%CC8 1560 1290 -17%

K-Means1000 20 786 688 -12% -12% -5%CC3 617 585 -5%

K-Means1000 10 1214 1062 -13% -13% -12%CC3 1028 904 -12%

Table 3: Co-location results when scheduling applications with a different resource usage.

Application # Nodes Duration [s] Duration Comparison

Separated Co-located Individually All First

K-Means1000 20 805 764 -5% -5% -29%
TPCH10

1000 644 457 -29%

K-Means1000 10 1244 1042 -16% -31% -23%
TPCH10

1000 1521 954 -37%

K-Means1000
20

1019 921 -10%
-29% -18%TPCH10

1000 1300 790 -39%
CC3 931 763 -18%

usage. In Table 3 applications with different re-
source usage pattern are co-located. The results
are clearly better for the applications which are
different. Nonetheless, in both cases there is an
improvement for most co-locations. Only the co-
locations of TPCH10

1000 with itself and K-Means500
with CC8 show only little improvement.

Co-locating applications seems to be the best
choice from the present results. Applications have
access to more resources and seem to profit from
it. This can be seen by comparing the execution of
K-Means1000 with TPCH10

1000 in a co-location in Fig-
ure 3b or separately in Figure 3a. However, some

2Only 50 iterations are used for this experiment to have a
closer execution time as in K-Means1000

are better than others, and the best configuration
is not always the one expected as will be seen in
the next section.

Co-location comparison. While co-locating appli-
cations is in general profitable, not all co-locations
are equal, some are better than others. For exam-
ple, K-Means500 profits from the co-location with
K-Means1000 but not from the one with CC8. This
difference can be explained by the pauses between
the iterations of K-Means1000, where the CPU is
almost unused. K-Means500 seems to take advan-
tage of these phases with low CPU utilization. On
the opposite, as CC8 is CPU-intensive most of the
execution, so there is no real improvement.



Services Transactions on Big Data (ISSN 2326-442X) Vol. 4, No. 1, 2017 6Services Transactions on Big Data (ISSN 2326-442X) Vol. 4, No. 1, 2017 6Services Transactions on Big Data (ISSN 2326-442X) Vol. 4, No. 1, 2017 6

0 100 200 300 400 500 600 700 800 900

Time (s)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

M
ea

n
us

ag
e

ov
er

20
s

(%
)

End of TPCH10

End of Kmeans1000

CPU
I/O wait
Disk read
Disk write
Network received

(a) Separated execution.

0 100 200 300 400 500 600 700 800 900

Time (s)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

M
ea

n
us

ag
e

ov
er

20
s

(%
)

End of TPCH10

End of Kmeans1000

CPU
I/O wait
Disk read
Disk write
Network received

(b) Co-located execution.

Figure 3: Resource usage of the execution of K-Means1000
and TPCH10

1000 on 20 nodes.

On the other hand, K-Means1000 profits from ev-
ery co-location with K-Means500 or CC3 by around
10%. But the reason is unclear. It may be the stage
between the CPU spikes which becomes shorter,
but it was not measured.

TPCH10
1000 is faster in almost all case by at least

30% when co-located with CC3 or K-Means1000 as
there is not much competition for the disk usage.
When co-located with itself, there is almost no
difference.

On first impression, one would suspect that CC3
would have a better co-location with TPCH10

1000
than K-Means1000 as it uses mostly the CPU. Yet,
it is the opposite as shown in Figure 4 where CC3
finishes 15% faster with K-Means1000, because of
the first phase in CC3 which is limited by the Disk.
The negative influence of TPCH10

1000 can be seen by
comparing Figure 4a and Figure 3b. There is an
I/O wait spike around the first 100 seconds. This
interference would be hard to predict, as CC3 is
mostly CPU-bound.

0 100 200 300 400 500 600 700 800

Time (s)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

M
ea

n
us

ag
e

ov
er

20
s

(%
)

End of TPCH10

End of CC3

CPU
I/O wait
Disk read
Disk write
Network received

(a) Co-location with TPCH10
1000.

0 100 200 300 400 500 600 700 800

Time (s)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

M
ea

n
us

ag
e

ov
er

20
s

(%
)

End of CC3

End of Kmeans1000

CPU
I/O wait
Disk read
Disk write
Network received

(b) Co-location with K-Means1000.

Figure 4: Resource usage of the execution of CC3 co-located
with another application.

4. Approach

This section describes our approach to schedul-
ing recurring jobs based on their resource utiliza-
tion.

4.1 Overview

The key idea of our scheduling approach is that
it is often beneficial for resource utilization and
throughput to co-locate jobs that stress different
resources. While some jobs interfere with each
other as they compete for the same resource, others
use the different resources complementary. Thus,
to increase resource utilization in the cluster, good
co-locations should be promoted and other ones
prevented.

Information on co-location quality can be used
for training a self-learning algorithm. Such an
algorithm, which is called reinforcement learning
algorithm, is used for our scheduler.

To increase server utilization over time, the algo-
rithm changes the queue of jobs, as presented in



Services Transactions on Big Data (ISSN 2326-442X) Vol. 4, No. 1, 2017 7Services Transactions on Big Data (ISSN 2326-442X) Vol. 4, No. 1, 2017 7Services Transactions on Big Data (ISSN 2326-442X) Vol. 4, No. 1, 2017 7

Job Queue

Cluster Nodes

R
es

ou
rc

e
U

til
iz

at
io

n

CPU I/O

CPU

I/O
Schedule

Figure 5: Reordering of the jobs based on resource utilization.

Figure 5. Based on currently scheduled jobs and
the information learned, the scheduler chooses the
most suitable of the n first jobs of the queue. These
jobs are regarded as independent, so interactions
between jobs is not considered here.

4.2 Rating the Goodness of Co-
locations

As the goal is to increase server utilization, a
good co-location can be defined as one which uti-
lizes the available resources best. However, this
overlooks that co-locations which utilize resource
well can also have negative effects, in particular
interference. Consequently, the goodness measure
needs to take this into account as well and be a
trade-off between the combined resource usage of
and interference between jobs.

In this work, server utilization is defined as the
utilization of the CPU, the disks, and the network
interfaces, whereas interference between jobs is
represented by the I/O wait metric, which indi-
cates how long the CPU has to wait for I/O opera-
tions to complete. These metrics are grouped into
two categories and are defined as follows: I/O and
CPU.

I/O (disk and network). The disk and network usage
are defined by the number of bytes read r (respec-
tively received) and written w (respectively sent).
The given values are normalized to the relative
value with respect to previously defined maxima
rmax and wmax, fixed by the physical limits of the
hardware. Those two metrics are aggregated in a
non-linear way with the function h, defined as:

h(r, w) := tanh
(

r
rmax

+
w

wmax

)
.

The function tanh is used to increase the robust-
ness to errors on rmax and wmax.

CPU. The CPU usage ucpu simply represents the
percentage of used CPU. The CPU I/O wait metric
uwait is used as indicator that computation power
is lost. So, it is used to weigh down the I/O uti-
lization indicators hdisk and network hnet as they
are only saturated. As a better co-location can
certainly be found, this I/O weight function is
exponentially decreasing.

Finally, the function f is used to favor high good-
ness. Put together, the goodness measure G is
defined as:

G := f
(

ucpu +
(
h(rdisk, wdisk) + h(rnet, wnet)

)
· l(uwait)

)
,

(1)

where f (x) := exp(1 + x) and l(x) := exp(−5x).

4.3 Learning the Goodness of Co-
locations

The problem of scheduling jobs based on possi-
ble co-locations can be expressed as follows: Given
a set of running jobs, select which job should be sched-
uled next from the queue. In this paper, we cover
a simplified version of the problem where only
one job is scheduled. Furthermore, our solutions
makes three simplifying assumptions:

• The servers are considered to be homoge-
neous.
• The resources of a server are fairly shared

among the jobs scheduled on it. Thus, all jobs
are considered equal for the goodness of a
co-location.
• The current scheduling decision has no impact

on future ones.

The first two simplifications could be addressed
with weights. The last one is more complex:
scheduling a job removes it from the queue. This
can lead to less optimal co-locations later on, which
could have been partially or entirely avoided by
previously scheduling a less appropriate job. Mul-
tiple reinforcement learning algorithms address
this problem, but are more complex and, therefore,
left as future work.

In the simplified case with one application run-
ning and one application to schedule, the problem



Services Transactions on Big Data (ISSN 2326-442X) Vol. 4, No. 1, 2017 8Services Transactions on Big Data (ISSN 2326-442X) Vol. 4, No. 1, 2017 8Services Transactions on Big Data (ISSN 2326-442X) Vol. 4, No. 1, 2017 8

can be reformulated as: Given the running applica-
tion, select the application with which the co-location is
the best, i.e. the one with the highest goodness measure,
of the queue.

For this, we learn probability distributions
P(At = a | A = a′) that encode the probability
of scheduling application a at time t given that a′

is already running. That is, we learn a probability
distribution for each possible job a′. To obtain the
distribution, we learn the preferences Ht(a | a′)
and transform them into a probability distribution
using the softmax function

P(At = a | A′ = a′) := πt(a | a′) =
eHt(a|a′)

∑b∈S eHt(b|a′)
,

where S is the set of all applications. We use the
Gradient Bandits algorithm (Sutton & Barto, 1998)
to learn the preferences Ht(a | a′) for all applica-
tions a, a′ ∈ S. When a job a is selected at time t
while job a′ is already running, the preference is
updated by

Ht+1(a | a′) = Ht(a | a′)

+ γ(Gt − Ḡt)(1− πt(a | a′))
(2)

while the preferences of the not selected jobs ā 6= a
are updated by

Ht+1(ā | a′) = Ht(ā | a′)− γ(Gt − Ḡt)πt(ā | a′) ,
(3)

where γ is the step-size parameter and Ḡt the aver-
age of all previous goodness measures, including
the goodness measure Gt at time t as defined in
Equation (1). The preferences are initialized with
H0(a | a′) := 0 for all a, a′ ∈ S resulting in a uni-
form distribution. The preference updates occur
periodically. At every update, the goodness mea-
sure is computed using the mean resource usage
of the preceding time period.

This approach tracks a non-stationary problem:
As the job can have different data or parameters
for each run, it is possible that its resource usage
changes and, therefore, the goodness of particu-
lar co-locations. The other advantage is that the
choice of the scheduled application is done with
probabilities, so compared to a greedy algorithm,
a extremely bad co-location would be have consid-
erably less chances to happen again.

Starvation is not prevented currently but could
be by weighting application with respect to the
number of times they were skipped. For exam-
ple, it is possible to weight P(At = a | A′ = a′)
with some positive weight wa that encodes the wait
time of application a. Renormalizing the weighted
probabilities would then result in a probability dis-
tribution that can be used for further schedulings.

5. Implementation

This section describes the implementation of the
proposed job co-location scheduler for recurring
jobs.

5.1 Overview

The implementation is designed to work with
the cluster resource management system YARN.
Thus, it can co-locate jobs of any framework that
is supported by YARN, including systems like
MapReduce, Spark, and Flink. InfluxDB3 and Tele-
graf4 are used to monitor and store detailed server
utilization metrics of all nodes. InfluxDB is used
as central database that stores time series moni-
toring data provided by Telegraf, which runs on
each slave node. Our proposed scheduler com-
municates with YARN and InfluxDB. The mon-
itoring data from InfluxDB is used as input for
the reinforcement learning algorithm presented in
Section 3. The output of the algorithm is used for
selecting the next job from the queue of jobs. Af-
terwards, the selected job is submitted to YARN’s
ResourceManager for execution.

5.2 Scheduling Jobs

Our approach for scheduling a new application
only takes effect when there is a queue of jobs
to be executed. Otherwise, if there are sufficient
resources for all jobs, jobs are directly scheduled
and executed on the cluster. Before selecting a
job from the queue of pending jobs with our re-
inforcement learning algorithm, presented in the
Section 3, we filter out the jobs that do not fit the
available cluster resources. The next job from the
queue is selected when a job finishes. Also, when

3InfluxDB, http://www.influxdata.com/time-series-
platform/influxdb, [accessed 2016-09-19].

4Telegraf, http://www.influxdata.com/time-series-
platform/telegraf, [accessed 2016-09-19].



Services Transactions on Big Data (ISSN 2326-442X) Vol. 4, No. 1, 2017 9Services Transactions on Big Data (ISSN 2326-442X) Vol. 4, No. 1, 2017 9Services Transactions on Big Data (ISSN 2326-442X) Vol. 4, No. 1, 2017 9

Table 4: Applications used in the evaluation and their configuration.

Application Data Arguments Abbreviation

K-Means 1.25 · 108 points with 50 centers 30 iterations K-Means

Connected Components First quarter of the Twitter social graph 12 iterations CC

TPCH Query 10 500 GB of data generated with DBGEN – TPCH10
500

TPCH Query 3 250 GB of data generated with DBGEN – TPCH3
250

a new job is submitted and this job’s reservation
fits the remaining available resources, it is selected
as well. Afterwards, when a job is selected, it is
submitted to YARN’s ResourceManager for execu-
tion.

5.3 Updating the Preferences

The goodness of currently running co-located
jobs, as presented in Section 2, is measured peri-
odically in our implementation. For any interval,
all system metrics of nodes that run containers of
two distinct jobs are queried from InfluxDB. After-
wards, the goodness per combination of co-located
jobs is calculated with Equations (2) and (3). The
result then serves as input for any new job co-
location decision.

6. Evaluation

We evaluated our approach and implementation
with two workloads scheduled with both our algo-
rithm as presented in the Section 4 and a scheduler
that does not change the queue order. First the
cluster configuration is introduced, followed by a
description of the job queues used in our evalua-
tion. Then the results for both scheduling methods
are compared and the respective resource usage
analyzed.

6.1 Evaluation Setup

The cluster setup is the same as presented in Sec-
tion 1.1 except that only 16 nodes were used to run
the jobs. The applications used have different set-
tings and TPCH Query 3 is added to have another
I/O-bound application. The different parameters
are shown in Table 4. Only pairwise co-locations
are permitted. Each job uses a quarter of all con-
tainers available, thus four jobs can be scheduled

simultaneously.

Two different job queues are constructed for the
experiments. Both queues consists of 48 jobs and
alternate I/O-bound applications (TPC-H Query
10 and TPC-H Query 3) and CPU-bound applica-
tions (CC and K-Means). They are constructed as
follows:

(m · TPC-H10 + m ·K-Means
+ m · TPC-H3 + m ·CC) · n

Based on this construction, the two queues are
defined as:

1. Queue A with n = 3 and m = 4.
2. Queue B with n = 4 and m = 3.

Scheduling Strategies. Three different schedul-
ing algorithms are used three times with both
queues. They differ in their management of the
Queue As well as initialization, and are defined as
follows:

FIFO. The queue is unchanged for comparison
purposes.

Resource-aware. The queue is modified according
to the ideas described in the Section 4.

Resource-aware with previous knowledge. Extension
of the resource-aware scheduling approach by
reusing the preferences learned from a pre-
vious run to limit exploration and favor the
exploitation phase.

The same placement strategy is used for all
scheduling algorithms: At first triplets of contain-
ers are scheduled on empty nodes. When con-
tainers are placed on each node, nodes that still



Services Transactions on Big Data (ISSN 2326-442X) Vol. 4, No. 1, 2017 10Services Transactions on Big Data (ISSN 2326-442X) Vol. 4, No. 1, 2017 10Services Transactions on Big Data (ISSN 2326-442X) Vol. 4, No. 1, 2017 10

have available resources are picked randomly. The
reason for this strategy is that it is unlikely that
an application would be co-located with only one
application in a real-world scenario. Furthermore,
it increases the algorithms learning speed as it has
more different types of co-locations.

6.2 Evaluation Results

First, execution time and resource usage is
shown for both job queues. Then, the learned
job preferences are visualized.

Execution Time and Resource Usage. Table 5
summarizes the performance of the three tested
scheduling methods for the Queue A. It com-
pares the median runtime of the baseline FIFO
algorithms against the resource-aware scheduling
(RA) and resource-aware scheduling with previ-
ous knowledge (RA*) methods. It shows that both
resource-aware scheduling algorithms improve the
execution time by 7–8% compared to the baseline.

Table 5: Duration of the experiments with the Queue A.

Scheduling Duration [min] Change

FIFO 148.5 –

RA 138.5 7%

RA∗ 136.5 8%

In contrast to the duration improvement for
Queue A, there is no improvement detected for
Queue B, as shown in Table 6.

Table 6: Duration of the experiments with the Queue B.

Scheduling Duration [min] Change

FIFO 137.0 –

RA 137.0 0%

RA∗ 136.5 0%

Figure 6 shows the resource utilization for
Queue A and the FIFO as well as the resource-
aware scheduler. The resource-aware scheduler
creates a more even distribution of the resource
usage over time compared to the FIFO scheduler,
where the resource usage fluctuates more. From
this, we conclude that the improvement of duration

time for Queue A is due to the better resource us-
age. As the applications running have most of the
time a similar resource usage, the resources have
alternating phases of over- and under-utilization.
With the resource-aware algorithm this is avoided.

0 20 40 60 80 100 120 140 160

Time (min)

0%

10%

20%

30%

40%

50%

60%

70%

80%

M
ea

n
us

ag
e

ov
er

3m
in

(%
)

CPU
I/O wait
Disk read
Disk write
Network received

(a) FIFO scheduling.

0 20 40 60 80 100 120 140 160

Time (min)

0%

10%

20%

30%

40%

50%

60%

70%

80%

M
ea

n
us

ag
e

ov
er

3m
in

(%
)

CPU
I/O wait
Disk read
Disk write
Network received

(b) Resource-aware scheduling.

Figure 6: Resource usage of the Queue A.

On the other hand, there is no improvement
for Queue B the algorithm for the same reason.
As Figure 7 shows for the FIFO scheduler, is the
resource usage already distributed quite evenly.
Thus there not much room left for improvements
for optimizing the utilization.

Hence the resource-aware algorithms avoid bad
co-locations, which are indicated by fully satu-
rated disks and, therefore, lost computation power.
I/O-intensive applications are in such cases co-
located with CPU-intensive applications. There-
fore, the algorithm seems especially useful in cases
where multiple similar applications are submit-
ted in batches, while cases with a more mixed
workload would need a more refined goodness
measure.

Application Preferences. The data learned from
each experiment by the resource-aware scheduler



Services Transactions on Big Data (ISSN 2326-442X) Vol. 4, No. 1, 2017 11Services Transactions on Big Data (ISSN 2326-442X) Vol. 4, No. 1, 2017 11Services Transactions on Big Data (ISSN 2326-442X) Vol. 4, No. 1, 2017 11

0 20 40 60 80 100 120 140 160

Time (min)

0%

10%

20%

30%

40%

50%

60%

70%

80%

M
ea

n
us

ag
e

ov
er

3m
in

(%
)

CPU
I/O wait
Disk read
Disk write
Network received

(a) FIFO.

0 20 40 60 80 100 120 140 160

Time (min)

0%

10%

20%

30%

40%

50%

60%

70%

80%

M
ea

n
us

ag
e

ov
er

3m
in

(%
)

CPU
I/O wait
Disk read
Disk write
Network received

(b) Resource-aware.

Figure 7: Resource usage of the Queue B.

is a preference for an application to be scheduled
with another. It is expressed as a probability of one
application to be chosen for a co-location (queued
applications) when a specific application is sched-
uled (scheduled applications). Figure 8 illustrates
this relationship between the already scheduled
applications and the queued applications.

Queued applications

CC
Kmeans

TPCH10

TPCH3
Scheduled

applica
tions

CC

Kmeans

TPCH10

TPCH3

M
ea

n
pr

ob
ab

il
it

y
to

be
sc

he
du

le
d

0.0

0.2

0.4

0.6

0.8

1.0

Figure 8: Probability of queued applications to be selected to
run with already scheduled applications.

The connected components application is the
favorite application in the evaluation set. Every

application would prefer it to be scheduled over
the other ones. While it is unsurprising for TPC-H
Query 3 or TPC-H Query 10, it is somewhat un-
expected for K-Means as both K-Means and CC
are relatively CPU-intensive. Consequently, one
would expect that a co-location with one of the
TPC-H applications would have a higher score for
K-Means due to the additional disk and network
utilization. A similarly unexpected preference is
the one of K-Means with itself. It has approxi-
mately the same chances of being chosen as TPC-H
Query 3. TPC-H Query 10 on the other hand is
the least appreciated, particularly for both TPC-H
applications where its probability of being chosen
is less than 0.1%.

7. Related Work

This section presents three categories of related
work: frameworks for general-purpose distributed
analytics, resource managers for such systems, and
schedulers that take resource usage of analytics
applications into account.

7.1 Distributed Analytics Frameworks

MapReduce (Dean & Ghemawat, 2004) pro-
poses a programming model and an execution
model for scalable distributed execution. Pro-
grammers provide UDFs for the operations Map
and Reduce, while the framework abstracts many
of the difficulties of distributed computing, such
as inter-machine communication and failure han-
dling. Map specifies a transformation on each of
the input key-value pairs, Reduce then aggregates
tuples grouped by key. Between these two steps a
shuffle step redistributes the tuples based on their
key using a distributed file system like Google
File System (GFS) (Ghemawat et al., 2003), which
applies replication for fault tolerance.

Spark (Zaharia et al., 2010) builds upon MapRe-
duce, yet provides a more general programming
model and in-memory execution. Spark’s exe-
cution model is based on Resilient Distributed
Datasets (RDDs) (Zaharia et al., 2012), which
are distributed collections annotated with enough
linage information to re-compute particular parti-
tions efficiently in case of failures. RDDs can be
cached to support interactive and iterative work-
loads. Keeping the data in memory can improve



Services Transactions on Big Data (ISSN 2326-442X) Vol. 4, No. 1, 2017 12Services Transactions on Big Data (ISSN 2326-442X) Vol. 4, No. 1, 2017 12Services Transactions on Big Data (ISSN 2326-442X) Vol. 4, No. 1, 2017 12

the performance considerably compared to frame-
works such as MapReduce. Moreover, Spark also
provides a more comprehensive set of data trans-
formations compared to MapReduce. While Spark
uses a batch engine at its core, a stream engine
named Spark Streaming (Zaharia et al., 2013) runs
on top of it by discretizing the input stream into
micro-batches.

Flink (Carbone et al., 2015) is another general-
purpose dataflow system. Flink offers a simi-
lar programming model as Spark does, yet pro-
vides true streaming capabilities, effectively using
a streaming engine for both batch and stream pro-
cessing. Coming from the Stratosphere (Alexan-
drov et al., 2014) research project, Flink further-
more applies techniques such as automatic query
optimizations, managed memory, and native iter-
ations for increased scalability as well as perfor-
mance. Native support for iterations, for example,
speeds up iterative processing by allowing cyclic
dataflow graphs, which then only need to be sched-
uled and deployed once (Ewen et al., 2012).

7.2 Resource Management Systems

YARN (Vavilapalli et al., 2013) is a centralized
system which allocates resources to applications.
Upon admission, if an application is accepted, a
container is allocated to host the ApplicationMaster.
This framework-specific entity handles all com-
munications with YARN and negotiates resources.
Once a resource request is made, YARN attempts
to satisfy the request according to availability and
the scheduling policy by launching the requested
containers.

Mesos (Hindman et al., 2011) is comparable to
YARN, yet uses an indirect two-level approach for
scheduling. Instead of being asked for resources,
Mesos makes resource offers to application-specific
schedulers. Those can either accept or wait
for a better offer, possibly taking into account
framework- and job-specific characteristics such
as the locations of input files. When accepted
Mesos launches the provided application with the
offered resources. Fair scheduling and priorities
are enforced by controlling the offers. Hence high
priority applications will be proposed the most re-
sources. To avoid starvation, a minimum offer can
be specified. Concurrency control is pessimistic.
That is, resources are only offered to one scheduler

at a time until the offer times out.

Omega (Schwarzkopf et al., 2013) uses an ap-
proach based on optimistic concurrency control.
Rather than making resource offers, every sched-
uler has a copy of the current state of cluster re-
sources. A master copy is held by Omega. Con-
flicts are handled through atomic commits. Thus,
if two schedulers attempt to allocate the same re-
source, only one will succeed. The other one will
have to re-run its scheduling algorithm. As multi-
ple schedulers can work independently, it is possi-
ble to obtain better performance and scalability.

7.3 Resource Usage-aware Schedulers

This section presents different approaches for
incorporating the resource usage of applications
into scheduling decisions. They differ from our ap-
proach as they try either to prevent interference or
to confine it, yet do not attempt to find co-locations
that provide high overall resource utilization. They
also include low-latency user-facing applications
in addition to batch analytics. Furthermore, our
solution does not use any sort of dedicated profil-
ing and instead learns the behavior of recurring
applications over time.

Quasar (Delimitrou & Kozyrakis, 2014), which is
built on top of Paragon (Delimitrou & Kozyrakis,
2013), uses fast classification techniques to classify
applications with respect to different server config-
urations and sources of interference. An unknown
application is first profiled on a few servers and
for a short period of time. Then collaborative fil-
tering techniques are used, in combination with
offline characterizations and matching to previ-
ously scheduled ones, to classify the new appli-
cation. The result is a set of estimations of the
application’s performance with regard to different
resource allocations as well as co-locations with
other workloads.

Bubble-flux (Yang et al., 2013) measures the ef-
fect of memory pressure on latency critical applica-
tions to predict interference. Upon submission of a
known best-effort application, a dynamic "bubble"
is generated over a short time to find the limit of
admissible memory pressure on each node. As
the load varies, batch applications can be period-
ically switched off for a small period of time to
reduce their interference with latency-critical appli-



Services Transactions on Big Data (ISSN 2326-442X) Vol. 4, No. 1, 2017 13Services Transactions on Big Data (ISSN 2326-442X) Vol. 4, No. 1, 2017 13Services Transactions on Big Data (ISSN 2326-442X) Vol. 4, No. 1, 2017 13

cations, so these have an acceptable mean latency.
The same method is used to reduce the impact of
the dynamic "bubble". The pressure of new appli-
cations is measured by gradually decreasing the
period of the off phase.

Heracles (Lo et al., 2015) guarantees the re-
sources necessary for latency constraints to user-
facing applications, while using surplus resources
for co-located batch tasks. Four different isolation
mechanisms are used to mitigate interference as
necessary: partitioning of the last-level cache as
well as the CPU cores, distribution of the power
among cores to adapt their frequency, and network
bandwidth limits. Heracles needs an offline pro-
file of the applications DRAM bandwidth usage
as no accurate enough mechanism has been found
to measure it online. Heracles then continuously
monitors whether the latency critical application
fulfills its objective. If this is the case, best-effort
tasks are allowed to grow if there is enough slack.
Otherwise they need to release resources.

8. Conclusion

This paper presented an approach for schedul-
ing distributed dataflow jobs based on their re-
source usage and interference between co-located
workloads to efficiently use the resources of shared
cluster infrastructures. Using a reinforcement
learning algorithm to capture how well different
combinations of jobs utilize shared resources, the
approach does require dedicated isolated profiling
of jobs, yet continuously learns scheduling which
jobs jointly on to the cluster infrastructure is most
advantageous for overall resource utilization and
job throughput. By extending the multi-armed
bandit problem to a matrix of distributions, the
algorithm effectively learns how good pairwise
job co-locations are. The measure of co-location
goodness we used for this takes into account both
how well the resources of a node are utilized and
how much two jobs interfere with each other when
sharing resources. For resource usage, we consid-
ered CPU, disk, and network. For interference, we
incorporated I/O wait.

We implemented our approach on top of YARN.
When a new job is scheduled, the learning algo-
rithm chooses a job from the scheduling queue
based on the currently running jobs. We evaluated

our solution on a cluster with 16 worker nodes and
with two different workloads, using four different
Flink jobs. Our results show a clear improvement
for the first workload, in which sequences of jobs
with similar resource usage are submitted to the
YARN cluster. The resulting resource usage fluctu-
ates less and the execution time of the entire queue
was shortened by around 8%, when our algorithm
is used for scheduling jobs to the cluster resources.
There was no change in runtime for the second
workload, however, in which a more balanced mix
of jobs was submitted to begin with. While this
suggests that jobs might need to be co-located on
a finer granularity, this also shows that in case of
already balanced workloads our approach at least
has no negative effect.

In the future, we want to improve learning by
taking similarity between jobs into account, so
less job combinations have to be run co-located
before the scheduler can make effective decisions.
Furthermore, we want to improve the goodness
measure for co-location by taking more interfer-
ence sources into account, including, for example,
cache metrics.

Acknowledgments

This work has been supported through grants
by the German Science Foundation (DFG) as FOR
1306 Stratosphere and by the German Ministry for
Education and Research (BMBF) as Berlin Big Data
Center BBDC (funding mark 01IS14013A).

References

Alexandrov, A., Bergmann, R., Ewen, S., Freytag,
J.-C., Hueske, F., Heise, A., Kao, O., Leich, M.,
Leser, U., Markl, V., Naumann, F., Peters, M.,
Rheinländer, A., Sax, M. J., Schelter, S., Höger,
M., Tzoumas, K., & Warneke, D. (2014). The
Stratosphere Platform for Big Data Analytics.
The VLDB Journal, 23(6), 939–964.

Barroso, L. A., & Hölzle, U. (2007). The Case
for Energy-Proportional Computing. Computer,
40(12), 33–37.

Carbone, P., Katsifodimos, A., Ewen, S., Markl,
V., Haridi, S., & Tzoumas, K. (2015). Apache
FlinkTM: Stream and Batch Processing in a Sin-



Services Transactions on Big Data (ISSN 2326-442X) Vol. 4, No. 1, 2017 14Services Transactions on Big Data (ISSN 2326-442X) Vol. 4, No. 1, 2017 14Services Transactions on Big Data (ISSN 2326-442X) Vol. 4, No. 1, 2017 14

gle Engine. IEEE Data Engineering Bulletin, 38(4),
28–38.

Carvalho, M., Cirne, W., Brasileiro, F., & Wilkes,
J. (2014). Long-term SLOs for Reclaimed Cloud
Computing Resources. In ACM Symposium on
Cloud Computing, SOCC ’14, (pp. 20:1–20:13).
ACM.

Dean, J., & Ghemawat, S. (2004). MapReduce:
Simplified Data Processing on Large Clusters. In
6th Conference on Symposium on Operating Systems
Design & Implementation, OSDI’04, (pp. 10–10).
USENIX Association.

Delimitrou, C., & Kozyrakis, C. (2013). Paragon:
QoS-aware Scheduling for Heterogeneous Data-
centers. In Eighteenth International Conference on
Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’13, (pp. 77–88).
ACM.

Delimitrou, C., & Kozyrakis, C. (2014). Quasar:
Resource-efficient and QoS-aware Cluster Man-
agement. In 19th International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, ASPLOS ’14, (pp. 127–144).
ACM.

Ewen, S., Tzoumas, K., Kaufmann, M., & Markl, V.
(2012). Spinning Fast Iterative Data Flows. Proc.
VLDB Endow., 5(11), 1268–1279.

Ferguson, A. D., Bodik, P., Kandula, S., Boutin,
E., & Fonseca, R. (2012). Jockey: Guaranteed
Job Latency in Data Parallel Clusters. In 7th
ACM European Conference on Computer Systems,
EuroSys ’12, (pp. 99–112). ACM.

Ghemawat, S., Gobioff, H., & Leung, S.-T. (2003).
The Google File System. In Nineteenth ACM
Symposium on Operating Systems Principles, SOSP
’03, (pp. 29–43). ACM.

Hindman, B., Konwinski, A., Zaharia, M., Gh-
odsi, A., Joseph, A. D., Katz, R., Shenker, S.,
& Stoica, I. (2011). Mesos: A Platform for Fine-
grained Resource Sharing in the Data Center. In
8th USENIX Conference on Networked Systems De-
sign and Implementation, NSDI’11, (pp. 295–308).
USENIX Association.

Jyothi, S. A., Curino, C., Menache, I., Narayana-
murthy, S. M., Tumanov, A., Yaniv, J., Mavlyu-
tov, R., Goiri, I. n., Krishnan, S., Kulkarni, J., &
Rao, S. (2016). Morpheus: Towards Automated
SLOs for Enterprise Clusters. In Proceedings of the
12th USENIX Conference on Operating Systems De-
sign and Implementation, OSDI’16, (pp. 117–134).
USENIX Association.

Kwak, H., Lee, C., Park, H., & Moon, S. (2010).
What is Twitter, a Social Network or a News
Media? In 19th International Conference on World
Wide Web, WWW ’10, (pp. 591–600). ACM.

Lo, D., Cheng, L., Govindaraju, R., Ranganathan,
P., & Kozyrakis, C. (2015). Heracles: Improving
Resource Efficiency at Scale. In 42nd Annual
International Symposium on Computer Architecture,
ISCA ’15, (pp. 450–462). ACM.

Reiss, C., Tumanov, A., Ganger, G. R., Katz, R. H.,
& Kozuch, M. A. (2012). Heterogeneity and
Dynamicity of Clouds at Scale: Google Trace
Analysis. In Third ACM Symposium on Cloud
Computing, SoCC ’12, (pp. 7:1–7:13). ACM.

Schwarzkopf, M., Konwinski, A., Abd-El-Malek,
M., & Wilkes, J. (2013). Omega: Flexible, Scalable
Schedulers for Large Compute Clusters. In 8th
ACM European Conference on Computer Systems,
EuroSys ’13, (pp. 351–364). ACM.

Sutton, R. S., & Barto, A. G. (1998). Introduction to
Reinforcement Learning. Cambridge, MA, USA:
MIT Press, 1st ed.

Thamsen, L., Rabier, B., Schmidt, F., Renner, T.,
& Kao, O. (2017). Scheduling Recurring Dis-
tributed Dataflow Jobs Based on Resource Uti-
lization and Interference. In 6th 2017 IEEE Inter-
national Congress on Big Data (BigData Congress
2017), BigData Congress, (pp. 145–152). IEEE.

Vavilapalli, V. K., Murthy, A. C., Douglas, C., Agar-
wal, S., Konar, M., Evans, R., Graves, T., Lowe, J.,
Shah, H., Seth, S., Saha, B., Curino, C., O’Malley,
O., Radia, S., Reed, B., & Baldeschwieler, E.
(2013). Apache Hadoop YARN: Yet Another
Resource Negotiator. In 4th Annual Symposium
on Cloud Computing, SOCC ’13, (pp. 5:1–5:16).
ACM.

Verma, A., Cherkasova, L., & Campbell, R. H.
(2011). ARIA: Automatic Resource Inference



Services Transactions on Big Data (ISSN 2326-442X) Vol. 4, No. 1, 2017 15Services Transactions on Big Data (ISSN 2326-442X) Vol. 4, No. 1, 2017 15Services Transactions on Big Data (ISSN 2326-442X) Vol. 4, No. 1, 2017 15

and Allocation for Mapreduce Environments. In
8th ACM International Conference on Autonomic
Computing, ICAC ’11, (pp. 235–244). ACM.

Verma, A., Pedrosa, L., Korupolu, M., Oppen-
heimer, D., Tune, E., & Wilkes, J. (2015). Large-
scale Cluster Management at Google with Borg.
In Tenth European Conference on Computer Systems,
EuroSys ’15, (pp. 18:1–18:17). ACM.

Yang, H., Breslow, A., Mars, J., & Tang, L. (2013).
Bubble-flux: Precise Online QoS Management
for Increased Utilization in Warehouse Scale
Computers. In 40th Annual International Sym-
posium on Computer Architecture, ISCA ’13, (pp.
607–618). ACM.

Zaharia, M., Chowdhury, M., Das, T., Dave, A.,
Ma, J., McCauley, M., Franklin, M. J., Shenker,
S., & Stoica, I. (2012). Resilient Distributed
Datasets: A Fault-tolerant Abstraction for In-
memory Cluster Computing. In 9th USENIX
Conference on Networked Systems Design and Im-
plementation, NSDI’12, (pp. 2–2). USENIX Asso-
ciation.

Zaharia, M., Chowdhury, M., Franklin, M. J.,
Shenker, S., & Stoica, I. (2010). Spark: Cluster
Computing with Working Sets. In 2nd USENIX
Conference on Hot Topics in Cloud Computing, Hot-
Cloud’10, (pp. 10–10). USENIX Association.

Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S.,
& Stoica, I. (2013). Discretized Streams: Fault-
tolerant Streaming Computation at Scale. In
Twenty-Fourth ACM Symposium on Operating Sys-
tems Principles, SOSP ’13, (pp. 423–438). ACM.

Authors

Lauritz Thamsen is a PhD can-
didate at the Technische Uni-
versität Berlin, working in the
Complex and Distributed Sys-
tems group. Prior to that, Lau-
ritz earned his Bachelor’s and
Master’s degree in Software En-

gineering from Hasso Plattner Institute, University
of Potsdam, where he was part of the Software
Architecture Group of Robert Hirschfeld. His re-
search interests include distributed data processing
and programming tools.

Ilya Verbitskiy is a PhD candi-
date at the Technische Universität
Berlin, working in the Complex
and Distributed Systems group.
He received his Bachelor’s and
Master’s degree in Computer Sci-
ence from the same university.
His research interests include dis-

tributed data processing and machine learning.

Benjamin Rabier is working as
a Data Scientist at Nokia Digi-
tal Health in Paris, France. He
received his engineering degree
from the École Centrale de Lyon
and his M.Sc. in Software En-
gineering from the Technische
Universität Berlin, where he was

part of the Complex and Distributed Systems
group. His research interest include distributed
data processing and machine learning.

Dr. Odej Kao is a Full Pro-
fessor at the Technische Univer-
sität Berlin and head of the re-
search group on Complex and
Distributed IT systems. He is
also the chairman of the Einstein
Center Digital Future, which is
hosting 50 interdisciplinary pro-

fessors. Dr. Kao is a graduate from the TU
Clausthal, where he earned a Master’s degree in
Computer Science in 1995, a PhD in 1997, and an
advanced PhD in 2002. In 2002, Dr. Kao joined
the University of Paderborn, Germany as Associ-
ated Professor for Distributed and Operating sys-
tems. One year later, he became managing director
of the Paderborn Center for Parallel Computing
(PC2), where he has conducted research and many
industry-driven projects on high-performance com-
puting, resource management, and Grid/Cloud
computing. In 2006, he moved to the TU Berlin
and focused his research on cloud computing, re-
source management, QoS, anomaly detection, and
Big Data analytics. Since 1998, he has published
over 300 papers in peer-reviewed scientific confer-
ences and journals.


