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Abstract   In programming systems such as the Lively Kernel, programmers 
construct applications from objects. Dedicated tools allow them to manipulate the 
state and behavior of objects at runtime. Programmers are encouraged to make 
changes directly and receive immediate feedback on their actions. However, when 
programmers make mistakes in such programming systems, they need to undo the 
effects of their actions. Programmers either have to edit objects manually or re-load 
parts of their applications. Moreover, changes can spread across many objects. As 
a result, recovering previous states is often error-prone and time-consuming. This 
report presents an approach to object versioning for systems like the Lively Kernel. 
Access to previous versions of objects is preserved using version-aware references. 
These references can be resolved to multiple versions of objects and, thereby, allow 
re-establishing preserved states of the system. We present a design based on proxies 
and an implementation in JavaScript.  

1 Introduction 

Programming systems such as Squeak/Smalltalk [11, 9] and REPLs for LISP or 
Python allow adapting programs at runtime. Changes to programs in such environ-
ments are effective immediately and programmers can see or test right away what 
differences their actions make. Thus, these systems provide immediate feedback to 
programmers. 

A subset of such systems, which includes, for example, Self [34, 33] and the 
Lively Kernel [13, 15], are those built around prototype-based object-oriented lan-
guages [17]. In prototype-based systems programmers create applications using ob-
jects and without having to define classes first. In Self and the Lively Kernel, pro-
grammers can inspect and change the state and behavior of objects at runtime. 
Programmers create actual objects, not source code that only abstractly describes 
potential objects.  

The Lively Kernel was designed to support this kind of development [22]. It 
provides tools to directly manipulate the style, composition, and scripts of graphical 
objects. For example, programmers can change the positions and composition of 
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objects directly using the mouse. They can use temporary workspaces to manipulate 
objects programmatically. They can edit and try methods directly in the context of 
graphical objects. 

For example, to add new functionality to a graphical application, a Lively Kernel 
user might copy an existing button object and then modify the new button object: 
move the new button to a sensible position, resize it, set a new label, and add a script 
to be executed on mouse clicks. The user makes all changes directly to one button 
object. How this button fits into the application’s interface is visible at all time. 
Clicking the button allows to directly test its functionality. This way, the Lively 
Kernel allows for fast feedback, especially during the development of graphical ap-
plications. 

Programmers’ changes to objects can turn out to be inappropriate. Programmers 
can, for example, accidentally change positions or connect the wrong objects when 
manipulating applications with mouse interactions. They might try a couple of dif-
ferent alternatives such as different colors and layouts, only to realize that an earlier 
state was most appealing. Similarly, programmers might learn in hindsight that 
making a change to an object’s scripts introduced an error or impacts the applica-
tion’s performance. They might make a mistake in a code snippet, which then ma-
nipulates many objects. Moreover, problematic changes can be introduced when 
code is evaluated only to understand or test behavior, not to permanently change 
state. 

However, when changes turn out to be problematic, programmers often need to 
undo the changes manually. The Lively Kernel does not provide an undo for 
changes to objects. This is especially at odds with the Lively Kernel’s support for 
trying ideas right away: Developers are able to make changes directly and receive 
immediate feedback, but do not get support when such changes turn out to be inap-
propriate. Thus, to recover a previous development state, programmers often need 
to manually reset the state to how it previously was—probably using the same tools 
the changes were initially made with. Furthermore, this potentially involves multi-
ple properties of multiple objects changed by multiple developer actions. 

The Lively Kernel provides tools to commit and load versions of objects. In case 
such commits exist, programmers can load earlier versions of objects to re-establish 
previous states. Nevertheless, depending on how far the latest version is from the 
actually desired state, manual changes might still be necessary. To keep the effort 
to re-establish any previous state low, programmers would need to commit many 
versions. However, this contradicts the goal because committing many versions is 
also a significant effort. Some commits would be made only to protect intermediate 
states and not to share and document results. Especially when the preserved versions 
should be usable and documented, programmers would be required to test and de-
scribe many versions. 

In summary, recovering previous states of objects in the Lively Kernel is cur-
rently a significant effort for programmers. They either have to manually reset 
changed state or need to take time-consuming precautionary actions. 
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A typical approach to implementing multi-level undo for the changes to applica-
tion state is the Command pattern [8]. The Command pattern packages changes into 
actions. These actions can then be recorded to be able to subsequently undo them. 
This requires developers to implement undo operations for all possible actions. 
Therefore, an implementation of the Command pattern—even when limited to the 
Lively Kernel tools that manipulate objects—would be rather comprehensive. Fur-
thermore, using the Command pattern requires developers to follow the pattern 
when implementing new tools. The Command pattern is entirely impractical for 
undoing the effects of evaluating arbitrary code from the Lively Kernel’s work-
spaces and editors. 

Worlds [37, 36], in contrast, is a more generic approach for controlling the scope 
of side effects. Code is executed in world objects, which capture all side effects. 
The worlds can then be used to run code with particular sets of changes. Developers 
could create new worlds for all their actions and discard worlds to return to previous 
states when necessary. Therefore, it still requires programmers to explicitly take 
precautionary actions, similar to version control systems. In addition, the imple-
mentation of Worlds in JavaScript is not yet practical. For example, it currently 
prevents garbage collection. 

CoExist [28, 29] provides automatic recovery support without requiring devel-
opers to take precautionary actions. CoExist automatically records versions for 
every change and, thereby, provides a fine-grained history of intermediate develop-
ment states. Programmers can review the changes chronological, examine the im-
pact each change had, and re- establish previous versions. However, CoExist cur-
rently recognizes only changes made to the source code of classes. Its versions do 
not include the state of objects. 

This thesis proposes an approach for versioning the entire state of programming 
systems as basis for automatic recovery support. In particular, this thesis introduces 
an approach to preserving and managing versions of all objects using alternative, 
version-aware references. Version-aware references are alternative references as 
they refer to multiple versions of objects. They resolve transparently to particular 
versions. Versions of objects are preserved together, so that version-aware refer-
ences can be resolved transitively to the state of a particular moment. For this to be 
practical, versions of objects are kept in the application memory and the state of all 
versions is preserved incrementally on writes. To which versions the version-aware 
references resolve can be changed without significantly interrupting program exe-
cution: The version-aware references select the current versions dynamically in-
stead of being hard-wired to specific versions. 

We implemented our approach in JavaScript. The implementation does not re-
quire adaptions to established execution engines. Proxies [3, 6] are used to imple-
ment version-aware references: conventional references point to the proxies and the 
proxies delegate all object interactions transparently to particular versions of ob-
jects. Source transformations introduce proxies consistently for all objects. There-
fore, programmers do not need to adapt their programs manually. 
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The approach supports fine-grained histories of development states. Not every 
state can be re-established, but versions that have been preserved. In this, the pre-
sented solution is a basis for recovery support that continuously preserves versions.  

2 Background 

This chapter describes prototype-based programming, the Lively Kernel, and Co-
Exist. These works are the background of this thesis as we introduce an approach 
for providing CoExist-like recovery support in prototype-based programming sys-
tems, which we implemented for the Lively Kernel. 

2.1 Prototype-based Programming 

Prototype-based programming is object-oriented programming in which applica-
tions are created directly with objects, without requiring developers to define classes 
first.  Self, JavaScript, and Kevo [32] are prototype-based programming languages. 
Many end- user programming systems such as Scratch [25], Etoys [14], and Fabrik 
[12] also enable users to express programs using objects. 

Prototype-based programming allows building applications from particular ob-
jects. This is the fundamental difference to the class-based style of object-oriented 
programming, in which programs are expressed with classes. Each part of a proto-
type-based program has particular state. 

There are different advantages associated with this kind of programming: 

• [30] and [17] suggest that it might be easier for programmers to understand con-
crete examples than to grasp abstract classes. A concrete example provides par-
ticular values for its state and, in case of objects with a visual appearance, can be 
actually looked at. 

• [34] and [2] describe how prototype-based programming makes it easier to in-
troduce one-of-a-kind objects with their own structure or behavior. 

• [2] and [24] argue that especially editing visual objects can be more concrete 
with prototypes. Instead of writing code that describes the appearance of objects, 
programmers can manipulate visual objects directly. Programmers could, for ex-
ample, use the mouse to manipulate properties like the size, position, or to com-
bine multiple elements. This way, programmers always see intermediate states 
instead of only receiving feedback on explicit test runs in-between edit-compile-
load cycles. 

 

Editing Graphical Objects at Runtime Many prototype-based programming sys-
tems, including the examples given in this section, allow manipulating objects at 



How to Compare Performance in Program Design Activi-
ties    5 

runtime. Scratch, Etoys, Fabrik, the Lively Kernel, and Self all provide tools dedi-
cated to manipulating graphical objects directly. Such graphical objects range from 
basic objects like primitive shapes to complete applications like presentation soft-
ware or programming tools. Prototype-based programming, programming at 
runtime, and direct manipulation of graphical objects seem to be properties that suit 
each other. 
 
Similar Objects Without Classes Different prototype-based programming systems 
provide different approaches for creating similar objects. Self and JavaScript incor-
porate delegation to allow for prototypical inheritance. Objects can inherit state and 
behavior directly from other objects: each object has a prototype to which it dele-
gates whenever looking up a property in the object itself yields no results. In Self, 
the prototype of an object is set when objects are cloned: The clone’s prototype is 
the object it was cloned from.  

In JavaScript, objects are created from constructor functions. The constructor 
function’s prototype becomes the prototype of created objects. Kevo, in contrast, 
does not incorporate this notion of prototypical inheritance. It provides concatena-
tion for incremental modification of objects [31]. Objects are copied to create ob-
jects with the same state and behavior as existing objects. These objects are self- 
contained. Changing an object only changes that particular object and a particular 
object can only be changed by directly changing it, not by changing any other ob-
ject. To adapt many objects at once, programmers can use so-called module opera-
tions in Kevo. Module operations are evaluated for groups of objects. 

2.2 The Lively Kernel 

The Lively Kernel is a programming system in the tradition of Smalltalk and Self. 
Development happens at runtime. It incorporates tools and techniques to be com-
pletely self-sufficient. Thus, programmers can create versions of the Lively Kernel 
with the Lively Kernel. The Lively Kernel is a browser-based system. It is imple-
mented in JavaScript and renders to Hyper Text Markup Language (HTML). 

Programming with Prototypes and Classes 

As the Lively Kernel is based in JavaScript, the system and applications are ex-
pressed in a prototype-based object-oriented language that provides prototypical in-
heritance. At the same time, the Lively Kernel also provides a class system and 
considerable parts of the system are expressed using classes. 

The Lively Kernel implements Morphic [24], a framework for developing graph-
ical applications. The graphical objects of this framework are called Morphs. Each 
morph has a class but can also have object-specific behavior. They can be created 
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by instantiating a class or by copying an existing morph. Morphs are often edited 
directly and not through adapting existing or creating new classes. This way, the 
Lively Kernel mixes the class-based with the prototype-based style of object-ori-
ented programming. 

The Lively Kernel’s copy operation does not establish a prototypical inheritance 
relationship between the copy and the original. Instead, it creates a full copy of the 
original morph’s properties, including its class. Therefore, even though JavaScript 
incorporates prototypical inheritance, the Lively Kernel encourages programmers 
to use classes to share behavior among objects. 

 
Fig. 2.1: The halo buttons of a basic morph. 

 

 
Fig. 2.2: Three tools of Lively Kernel to manipulate morphs: the Inspector, the 

Style Editor, and the Object Editor. 

Direct Manipulation of Morphs 

Programmers can change the position of morphs by dragging and the composition 
by an alternative dragging, called grabbing. When a morph is grabbed, it can be 
added to another morph and becomes that morph’s submorph. This way, a morph 
does not have to be a basic shapes or simple widgets, but can be the interface of any 
application. 

The Lively Kernel provides a set of manipulation tools, called Halos, as shown 
in Figure 2.1. Developers can bring up these tools for each morph. The different 
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buttons of a morph’s halo allow, for example, resizing, rotating, and copying 
morphs. Other halo buttons open specific tools, which are shown in Figure 2.2: 
 

1. The Inspector (1) presents all the values that make up a morph’s current state. It 
also has a small code pane at the bottom that can be used to manipulate the 
morph’s properties programmatically. 

2. The Style Editor (2) allows manipulating certain aspects of a morph’s visual ap-
pearance. Programmers can use it to change, for example, a morph’s color, bor-
der width, or the layout of its submorphs. 

3. The Object Editor (3) is a tool to edit the object-specific behavior of morphs. It 
shows all scripts of a particular morph and allows programmers to add, remove, 
and edit scripts. 

 

 

Fig. 2.3: The Lively Kernel’s Parts Bin opened on the Tools category. 
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Saving Morphs to the Shared Parts Bin Repository 

A related tool is the Lively Kernel’s Parts Bin [23], an object repository to commit 
and load specific versions of morphs. Morphs saved to the Parts Bin are called parts 
to emphasize the ability to reuse any of the morphs in the Parts Bin for other 
Morphic applications. Figure 2.3 shows the Parts Bin, opened on the Tools category, 
which includes both the Style Editor and the Object Editor. Both these tools are 
examples for graphical applications developed from available parts. Their function-
ality is expressed in scripts and they are available to users through the Parts Bin. 

The root of the scene graph of visible morphs is called World. Worlds are not 
shared via the Parts Bin, but can be saved as Web pages. A world stores the state of 
all visible morphs when saved and that state can be reloaded with the world. 

2.3 CoExist 

 

Fig. 2.4. Conceptual figure of CoExist featuring continuous versioning, running tests and record-
ing the results in the background, and side by side exploring and editing of multiple versions. 

CoExist preserves fast and easy access to previous development states [15]. It is 
based on the insight that the risk for tedious recovery is caused by the loss of im-
mediate access to previous development states. With every change, the previous 
version is lost, unless it has been saved explicitly. This version, however, can be of 
value in future development states, when, for example, an idea turns out inappro-
priate. For that reason, CoExist creates a new version for every change to the code 

55 passes

3 failures

2 errors
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base. Users can rapidly switch versions or can access multiple versions next to each 
other. CoExist thus gives users the impression that development versions co-exist. 
Figure 2 illustrates some of the main user interfaces concepts of CoExist. It contrib-
utes the following concepts and tools: 

• Continuous Versioning creates new versions in the background based on the 
structure of programs. It enables programmers to go back to a previous develop-
ment state and to start over, which will implicitly create a new branch of versions. 

• User Interface Concepts support browsing and exploring version information as 
well as identifying a version of interest fast. Two different tools are provided. 
First, the version bar highlights version items that match the currently selected 
source code element. Hovering the items will display additional information such 
as the kind of modification, the affected elements, or the actual change per-
formed. Second, the version browser allows for exploring multiple versions at a 
glance. The version browser displays basic version information in a table view, 
which allows for scanning the history fast. 

• Additional Environments to explore static and dynamic information of previous 
development states next to the current set of tools. Opening an addition environ-
ment is useful, when, for example, the programmer suddenly becomes curious 
about how certain parts of the source code looked previously or how certain ef-
fects were achieved. The additional environments also al- low for running and 
debugging programs. With that, users are capable of efficiently recovering 
knowledge from previous versions, which avoids the need for a precise under-
standing of every detail before making any changes. 

• Continuous and Back-in-time Analysis for test cases and other computations. Co-
Exist continuously runs analysis programs for newly created versions. As a de-
fault, it runs test cases to automatically assess the quality of the change made. 
The test result for a version is recorded and presented in the corresponding item 
of the version bar (left of Figure 2). The user can also run other analyses such as 
performance measurements. In addition to the continuous analysis features, Co-
Exist provides full access to version objects and offers a programming interface 
to run code in the context of a particular version. So, whenever programmers 
become interested in the impact of their changes, they can easily analyze them 
in various respects. This allows programmers to ignore these aspects of program-
ming at other times. 

• Re-assembling of Changes for sharing independent improvements in separate 
commits. Users can extract selected changes to a new branch, test the result, and 
commit the achieved increment. 

With CoExist, programmers can change source code without worrying about the 
possibility of making an error. They can rely on tools that will help with whatever 
their explorations will turn up. They no longer have to follow certain best practices 
in order to keep recovery costs low. 
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3 Motivation 

In the Lively Kernel, programmers can create applications by manipulating and 
composing graphical parts. This chapter presents the development of such parts and 
related recovery needs by example. 

3.1 Part Development by Example 

To exemplify how developers work directly on objects in the Lively Kernel, we will 
outline how a Lively Kernel user adds a new feature to the Object Editor. 

The editor has been developed by composing and editing graphical objects. Thus, 
the user does not adapt any source code modules to change the editor, but rather 
manipulates objects directly. 

 

 

Fig. 3.1: The Object Editor’s magnifier button highlighted with a red outline. 

In this example, the user adds a magnifier tool to the Object Editor. The magnifier 
tool helps finding the editor’s target, which is the object the editor currently presents 
scripts for. Implementing the new feature requires to create a new button morph and 
to add it to the editor, as shown in Figure 3.1. The magnifier button has two features: 

1. When a programmer hovers over the button, the Object Editor’s current target is 
highlighted with a rectangular overlay. 

2. When a programmer clicks the button, the current target selection is revoked and 
the programmer can select the new target of the editor. 
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The following description covers the first of the two features, which is also shown 
in Figure 3.2 for an Object Editor currently targeting the character of a game. 

 

Fig. 3.2: The Object Editor’s magnifier button as it highlights the editor’s target. 

 

Fig. 3.3. Directly manipulating a button morph. 

Manipulating the Button Morph Before implementing the button’s behavior, the 
user first creates the button and manipulates its visual appearance. Figure 3.3 shows 
the steps in which the button is manipulated. A basic button, as visible in (1), can 
be found in the Parts Bin repository. In (2), the user resizes the button and gives it 
a square extent using the Resize halo button. Next, the user loads an image showing 
a magnifier icon. Using drag and drop, the image is added to the button in (3). Drop-
ping a morph onto another connects the two morphs. Moving the button around will 
then move the image accordingly. Finally, the user adds the result of these manipu-
lations, visible in (4), to the Object Editor. 

All these changes are made directly to the state of objects: the button morph, the 
magnifier image morph, and the editor morph. When programmers edit parts in 

1 2 3 4
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this way, they often see the effects of their actions immediately. For example, when 
adding the new button to the Object Editor, the button is visible at all times. Pro-
grammers do not need to run any code to see and test the button. 

 
Scripting the Button Morph Now the user implements the button’s behavior. The 
user adds scripts to the button that lay a translucent rectangle over the current target. 
In particular, the button receives two scripts: onMouseMove and onMouseOut. The 
implementation of the behavior includes the following: 

• The button holds a semitransparent rectangle morph. 
• When the mouse enters the button (onMouseMove), the button resizes and adds 

the rectangle to the Lively Kernel world at the position of the target. 
• When the mouse leaves the button (onMouseOut), the button removes the rectan-

gle from the world again. 
 
The Lively Kernel’s scripting tools allow evaluating code in the context of their 
target objects. Hence, when programmers want to test a script or even just specific 
lines of code, they can try the behavior directly for the actual target. 

3.2 Recovery Needs When Developing Parts 

While manipulating objects directly, developers might make changes that they later 
want to undo. For example:  

• Accidental changes to state: The user could accidentally move a morph and, 
thereby, change a carefully arranged layout. Similarly, meaningful state can be 
lost when a morph, for example the new button, is accidentally removed from 
the world.  

• Inappropriate changes through direct manipulation: The user could make 
changes to the size, position, and colors of morphs to fine-tune the visual appear-
ance of the editor’s interface, only to decide later that a particular intermediate 
version was most appealing.  

• Accidental changes to scripts: The user could introduce a typographical error 
to or accidentally remove a script. Moreover, editing a script could introduce a 
defect or a decrease in performance.  

• Inappropriate changes through scripts: The user could make a mistake in a 
workspace snippet that is intended to manipulate morph properties programmat-
ically. Such a snippet can change many properties of many objects.  
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Fig. 3.4. The button’s onMouseMove script with a text selection. 

Explorative Script Evaluation Undesirable changes can also be introduced when 
a programmer explores the behavior of objects by evaluating scripts. The Object 
Editor allows evaluating code directly for its target object. While such evaluation 
might help to understand the effects of particular code, it might also change the state 
of objects. For example, the user could be working on the button’s onMouseMove 
script and could evaluate a few lines of code to quickly test them. These lines, as 
shown in Figure 3.4, would add the rectangle to the editor’s current target. Only 
evaluating the selected lines would, however, neither check the conditions usually 
checked above nor set the state usually set below the selected lines. Therefore, eval-
uating this selection allows testing the highlighting behavior but leaves the system 
in a state it normally would not be in. 

 

 

Fig. 3.5: Adding a submorph changes the state of a morph. 

: World

extent = aPoint  
(x: 800, y: 600) 
!
submorphs = [… 
…]

: World

extent = aPoint  
(x: 800, y: 600) 
!
submorphs = [… 
aRectangle …]

State 1 State 2



14   Steinert, Hirschfeld 

The examples show that there are many situations in which the user might want 
to undo previous actions. In programming systems like the Lively Kernel, where 
programmers work on objects, changes are always made to the state of objects. 
Functions are properties of objects. Even classes and modules are objects. 

For example, evaluating the text selection in Figure 3.4 changes the world ob-
ject’s state. The world object has now one more submorph, as shown in Figure 3.5. 
Thus, the world’s collection of submorphs is changed. 

4 Object Versioning 

This section introduces our approach to preserving access to previous states in sys-
tems like the Lively Kernel. The approach is based on alternative, version-aware 
references that manage versions of objects transparently. The section also presents 
a design that allows implementing version-aware references using proxies. 

4.1 Version-aware References 

In different versions of a system, objects have different states. 

Versions of Objects 

An object could represent an address. The state of such an address object could be 
as shown in Figure 4.1. 

 

 

Fig. 4.1: An address object with three properties. 

If values are assigned to the city and number fields of the address object, the object’s 
state is changed. As the address object’s state is part of the system state, changing 
the object’s state changes the system state as well. If we call the initial state version 
v1 and the state after making changes to the object version v2, the state of the ad-
dress object is different in the two versions of the system, as shown in Figure 4.2. 

: Address

street=Kantstr. 
number=null 
city=null
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Fig. 4.2:  Two versions of an address object in two versions of the system. 

To be able to recover previous versions after making changes, the previous states of 
objects need to be accessible. For this reason, versions of objects are preserved and 
changes are made to new versions of the objects. A version of an object is, in the 
simplest case, a copy of an object. When the address object is changed in version 
v2 of the system, the system does not change the original address object but the 
copy. 

 

 

Fig. 4.3: Preserving the previous version of the address object. 

: Address

street=Kantstr. 
number=null 
city=null

: Address

street=Kantstr. 
number=148 
city=Berlin

v1 v2

: Address

street=Kantstr. 
number=null 
city=null

v1 v2

: Address

street=Kantstr. 
number=null 
city=null

: Address

street=Kantstr. 
number=148 
city=Berlin
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As shown in Figure 4.3, there are now two versions of the address objects in version 
v2 of the system. One of the objects holds the original state, while the other holds 
the state the object should have in version v2 of the system. The two objects hold 
no information that indicates to which version of the system they belong. They also 
do not store any information showing that one object is a copy of the other. 

 

Fig. 4.4: A reference refers to the previous version of the address object. 

At the same time, references to objects remain unchanged. For example, there 
could have been a person object referring to the address object. This reference 
would still be referring to the original address object, even in version v2 of the sys-
tem, as shown in Figure 4.4. Even after adding values to the fields of the address 
object, the following statement would still return true when aPerson refers to the 
person object: 

 
aPerson.address.city === null 

Version-aware References 

Our approach uses version-aware references. Version-aware references know the 
available versions of an object and always resolve to one of those. Furthermore, 
version-aware references know which object version belongs to which system ver-
sion. None of the versions is hard-wired to be the active version. Instead, the ver-
sion-aware references resolve dynamically to the correct versions using context in-
formation. 

Apart from that, the version-aware references behave like ordinary references. 
They can be assigned to variables and object fields, and are passed around. 

: Address

street=Kantstr. 
number=null 
city=null

: Person

name=Joe 
!

address

: Person

name=Joe 
!

address

v1 v2

: Address

street=Kantstr. 
number=null 
city=null

: Address

street=Kantstr. 
number=148 
city=Berlin
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When the person object uses a version-aware reference to refer to its address 
property, it can resolve to the versions of its address object. The version-aware ref-
erence knows both versions of the address object. In version v2 of the system, it 
resolves to the second version of the object, as shown in Figure 4.5. 
 

 

Fig. 4.5: A version-aware reference relates a person object to two versions of its  
address property. 

In the same way, multiple version-aware references can be resolved as one path 
through a graph of versions. The version-aware references all choose versions of 
objects that belong to the same system state and, thereby, form the object graph of 
that state. 

 

 

runtime version = v2

: Person

name=Joe 
!

: Address

street=Kantstr. 
number=null 
city=null

: Address

street=Kantstr. 
number=148 
city=Berlin

address

v1

v2

Version-aware Reference

: Company

CEO

: Person

: Person
: Address

street=Friedrichstr. 
number=112b 
city=Berlin

address

address

v1

v3

v1

v2

v3

name=Joe 
!

name=Jimmy 
!

: Address

street=Kantstr. 
number=null 
city=null

: Address

street=Kantstr. 
number=148 
city=Berlin

runtime version = v2

Version-aware Reference
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Fig. 4.6. An object graph with version-aware references. 

Figure 4.6 shows an object graph that incorporates the previous example. The pre-
viously presented person object is a company object’s CEO property. While the 
example shows that version v2 is active, it also indicates a version v1 and a version 
v2 of the system. In version v1, the company’s CEO has incomplete address infor-
mation. In version v3, the company has a different CEO. 

Versions of the System 

To establish different versions of the system, the version-aware references have to 
resolve to different versions of objects. The version-aware references choose ver-
sions dynamically following a version identifier. Only this version identifier has to 
be changed to have version-aware references resolve to other versions of objects. 
For example, to undo the changes made with version v2 of the system, the version 
identifier would need to be set to v1 again. 

Given the example situation from Figure 4.6 and given aCompany refers to the 
company object, the following statement would refer to three different values de-
pending on the version identifier: 

 
aCompany.CEO.address.number 

Evaluating the statement in version v1 would return the value null, in version v2 the 
value 148, and in version v3 the value 112b. 

The information that one version is the predecessor of another version can be 
used to resolve to an earlier object version when no current version is available. 
This allows creating new versions of objects only when necessary. 

The version identifier needs to be accessible to the version-aware references. It 
could be available globally, to have a single active version of the system, but could 
also be scoped more locally such as thread-local or in the dynamic scope of a code 
block. It should, however, not be changed while multiple version-aware references 
of an object graph are resolved transitively. Consequently, the version-aware refer-
ences involved in evaluating the previous example statement should be resolved 
together for the same version identifier. 

To be able to actually re-establish a particular version of the system with our 
approach, two requirements need to be fulfilled: First, all mutable objects of the 
programming runtime need to be accessed via version-aware references. Second, 
the particular version of the system needs to be available. Our approach does not 
allow re-establishing every state but specific states that have to been preserved. Pro-
grammers could preserve versions explicitly or the programming system could do 
so implicitly. When the programming system automatically preserves versions, 
each programmer action could implicitly yield a new version of the system. This 
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way, programmers could undo and redo the changes of their actions regardless of 
whether or not they preserved a version in anticipation of recovery needs. 

Discussion 

The presented approach is incremental, not a stop-the-world approach. The version-
aware references allow to preserve and re-establish versions of the system without 
completely halting the program execution. First, the version-aware references re-
solve dynamically to particular versions based on context information. Only this 
context information has to be changed to have all references resolve to another ver-
sion. The version-aware references do not have to be re-configured individually. 

Second, versions of the system are preserved incrementally. Instead of saving 
the state of all objects the moment a version is preserved, new versions of objects 
are created only when objects change. Before such writes, previous object versions 
continue to reflect the current state and can be read until they are changed. 

4.2 Using Proxies as Version-aware References 

We used proxies to implement version-aware references in JavaScript. Instead of 
actually requiring alternative references, proxies are referred to by ordinary refer-
ences and transparently delegate to versions. This way, proxies allow a language-
level implementation of version-aware references that works with existing JavaS-
cript engines. 

 

Fig. 4.7. Using a proxy as version-aware reference to connect a person object to two versions of 
an address object. 

: Person

name=Joe 
!
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versions
xx

versions : Dict

xx
: Proxy
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Proxies as Version-aware References 

Figure 4.7 exemplifies how a proxy implements a version-aware reference in our 
solution. The proxy connects a person object to the two versions of its address prop-
erty. The person holds an ordinary reference to the proxy in its address slot. The 
proxy in turn knows which versions are available for the address object. 

When the address property of the person object is accessed, the proxy forwards 
the access transparently to a version. For example, in version v2 of the system as 
indicated in Figure 4.7, even if the address property is a proxy, reading the proxy’s 
city property returns the string Berlin. Given aPerson refers to the person object, 
evaluating the following statement returns true in version v2: 

 
aPerson.address.city === Berlin 

The statement does not include any version information. In particular, it does not 
read a specific version from a table of available versions. Instead, the proxies inter-
cept all object interactions and forward to specific versions transparently. They ful-
fill three responsibilities: 

1. They know which versions are available for a particular object. 
2. They choose a particular version among all available dynamically using context 

information. 
3. They forward all interactions transparently to a chosen version. 

The proxies in this design are virtual objects [35]. They do not stand in for specific 
objects, but can forward intercepted interactions to any object. 

Using Proxies Consistently 

The proxies need to be used consistently for all mutable state. Ordinary references 
that usually refer to an object need to refer to the proxy that stands in for the object. 

To use proxies consistently, we create and return proxies for all new objects. All 
expressions that create new objects return proxies for those objects instead. This is 
achieved by transforming code before it is executed. The source transformations 
wrap object literals and constructor functions into proxies. The proxies also always 
return proxies as return values. Thus, when proxied constructors are used, the con-
structors return proxies for the new objects. 

The reference to the initial version of an object is only available to the proxy. 
The reference to the proxy is passed around instead. For this reason, all references 
that would usually point to the same object point to the same proxy. This way, prox-
ies provide object identity. Checks that would usually compare an object to another 
objects now compare a proxy to another proxy. 

As only the proxies hold references to the versions of objects, the versions get 
garbage collected with the proxies when the proxies are no longer reachable. For 
example, in the code of Listing 4.1, there would temporarily exist a version-aware 
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reference—a proxy— connecting the person object to an address object, but the 
reference gets deleted before a version of the system is preserved. The address ob-
ject is not required to re-establish either version 1 or version 2 of the system and 
nothing does prevent the garbage collector from reclaiming the proxy for the ad-
dress object with the address object. 

 
var person = {name: "Joe"}; 

 

 \\ [preserve first version]  

person.address = {street: "Kantstr.", 

             number: "148", 

                  city: "Berlin"}; 

 

delete person.address;   

 
\\ [preserve second version] 

Listing 4.1: A newly created object is not preserved with any version. 

Versions of the System 

Proxies delegate to and create versions of an object using a version of the system. A 
version of the system is an object that has a version identifier, a predecessor version, 
and a successor version. Figure 4.8 shows three system versions. In the example, 
version v2 is the current version of the system. 
 

 

Fig. 4.8: Four versions of the system. 

 

v1 v2 v3

next next

previous previous

System Version Object 
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Fig. 4.9: A proxy with two object versions in context of the system versions. 

The current version of the system is accessible to the proxies. Proxies use it to 
decide to which version of an object they currently should forward. Figure 4.9 
shows a proxy, versions of an object, and versions of the system. In this example, 
there are two object versions that correspond to the two system versions. The current 
version of the system is v2 and, therefore, version v2 of the object is the target that 
the proxy currently forwards to. 

As long as the system version stays the same, the proxies forward to the same 
version of the object. Therefore, an object version is changed only as long as it 
matches the current system version. To re-establish the previous version, the system 
version has to be set to its predecessor. In that case, proxies forward interactions to 
previous versions of the objects. To preserve the current version, the system version 
has to be set to a different version. The proxies forward interactions to other object 
versions or, when no such version of the object exist, create new versions. 

A situation in which a new version of an object is created is shown in Figure 
4.10. In a new version v3 of the system, the proxy intercepts a manipulation but has 
no object version it can forward to. It, therefore, copies the most recent version of 
the object and forwards to the copy. 

New versions are only necessary when a proxy is about to delegate manipula-
tions. As long as the state of an object is only read, the proxy reports values from a 
previous version as the old version of the object still reflects the current state. To 
create a new version, a proxy copies the most recent previous version of the object. 
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Fig. 4.10. A new version of an object is created for a new version of the system. 

Limitations 

The current design allows to preserve and re-establish versions of the system. With-
out further components, however, these versions only exist in memory and are not 
stored to disk. Our current design does not support multiple predecessors or succes-
sors. Another limitation of the current design is that the state of previous versions 
can be changed. New versions of objects are not affected by changes to previous 
versions, but changes to object versions that have not been copied shine through in 
subsequent versions of the system. 

In the future, the versioning might allow for branches and merging. Changes to 
previous states could then be handled in branches that programmers may or may not 
merge into future versions. 

5 Related Work 

This sections presents two categories of related work:  

1. Approaches related to our motivation and, thus, to providing access to previous 
versions of the system state. 
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2. Approaches related to our technical solution and, thus, to combining changes 
into first-class objects that can be used to scope changes. 

7.1 Recovering Previous System States 

The approaches presented in this section support programmers in recovering previ-
ous states without requiring programmers to create snapshots in advance.  

CoExist 

CoExist [28] provides recovery support through continuous versioning in 
Squeak/Smalltalk. For each change made to source code, CoExist creates a new 
version of the system sources, resulting in a fine-grained history of changes. CoEx-
ist presents this his- tory in a timeline tool and a dedicated browser. For each ver-
sion, those tools show the changes, test results, and a screenshot. Developers can 
recover previous development states, even without taking precautionary actions be-
forehand. This way, developers can concentrate on implementing their ideas and let 
CoExist record the required versions to be able to recover when necessary. 

Both CoExist and our approach to object versioning allow multiple versions of 
the development state to coexist. With both approaches, preserved versions are part 
of the program runtime and can be re-established easily. Currently only CoExist 
records versions continuously on the granularity of changes made by developers. 
CoExist provides much more tool support to find and recover changes from previ-
ous versions. However, CoExist recognizes only changes to the source code of clas-
ses, while our system preserves the state and behavior of objects. 

Back-in-Time Debugging 

Back-in-time Debuggers [16], also known as Omniscient Debuggers, allow devel-
opers to inspect previous program states and step backwards in the control flow to 
undo the side effects of statements. Approaches for this are either based on logging 
or replay: either the debugger records information to be able to recreate particular 
previous situations, requiring mainly space for the different states, or the debugger 
re-executes the program up to a particular previous situation, requiring mainly time 
to re-run the program. While many logging-based approaches introduce significant 
execution overheads, replay-based approaches have to ensure that the program is 
re-executed deterministically, which can be a difficult problem when, for example, 
programs can rely on state outside of the program runtime such as the content of 
files or the state of other programs. 
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Our approach is more related to logging-based back-in-time debugging. It allows 
re- establishing a previous state through preserving information. However, back-in-
time debuggers need to be able to undo the effects of each statement separately, 
while our system’s versioning granularity is arbitrarily and can, for example, corre-
spond to programmer interactions with the system. In general, back-in-time debug-
gers support a particular development task—debugging—and, thus, are also often 
only active when a program is started in a separate debugging mode. In contrast, the 
purpose of object versioning is more comprehensive. We expect object versioning 
to be active at least during all development tasks, but possibly even be enabled at 
all times. 

Software Transactional Memory 

Software Transactional Memory (stm) [27] captures changes to values in transac-
tions, analogous to database transactions. Each transaction has its own view of the 
memory, which is unaffected by other concurrently running transactions. Multiple 
versions of the system state can coexist. Which version is read and written to de-
pends on the transaction. Transactions contain a number of program statements that 
are executed atomically. The changes of a transaction are only permanent when no 
conflicts occur with other transactions. On conflicts, all changes from the transac-
tion are rolled back and undone. 

stm and our approach are similar in that multiple versions of the system state can 
coexist and that a previous state can be re-established if necessary. However, stm 
provides concurrency control and an alternative to lock-based synchronization, 
while our approach provides recovery support to developers when changes turn out 
inappropriate. stm transactions are automatically rolled back when changes conflict 
with changes from other concurrently running transactions, while our versions are 
offered to programmers to undo changes when necessary. Programmers can actively 
decide to undo changes when these, for example, negatively impact the functional-
ity, design, or performance of programs. Our versions of the runtime are also first-
class objects, which can be stored in variables and be re-established at any time, 
while transactions are always created implicitly through particular control structures 
and committed immediately upon success. 

6.2 Dynamically Scoping First-class Groups of Changes 

The approaches presented in this section allow combining changes into first-class 
objects and running code with particular sets of changes. 

Worlds 
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Worlds provide a language construct for controlling the scope of side effects: 
changes to the state of objects are by default only effective in the world in which 
the changes occurred. These worlds are first-class values and can be used to execute 
statements with particular side effects being active. A new world can be spawned 
from an existing world, which establishes a child-parent relationship between the 
two worlds. Developers can commit changes from a child world to its parent world, 
thereby extending the scope of the captured side effects. The Worlds approach in-
cludes conditions that prevent commits that would potentially introduce inconsist-
encies. 

In comparison, Worlds provides a language construct for experimenting with 
different states of the system, while object versioning allows to preserve versions 
of the system to recover previous states: Our approach does not include extensions 
to the host programming languages and no conditions for combining versions with 
their predecessor versions, but provides a basis for CoExist-like continuous version-
ing and recovery tools. 

Other differences between Worlds and our approach regard the implementations. 
Our implementation in JavaScript does not prevent garbage collection as Worlds 
does. Further, both use different libraries for source transformations. Our source 
transformations are faster and do not use JavaScript exceptions. 

Object Graph Versioning 

Object Graph Versioning [26] allows programmers to preserve access to previous 
states of objects. Fields of objects can be marked as selected fields. When a snapshot 
is created, the values of these selected fields are preserved. Therefore, not every 
state can be re- established, but states that are part of global snapshots. The ap-
proach, thus, provides fine-grained control to programmers regarding which fields 
of which objects should be preserved when. 

The technical solution is similar to our design. Analogous to our proxy-based 
version- aware references, selected fields do not refer directly to their actual values, 
but to chained arrays that manage multiple versions of the state of a field and dele-
gate access to the current version transparently. The chained arrays decide which 
version to retrieve and when to create new versions using a global version identifier. 
In contrast to our solution, individual fields are versioned and only when program-
mers explicitly mark them as selected. 

Object Graph Versioning aims to support implementing application-specific 
undo/redo or tools like back-in-time debuggers. In contrast, our approach to object 
versioning aims to support recovery of previous system states during the develop-
ment of arbitrary applications. 

Context-oriented Programming 
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Context-oriented Programming (COP) [10, 1] adds dedicated language constructs 
for dynamic behavior variations. Depending on context information, cop allows en-
abling and disabling layers, which contain methods to be executed instead or around 
methods of the base programs. Context information can be any information that is 
computationally accessible. Layers can be enabled and disabled at runtime. Differ-
ent implementations of cop provide different mechanisms to scope the activation of 
layers: for example, layers can be activated explicitly for a particular scope or glob-
ally for the entire runtime. ContextJS [20] it is possible to activate layers for specific 
objects. 

In comparison to our approach, COP allows to activate combinations of layers, 
while our system executes code using a single active version. In cop layers are in-
dependent, while our versions are predecessors and successors of each other.  

COP aims at supporting the separation of heterogeneous crosscutting concerns, 
while object versioning aims at supporting developers with the recovery of previous 
states. However, [21] showed that cop can also be used to experiment with changes 
to a system: developers can implement experimental changes to behavior in layers, 
not to modularize context-dependent adaptions, but to be able to scope changes dy-
namically and recover the original system behavior easily. However, this requires 
programmers to make experiments explicitly. They need to use layers for their adap-
tions, enable the layers for test runs, and move code from layers back to the base 
system when experiments are successes and they want to maintain the original mod-
ularization of the system. COP also allows only behavior variations, while our ap-
proach recognizes changes to both state and behavior. 

ChangeBoxes 

ChangeBoxes [5] is an approach to capturing and scoping changes to a system using 
first-class entities, called ChangeBoxes. A ChangeBox can contain changes to mul-
tiple elements of a software system such as adding a field, removing a method, or 
renaming a class. The approach does not constrain how changes get grouped into 
ChangeBoxes, but every change has to be encapsulated by a ChangeBox. Each 
ChangeBox can be used for setting the set of active changes for the scope of a run-
ning process. This way, multiple running processes can view the system differently 
by using different ChangeBoxes. ChangeBoxes can have ancestor relations and 
merge changes from multiple ancestors. 

With the ancestor relations, ChangeBoxes can be used to review the evolution of 
systems and to undo changes. 

The ChangeBoxes approach is similar to our approach as changes to the system 
are grouped into first-class objects and these can be used to run code in different 
versions of the runtime. Furthermore, with both solutions there is no definite notion 
in how changes are grouped into versions. Our object versioning approach is in-
tended to be used to group changes associated with developer actions and a simple 
global undo/redo mechanism to undo inappropriate actions is built into our solution. 
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To actually undo changes Change- Boxes, in contrast, is rather tedious [28]. More-
over, ChangeBoxes recognizes only changes to the static elements of a software 
system such as packages, the structure of classes, and methods. Object versioning, 
in contrast, preserves the state and behavior of objects. 

Practical Object-oriented Back-in-Time Debugging 

Practical Object-oriented Back-in-Time Debugging [19, 18] is a logging-based ap-
proach to back-in-time debugging that uses alternative references to preserve the 
history of objects. These alternative references, called Aliases, are actually objects 
and part of the application memory. These objects contain information about the 
history and origin of the values stored in fields. Aliases are not passed around, but 
instead are created for each read or write of a field and for each value passed as 
parameter. Each alias refers to an actual value, but also to another alias—its prede-
cessor—representing the value previously stored by a field and to the alias that was 
used to create this new alias from—its origin. An alias and its origin both refer to 
the same value, but provide different information on their creation context, which 
is a particular method. The origin link can be used to follow the object’s “flow” 
through the program. Each alias also records a timestamp on its creation and with 
this information the predecessor link can be followed to read a value as it was at a 
particular moment in time.  

In comparison, with aliases it is possible to recreate all previous system state and 
also to retrace the flow of all values, while our system stores only particular ver-
sions. Such versions could, for example, correspond to programmer interactions, so 
that programmers can undo the effects of particular actions easily. Another differ-
ence between object versioning with version-aware references and reverse engi-
neering with aliases is the existence of modes. The alias references are intended to 
be used in explicit debugging sessions, while our version-aware reference are in-
tended to be used at all times. 

6 Summary 

This work introduced an approach to preserving access to previous states of pro-
gramming systems such as the Lively Kernel. The approach is based on version-
aware references. These references manage different versions of objects transpar-
ently. They resolve to one of multiple versions of objects; to which ones in particu-
lar can easily be changed. Thereby, different preserved states can be re-established. 

We presented a design for our approach that uses proxies for version-aware ref-
erences. Instead of actually using alternative references, ordinary references refer 
to proxies and proxies forward all interactions transparently to the right versions. 
The design allows implementing version-aware references without any adaptions to 
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existing execution engines— neither for alternative references nor for the garbage 
collection of versions. 

For each object that is created, a proxy is created and returned instead of the 
object. Thus, references to proxies are passed around and all access goes through 
the proxies. Moreover, only the proxies refer to the versions of an object. Conse-
quently, the versions of an object are reclaimed together with their proxy by the 
ordinary garbage collector. Returning proxies for new objects is achieved using 
source transformations. The program sources are transformed when loaded and do 
not have to be adapted manually. 

References 

1. Malte Appeltauer, Robert Hirschfeld, Michael Haupt, Jens Lincke, and Michael Perscheid. 
“A Comparison of Context-oriented Programming Languages”. In: International Workshop 
on Context-Oriented Programming. COP ’09. ACM, July 2009, 6:1–6:6.   

2. Alan Borning. “Classes Versus Prototypes in Object-oriented Languages”. In: Proceedings 
of 1986 ACM Fall Joint Computer Conference. ACM ’86. IEEE, Nov. 1986, pp. 36–40.  

3. Tom Cutsem and Mark S. Miller. “Trustworthy Proxies: Virtualizing Objects with Invari-
ants”. In: Proceedings of the 27th European Conference on Object-Oriented Programming. 
ECOOP ’13. Springer, July 2013, pp. 154–178.  

4. Martin A. Czuchra. “One Worlds: Automated Client–Side Persistence in Lively Kernel”. 
Master Thesis. Hasso-Plattner-Institute, University of Potsdam, Jan. 2012.  

5. Marcus Denker, Tudor Gîrba, Adrian Lienhard, Oscar Nierstrasz, Lukas Renggli, and Pascal 
Zumkehr. “Encapsulating and Exploiting Change with Changeboxes”. In: Proceedings of the 
2007 International Conference on Dynamic Languages. ICDL   ’07. ACM, Aug. 2007, pp. 
25–49.  

6. Ecma/TS39. ECMAScript Language Specification (Draft for 6th Edition). Published April 
27, 2014 (Draft, Revision 24). Available at http://wiki.ecmascript.org/ doku.php?id=har-
mony:specification_drafts. Accessed May 11, 2014. 2014.  

7. Bjorn N. Freeman-Benson, John Maloney, and Alan Borning. “An Incremental Constraint 
Solver”. In: Commununications of the ACM 33.1 (Jan. 1990), pp. 54– 63.  

8. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements 
of Reusable Object-Oriented Software. Addison-Wesley, Jan. 1995.  

9. Adele Goldberg and David Robson. Smalltalk-80: The Language and its Implementation. 
Addison-Wesley, Jan. 1983.  

10. Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. “Context-oriented Programming”. 
In: Journal of Object Technology 7.3 (Mar. 2008), pp. 125–151.  

11. Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. “Back to the Future: 
The Story of Squeak, a Practical Smalltalk Written in Itself”. In: Proceedings of the 12th 
ACM SIGPLAN Conference on Object-oriented Programming Systems, Languages and Ap-
plications. OOPSLA ’97. ACM, Oct. 1997, pp. 318–326.  

12. Dan Ingalls, Scott Wallace, Yu-Ying Chow, Frank Ludolph, and Ken Doyle. “Fabrik: A Vis-
ual Programming Environment”. In: Conference Proceedings on Object- oriented Program-
ming Systems, Languages and Applications. OOPSLA ’88. ACM, Jan. 1988, pp. 176–190. 

13. Daniel Ingalls, Krzysztof Palacz, Stephen Uhler, Antero Taivalsaari, and Tommi Mikkonen. 
“The Lively Kernel–A Self-supporting System on a Web Page”. In: Self-Sustaining Systems. 
S3. Springer, May 2008, pp. 31–50. 



30   Steinert, Hirschfeld 

14. Alan Kay. Squeak Etoys Authoring and Media. Tech. rep. Published February 2005. Availa-
ble at http://www.vpri.org/pdf/rn2005002_authoring.pdf. Accessed March 7, 2014. Feb. 
2005. 

15. Robert Krahn, Dan Ingalls, Robert Hirschfeld, Jens Lincke, and Krzysztof Palacz. “Lively 
Wiki: A Development Environment for Creating and Sharing Active Web Content”. In: Pro-
ceedings of the 5th International Symposium on Wikis and Open Collaboration. WikiSym 
’09. ACM, Oct. 2009, 9:1–9:10. 

16. Bill Lewis. “Debugging Backwards in Time”. In: Proceedings of the Fifth International 
Workshop on Automated Debugging. AADEBUG’03. Springer, Sept. 2003, pp. 225–235. 

17. Henry Lieberman. “Using Prototypical Objects to Implement Shared Behavior in Object-ori-
ented Systems”. In: Conference Proceedings on Object-oriented Programming Systems, Lan-
guages and Applications. OOPLSA ’86. ACM, June 1986, pp. 214–223. 

18. Adrian Lienhard. “Dynamic Object Flow Analysis”. PhD thesis. University of Bern, Dec. 
2008. 

19. Adrian Lienhard, Tudor Gîrba, and Oscar Nierstrasz. “Practical Object-Oriented Back-in-
Time Debugging”. In: Proceedings of the 22Nd European Conference on Object-Oriented 
Programming. ECOOP ’08. Springer, July 2008, pp. 592–615. 

20. Jens Lincke, Malte Appeltauer, Bastian Steinert, and Robert Hirschfeld. “An Open Imple-
mentation for Context-oriented Layer Composition in ContextJS”. In: Science of Computer 
Programming 76.12 (Dec. 2011), pp. 1194–1209. 

21. Jens Lincke and Robert Hirschfeld. “Scoping Changes in Self-supporting Development En-
vironments Using Context-oriented Programming”. In: Proceedings of the International 
Workshop on Context-Oriented Programming. COP ’12. ACM, June 2012, 2:1–2:6. 

22. Jens Lincke and Robert Hirschfeld. “User-evolvable Tools in the Web”. In: Proceedings of 
the 9th International Symposium on Open Collaboration. WikiSym ’13. ACM, Aug. 2013, 
19:1–19:8. 

23. Jens Lincke, Robert Krahn, Dan Ingalls, Marko Röder, and Robert Hirschfeld. “The Lively 
PartsBin–A Cloud-Based Repository for Collaborative Development of Active Web Con-
tent”. In: Proceedings of the 2012 45th Hawaii International Conference on System Sciences. 
HICSS ’12. IEEE, Jan. 2012, pp. 693–701. 

24. John H. Maloney and Randall B. Smith. “Directness and Liveness in the Morphic User Inter-
face Construction Environment”. In: Proceedings of the 8th Annual ACM Symposium on User 
Interface and Software Technology. UIST ’95. ACM, Dec. 1995, pp. 21–28. 

25. John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn Eastmond. “The 
Scratch Programming Language and Environment”. In: Transactions on Computing Educa-
tion 10.4 (Nov. 2010), 16:1–16:15. 

26. Frédéric Pluquet, Stefan Langerman, and Roel Wuyts. “Executing Code in the Past: Ecient 
In-memory Object Graph Versioning”. In: Proceedings of the 24th ACM SIGPLAN Confer-
ence on Object Oriented Programming Systems Languages and Applications. OOPSLA ’09. 
ACM, Oct. 2009, pp. 391–408. 

27. Nir Shavit and Dan Touitou. “Software Transactional Memory”. In: Proceedings of the Four-
teenth Annual ACM Symposium on Principles of Distributed Computing. PODC ’95. ACM, 
June 1995, pp. 204–213. 

28. Bastian Steinert, Damien Cassou, and Robert Hirschfeld. “CoExist: Overcoming Aversion to 
Change”. In: Proceedings of the 8th Symposium on Dynamic Languages. DLS ’12. ACM, 
Jan. 2012, pp. 107–118. 

29. Bastian Steinert and Robert Hirschfeld. “How to Compare Performance in Program Design 
Activities: Towards an Empirical Evaluation of CoExist”. In: Design Thinking Research. Un-
derstanding Innovation. Springer, Jan. 2014, pp. 219–238. 

30. Antero Taivalsaari. “Classes vs. Prototypes-Some Philosophical and Historical Observa-
tions”. In: Journal of Object-Oriented Programming 10.7 (Apr. 1996), pp. 44– 50. 

31. Antero Taivalsaari. “Delegation Versus Concatenation or Cloning is Inheritance Too”. In: 
SIGPLAN OOPS Messenger 6.3 (July 1995), pp. 20–49. issn: 1055-6400. 



How to Compare Performance in Program Design Activi-
ties    31 

32. Antero Taivalsaari. Kevo, a Prototype-based Object-oriented Language Based on Concate-
nation and Modules Operations. Tech. rep. Technical Report LACIR 92-02, University of 
Victoria, 1992. 

33. David Ungar and Randall B. Smith. “Self”. In: Proceedings of the Third ACM SIGPLAN 
Conference on History of Programming Languages. HOPL III. San Diego, California: ACM, 
June 2007, 9:1–9:50. 

34. David Ungar and Randall B. Smith. “Self: The Power of Simplicity”. In: Conference Pro-
ceedings on Object-oriented Programming Systems, Languages and Applications. OOPSLA 
’87. ACM, Dec. 1987, pp. 227–242. 

35. Tom Van Cutsem and Mark S. Miller. “Proxies: Design Principles for Robust Object- ori-
ented Intercession APIs”. In: SIGPLAN Notices 45.12 (Oct. 2010), pp. 59–72. 

36. Alessandro Warth. “Experimenting with Programming Languages”. PhD thesis. University 
of California, Los Angeles, Dec. 2009. 

37. Alessandro Warth, Yoshiki Ohshima, Ted Kaehler, and Alan Kay. “Worlds: Controlling the 
Scope of Side Eects”. In: Proceedings of the 25th European Conference on Object-oriented 
Programming. ECOOP’11. Springer, July 2011, pp. 179–203.  

38. Alessandro Warth and Ian Piumarta. “OMeta: An Object-oriented Language for Pattern 
Matching”. In: Proceedings of the 2007 Symposium on Dynamic Languages. DLS ’07. ACM, 
Oct. 2007, pp. 11–19.  


