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Abstract—Distributed dataflow systems like Spark and Flink
allow to analyze large datasets using clusters of computers.
These frameworks provide automatic program parallelization
and manage distributed workers, including worker failures.
Moreover, they provide high-level programming abstractions and
execute programs efficiently. Yet, the programming abstractions
remain textual while the dataflow model is essentially a graph
of transformations. Thus, there is a mismatch between the
presented abstraction and the underlying model here. One can
also argue that developing dataflow programs with these textual
abstractions requires needless amounts of coding and coding
skills. A dedicated programming environment could instead
allow constructing dataflow programs more interactively and
visually. In this paper, we therefore investigate how visual
programming can make the development of parallel dataflow
programs more accessible. In particular, we built a prototypical
visual programming environment for Flink, which we call Flision.
Flision provides a graphical user interface for creating dataflow
programs, a code generation engine that generates code for Flink,
and seamless deployment to a connected cluster. Users of this
environment can effectively create jobs by dragging, dropping,
and visually connecting operator components. To evaluate the
applicability of this approach, we interviewed ten potential users.
Our impressions from this qualitative user testing strengthened
our believe that visual programming can be a valuable tool for
users of scalable data analysis tools.

Index Terms—Scalable Data Analytics, Distributed Dataflows,
Visual Programming, End-user Development

I. INTRODUCTION

Distributed dataflow systems such as MapReduce [1],
Spark [2], and Flink [3] enable users to process large datasets.
These frameworks allow to create programs from sequential
building blocks, which are then executed massively parallel. In
particular, users construct programs using a set of pre-defined
operators. They configure these operators, which includes
providing user-defined functions (UDFs) for second-order
functions like Map and Reduce, and connect them to form
graphs of data transformations. The frameworks automatically
parallelize, schedule, and deploy these jobs on to cluster nodes.
Many of these analytics frameworks also provide higher-level
declarative programming abstractions, including for example
SQL-like query languages [4], [5], [6], [7] as well as APIs
for specific use cases such as graph processing [8] or machine
learning [9], [10]. Some of these systems also automatically
optimize programs [4], [11], [12] and provide mechanisms
for fault tolerance. MapReduce, for example, exchanges data
through a distributed file system with built-in replication such
as the Google File System (GFS) [13], while Spark uses linage

for the fault tolerance of its Resilient Distributed Datasets
(RDDs) [14]. In summary, these frameworks save a lot of effort
for users. Users can concentrate on their analysis tasks and
leave efficient as well as fault-tolerant distributed execution
to the frameworks. However, despite all these steps towards
eased distributed analytics of large datasets, programming ab-
stractions are usually still on the level of textual programming
languages, specifically in the form of APIs or embedded
languages [15], even though the dataflow model is graph-
based. This results in a representation mismatch between
source code and mental models. Programmers effectively glue
operators together using method calls. The programs also
mix data processing with repeated setup code. Seeing a clear
representation of the actual dataflow graph instead, including
what components are available as building blocks and how
different components can be connected, might be helpful to
users, especially users new to distributed dataflow systems.
Furthermore, some potential users of data analysis might also
lack knowledge in language concepts, syntax, and libraries.
Enabling these users to express their own data analysis pro-
grams would be highly beneficial. After all, such users often
understand the domain- and business-specific questions best.
Moreover, the analytics frameworks do provide additional
tools for job submission and execution monitoring, yet these
are separate tools from the editors and Integrated Development
Environments (IDEs) developers use.

For these reasons, we propose to use visual programming
techniques and a dedicated programming system for dis-
tributed data analytics. In particular, we argue that a dedicated
dataflow programming system should present users with an
editable graph representation of their analysis job and should
provide integrated job submission as well as monitoring fa-
cilities. Towards this goal, we built a Web-based prototype,
which we call Flision. Flision is integrated with Flink and
allows to create, submit, and monitor jobs. Users can create
these jobs by dragging, dropping, connecting, configuring,
and programming operators–all while viewing a graphical
representation of the job graph. Flision also provides users
with a view of what components are available and hints on how
components can be connected. For second-order operations
that need to be configured with UDFs, users can either load
UDFs or develop them within Flision. Created dataflow jobs
can then be exported, compiled, and executed on a connected
cluster. In case jobs are executed directly from Flision, users
can follow the execution through an integrated console view.



Outline. The remainder of this paper is organized as follows.
Section II provides the necessary background on distributed
dataflow systems. Section III first presents a motivating exam-
ple and then derives requirements for a programming system.
Section IV presents our solution, including our prototype.
Section V describes user feedback to the prototype. Section VI
discusses related work. Section VII concludes this paper.

II. BACKGROUND

Distributed dataflow systems process data using parallel data
transformations on clusters of connected worker nodes. A job
graph constructed from data transformation tasks is shown in
Figure 1. Tasks are versions of a set of pre-defined operators.
The set includes, for example, Map, Reduce, and Join. Map
and Reduce are second-order functions. These two operators
are configured with UDFs that are called for either a single
element or a group of elements. Specific variants of Map
and Reduce are operators for filtering and aggregation. Other
operators like Join or Cross can be used to combine multiple
dataflows. This way multiple datasets can be merged using
matching keys as join-predicate.
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Fig. 1: A job graph with n data-parallel task instances of five
subsequent task.

The tasks of dataflow job graphs are executed in parallel on
many worker nodes. In the job graph in Figure 1, for example,
each task has n data-parallel instances. These data-parallel task
instances typically run on shared-nothing commodity servers,
which are connected by a datacenter network and provide
execution slots. Execution slots represent computing capabil-
ities. A node with eight hardware threads could, for example,
expose eight slots for task execution. Often, execution slots
represent equal amounts of the resources of a worker machine
in homogenous cluster setups.

Parallel instances process partitions of the data. Partitions
are created while reading distributed input files or by shuffling
the dataset between subsequent operators. Parallel instances
of source operators usually create partitions by reading parts
of the input in parallel from a distributed file system. Shuf-
fling is all-to-all communication between all data-parallel task
instances of subsequent tasks: elements with the same key
are moved to the same instances. This is necessary as some
operators require specific partitions of the input data. In cases,
in which the data is not already partitioned correctly, data is
therefore shuffled before such operators. Operators require, for
example, elements of the same group or with identical keys
to be available at the same parallel instance to be able to
correctly perform their data transformations. The job graph
in Figure 1 shows this kind of communication between the

instances of task C and D. Two other important data exchange
patterns are all-to-one and one-to-one communication. One-to-
one communication forwards elements between subsequently
connected task instances without a repartitioning of the data.
This communication pattern is visible between all other opera-
tors in the job graph shown in Figure 1. One-to-one communi-
cation is applicable when no particular partitions are required
by the receiving tasks or when the necessary partitions have
been established before. All-to-one communication is typically
used for global aggregates.
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Fig. 2: Subsequent task instances scheduled onto the execution
slots of a worker node.

Figure 2 shows a chain of subsequent task instances that
is scheduled onto a worker. Except for certain operators,
chained tasks can also be executed in parallel, adding pipeline
parallelism to the data parallelism of parallel task instances.
However, as described above, certain operators require shuf-
fling. That is, these operators require all elements with a
certain key to be available before they can start outputting re-
sults. Such operators therefore synchronize all parallel threads
of the dataflow. This is, for example, often necessary for
operators like Reduce and Join. The worker nodes in Figure 2
provide three execution slots, yet multiple task instances can
be scheduled and deployed onto one slot. Since each task
instance usually maps to at least one thread, the operating
system effectively schedules the task instances running on a
worker.

III. MOTIVATION

This section presents and discusses the code of an exam-
ple dataflow program in its textual code representation. We
use this example to motivate more graphical and interactive
programming systems.

A. WordCount Example
An example of a Flink program is the WordCount applica-

tion. This simple application counts the occurrences of each
word within a text. Listing 1 shows the Java implementation
of this application. The listing shows the main method of
the central WordCount class. The code was taken from
the examples of batch programs that come with Flink 1. We
changed it in two ways. First, we changed this application to
always read input from and write outputs to a path instead of
using built-in example data and stdout. Second, we stripped
comments and some empty lines to make the listing more
concise.

1Apache Flink batch examples in version 1.1.2, https://github.com/apache/
flink/tree/master/flink-examples/flink-examples-batch/src/main, accessed
2016-10-01

https://github.com/apache/flink/tree/master/flink-examples/flink-examples-batch/src/main
https://github.com/apache/flink/tree/master/flink-examples/flink-examples-batch/src/main


1 p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) t h r ow s
E x c e p t i o n {

2

3 f i n a l P a r a m e t e r T o o l params = P a r a m e t e r T o o l .
f romArgs ( a r g s ) ;

4 f i n a l E x e c u t i o n E n v i r o n m e n t env =
E x e c u t i o n E n v i r o n m e n t . g e t E x e c u t i o n E n v i r o n m e n t ( ) ;

5 env . g e t C o n f i g ( ) . s e t G l o b a l J o b P a r a m e t e r s ( params ) ;
6

7 DataSe t<S t r i n g> t e x t = env . r e a d T e x t F i l e ( params . g e t
( ” i n p u t ” ) ) ; ;

8

9 DataSe t<Tuple2<S t r i n g , I n t e g e r >> wc =
10 t e x t . f l a t M a p ( new T o k e n i z e r ( ) ) .
11 groupBy ( 0 ) . sum ( 1 ) ;
12

13 wc . wr i t eAsCsv ( params . g e t ( ” o u t p u t ” ) , ”\n ” , ” ” ) ;
14

15 env . e x e c u t e ( ” WordCount Example ” ) ;
16 }

Listing 1: The main method of the WordCount application.

The main method starts with parsing the
arguments and getting the execution environment. The
ExecutionEnvironment returned can be a local machine
or a Flink cluster, depending on the configuration. The actual
dataflow then starts in Line 7 with reading in a text file.
The method readTextFile yields a dataset of strings,
containing the lines of the text file. This dataset is processed
by a sequence of operators, from Line 9 to Line 11. First,
each line of the text file is split into words using a user-
defined FlatMap class called Tokenizer. The words are
then grouped and summed up. The program ends with code
writing out the results as CSV into a file, shown in Line 13
of Listing 1.

1 p u b l i c s t a t i c f i n a l c l a s s T o k e n i z e r imp lemen t s
F la tMapFunc t ion<S t r i n g , Tuple2<S t r i n g , I n t e g e r >>
{

2

3 @Override
4 p u b l i c vo id f l a t M a p ( S t r i n g va lue , C o l l e c t o r <

Tuple2<S t r i n g , I n t e g e r >> o u t ) {
5 S t r i n g [ ] t o k e n s = v a l u e . toLowerCase ( ) . s p l i t ( ”

\\W+” ) ;
6

7 f o r ( S t r i n g t o k e n : t o k e n s ) {
8 i f ( t o k e n . l e n g t h ( ) > 0) {
9 o u t . c o l l e c t ( new Tuple2<S t r i n g , I n t e g e r >(

token , 1 ) ) ;
10 }
11 }
12 }
13 }

Listing 2: The Tokenizer UDF class of WordCount.

A look at the implementation of the UDF class
Tokenizer, helps to understand the arguments to the
GroupBy and Sum operators. The Tokenizer class is an
inner class of the class WordCount and shown in Listing 2.
Each line of text file is passed to the flatMap method as the
value parameter. First, all characters of the line are changed
to lower case. Then, each line is split at whitespaces, yielding
all individual words. Subsequently, empty words are filtered
out before the result is collected. A Tuple2 is a key-value
pair. In this case the key is a word and the value is the number

of occurrences. Before equal words are grouped, each word
occurs exactly once, visible in Line 9 of Listing2. In Listing 1,
the argument 0 passed to the groupBy operator refers to the
first type of the Tuple2, which is the key and in this case the
words. This is why the groupBy yields one group per word.
The argument 1 passed to the sum operator then refers to the
second type of the Tuple2, which is the value and in the
case of this program the number of occurrences of each word.
The sum operator thus sums up the number of occurrences of
each word.

B. Discussion
Several drawbacks are the consequence of working with

a textual code representation of dataflow programs such as
previously shown for the Flink WordCount application:

1) Representation mismatch: A textual language is arguably
not well suited to represent a graph. This is well visible
for dataflow components with more than one input or
output such as joins and forks.

2) Operator set invisible: Which pre-defined operators are
available and can be used to extend the dataflow program
is generally not visible. Users either have to consult the
documentation or need to use code completion facilities
of IDEs.

3) UDF clutter: UDFs can be defined inline using lambda
functions or in additional classes, which can be inner
classes or external class definition. Users thus essentially
have the choice between cluttering the dataflow program
with UDFS or having to explicitly scroll to referenced
UDF class definitions.

4) Repeated setup code: Setup statements at the beginning–
such as the ones for getting the execution environment–
and submission statements at the end of the programs–
such as the actual execution of the job–are repeated per
job.

5) Coding Environment: The features of general purpose
editors and IDEs focus on producing and compiling
code. Important features include, for example, syntax
highlighting and code completion facilities, yet does
usually not include specific features for using distributed
dataflows to analyze large datasets.

Given these five drawbacks, we see the following require-
ments for a dedicated visual dataflow programming environ-
ment:

• Job graph view: A visual representation of a job graph
can provide better overview of the overall job structure.
Besides clearly seeing which operator is connected to
which as well as fork/join patterns, freely positionable
components could also allow users to visually group
components that are closely related.

• Visible operator set: A pane showing the set of pre-
defined operators can help users learn which operators are
available. Further, each of these operators could clearly
show how many inputs are necessary.

• Windowed operator configuration: A collapsible view
of operator configurations, including editing UDF code



in windows, provides a middle ground between inline
functions and definition elsewhere. Having these windows
pop up close to the operator they configure, but also
freely positionable allows to mix overview with a view
of particular details at one’s discretion.

• Abstracted setup code: A visual environment can abstract
setup code that is connecting the dataflow job to its
execution environment using user interface elements like
buttons or selection boxes. There can be for example a
button that executes the job in the configured execution
environment.

• Dedicated integrated environment: A dedicated program-
ming environment for dataflow jobs can provide job
submission and monitoring facilities otherwise found in
additional tools.

These features can be implemented using a visual program-
ming interface for creating programs for distributed dataflow
frameworks.

IV. SOLUTION

This section presents our idea and describes the features as
well as implementation of our prototype.

A. Idea

With visual programming languages, users manipulate pro-
grams graphically instead of textually. Thereby, the program
construction becomes more visual and more interactive. In
fact, visual programming is known to improve programming
efficiency for a broad range of users with different levels
of understanding of computer science and programming con-
cepts [16]. It is language independent and instead uses a intu-
itive graphical representation [17]. Consequently, it has often
been used for rapid prototyping and for end-user development
[16], [18], [19].

The idea we have for a visual programming system for
distributed data analytics resolves around users being able
to visually create programs by interactively developing job
graphs. This happens via drag and drop, connecting elements
graphically, and using interface elements for actions as well as
configuration. Such actions and configuration options as well
as usable components are directly visible. Moreover, users do
not need to leave the environment to code new UDFs or to
run their jobs.

An interesting aspect of such an environment is that users
can freely position components on an infinite workspace.
Following research on freely positionable code elements for
development [20] and debugging [21], this increases code
readability and understanding significantly. Users can use
positions to express relations between components. For ex-
ample, they can use component positions to highlight specific
transformations in a longer pipelines.

Following this vision, we decided to investigate using visual
programming techniques for distributed dataflow programs. In
particular, we built a prototypical visual programming system
for Flink.

B. Prototype

We implemented a prototype of a visual programming
environment which we call Flision. With Flision, users can
create, modify, and run Flink jobs. The prototype provides a
Web-based user interface for these tasks, shown in Figure 3.

Fig. 3: The user interface of the Flision programming envi-
ronment, showing the WordCount application.

The interface is designed to increase both readability and
comprehensibility. In particular, users are provided with a
graphical representation of the dataflow graph. That is, on
Flision’s main canvas, users can modify the dataflow graph
to be executed as a Flink job. In particular, Users can add
components such as data sources and data sinks as well as
Map, Filter, Reduce, Join, and GroupBy operator via drag and
drop. The set of pre-defined components is visible on the left
side of the environment, as shown in Figure 3. Furthermore,
users can visually connect these components. This defines the
dataflow. Each component has a fixed number of inputs, so
users can not create connections that would result in an invalid
Flink program such as adding more than two inputs to a join
component.

Fig. 4: Configuration of a data sink component in Flision.

Flision also allows to configure the properties of the oper-
ator. For example, they can configure the properties that need
to match if two datasets are to be joined. Another example is
shown in Figure 4. For a sink, users can specify the path to
which the operator is supposed to store the dataflow results. As
visible in the figure, such configuration is done in overlaying
windows in Flision. Moreover, users can program UDFs for
second-order function operators like Map and Reduce. The
editor for this is shown in Figure 5. It also opens itself in



a window and overlays the workspace. The editor provides
standard features such as syntax highlighting.

Fig. 5: Developing a custom FlatMap transformation in Fli-
sion.

Users can directly execute the job on a connected cluster or
can export it. Export options are a JAR with compiled classes
or a ZIP with source code. Overall, Flision gives users three
options:

• execute the job,
• download a ZIP file containing the generated source code,
• or download a precompiled JAR file of the current job.
When executing the job, errors or misconfigurations will

also be displayed. Flision shows the console output in the
lower right corner of the user interface.

C. Implementation

Frontend Backend Flink
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Fig. 6: Steps a dataflow graph takes before running as Flink
job on the cluster.

Figure 6 shows the different stages that a job graph passes
through when the users triggers its execution in Flision. This
process starts in the frontend, with the job graph created by
a user. The frontend generates a JSON representation of this
job graph and adds the Apache Flink environment variables.
It then sends this object via a REST API to the backend.
Flision’s backend receives this representation, parses it, and
creates a corresponding internal job graph model. This model
contains the boilerplate as well as the user-specific code for
each operator. First, this model is validated for syntactical
correctness. Then, this model is used to generate the Java code

for the job to be able run the program on a Flink cluster.
Finally, it starts the Maven build process and triggers the
remote execution of the output JAR on the cluster.

V. USER TESTS

This section describes the user tests we did to evaluate the
acceptance and usability of our prototype. First, we give infor-
mation about the participants including their background and
experience in programming and data analytics. Afterwards,
we describe the experimental setup and observations we made
during the testing. A questionnaire and a discussion complete
this section.

A. Participants

The user tests were done with ten participants that were
between 20 and 43 years old. The average age was 29.7 years.
Each participant works in the field of or studies computer
science. One participant has a diploma, one a master degree,
seven a bachelor degree, and one participant holds no degree
yet. The average participant of our user study has 7.85 years
of programming experience. However, the range of experience
varied significantly as the participants had between 3.5 and
20 years of experience. All participants said they have good
knowledge in at least one of the programming languages Java,
Scala, or Python. Figure 7 illustrates how the participants rate
their own Java programming skills on a 1 - 10 scale, with
1 being the lowest and 10 the highest value. In addition, 80
percent of the participants had experience with the MapReduce
programming paradigm. As shown in Figure 8 most partici-
pants rate their knowledge of MapReduce between medium
and low.
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Fig. 7: Results of the question: How do you rate your Java
programming skills on a 1 - 10 scale?

B. Experimental Setup Description

The experiment was done in private sessions with each par-
ticipant. At the beginning, an introduction to the prototype was
given. Afterwards, the participants were asked to implemented
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Fig. 8: Results of the question: How do you rate your MapRe-
duce skills on a 1 - 10 scale?

the WordCount example as described in Section III-A with
our prototype. In particular, the participants were asked to use
Flision’s user interface components and write necessary UDFs
for WordCount. Afterwards, they were asked to review their
generated code and submit the job to a running Flink cluster
connected to the prototype. If the participant got stuck, the
examiner asked for the reason and any uncertainties before
providing assistance. For instance, one participant had no
experience with the MapReduce paradigm and got a short
introduction to the required functions and the paradigm itself.
The user’s behavior as well as comments from each were
noted and afterwards discussed with the participants. After the
prototype had been evaluated by the participants, they were
asked a series of questions about the usability of the visual
programming paradigm prototype. The results of the obser-
vation and the questionnaire are presented in the following
subsections.

C. Observations

All participants successfully finished the given task during
the test. Therefore, each created a WordCount job and sub-
mitted it to a Flink cluster using our prototype. However, the
level of required assistance varied between the participants.
Participants who were familiar with Flink or similar systems,
required only minor assistance in handling the user interface.
The participants with less experience had problems in choos-
ing the right functions in the right order, but have been able
to create the WordCount program in an assisted trial and error
process.

The participants commented their impressions during the
testing. These comments included multiple statements that the
environment is fairly easy to use and provides a good overview
over dataflow programs. At the same time, multiple partici-
pants were concerned that the level of increased overview is
highly dependent on the complexity of the dataflow program.

Some participants also said that they expect such an environ-
ment to be most helpful to users with only little coding skills
but a good understanding of data analytics.

Besides these judgements, many participants suggested di-
rections for future work. The main ideas for improvements are
listed below:

• Zooming of the canvas and the dataflow program
• Grouping of elements and abstraction of entire subgraphs

to new components
• Possibility to share custom UDFs, including using names-

paces and packages
• Highlighting of the job progress and presentation of

intermediate results
• Complete cluster configuration from within the environ-

ment
• Documentation, tutorials, and interactive help

D. Questionnaire

This section covers the results of the questions we asked
the participants right after using our prototype.

Figure 10 summarizes the results of the following four
questions.

a) How do you rate the user interface in terms of
readability?: 50 percent of all participants rated the read-
ability of Flision with the highest score. They highlight
that the prototype is good for testing and prototyping, as
well as for smaller explorative data analytic tasks. However,
some participants commented that the advantage of increased
overview diminishes when the job becomes more complex
and dependent on other jobs. One participant suggested the
introduction of expandable and collapsible graph components
that could aggregate parts of the job graph or even full jobs
to increase the overview for more complex jobs.

b) How do you rate the user interface in terms of
reusability?: A majority of the participants rated the reusabil-
ity with a high score. In particular, one participant that profes-
sionally implements MapReduce jobs considered project setup
and skeleton generation as a promising reusability feature, as
it replaces the boilerplate and glue code he has to have for
every job.

c) How do you rate the time-saving potential through an
improved overview?: Most participants estimated the time-
saving potential for applying visual programming to dis-
tributed data analytics high on a 5 point scale, where 1 equals
“no time-saving” and 5 equals “very time-saving”. In general,
the participants concluded that the increased overview of the
visual representation is potentially very time-saving, but only
for simple jobs. A majority of participants found that the
combination of visual programming elements with traditional
coding offers the best utility for most use cases or as one
participant stated: “the combination would make a powerful
tool”.

d) How do you rate the user-friendliness for
inexperienced users?: A majority of the participants
rate the user-friendliness for inexperienced users with a high
score. They point out that Flision makes it easier to get



started with dataflow systems such as Flink. In addition, new
users only need to interact with the frontend and do not
have to care about the Flink execution environment as well
as cluster configuration. Flision makes it easy to obtain first
results as it handles all the work of compiling and executing
a job-graph on a Flink cluster.

Figure 9 presents the results of the question: Can you
imagine using a similar system in future projects?

70 percent of all participants stated that they can imagine
using elements of visual programming in future data analytics
projects. However, most of the participants also stated that suit-
ability of the visual approach depends much on the complexity
of the task and experience. In the open feedback part after
the task, one participant highlighted that: “if you understand
the principle, you can reduce development time and increase
productivity.”. Most of the participants stated that suitability
of the visual approach depends much on the complexity of
the task and experience with MapReduce or other dataflow
frameworks.

70%

20%

10%

Yes No Maybe

Fig. 9: Question: Can you imagine using a similar system in
future development projects?

E. Discussion

The user tests show that the visual programming paradigm
has large potential as a tool for data analysis. It can flatten
the learning curve for users new to using distributed dataflow
technology. For advanced users the approach offers improved
overview, boiler- and glue-code generation, as well as fast
prototyping. In addition, it has also the potential to be a
powerful tool when combined with the possibility to reuse
and share components.

However, the user tests also point out challenges for the
integration of visual programming with existing tools. In
particular, it was noted that the utility is extremely dependent
on the integration with existing coding environments. In fact,
based on the experiences described in this paper, we are of the
opinion that visual programming is best used as an additional
element to existing IDEs. Visual programming has to be
integrated as seamlessly as possible though. Moreover, users
should have the possibility to choose between the different
program representations at any time, even if this kind of
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(a) Question: How do you rate the user interface in terms of readability?
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(b) Question: How do you rate the user interface in terms of reusability?
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(c) Question: How do you rate the user interface regarding overview?
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Fig. 10: Results of the questionnaire.



integration is not easily implemented. When designing visual
programming elements for frameworks like Flink, it is also
important to keep in mind that complex jobs require additional
possibilities to aggregate complex structures such as entire
graphs into single components, otherwise the advantage of an
improved overview will diminish when the job becomes more
complex.

VI. RELATED WORK

This section first presents work on distributed dataflow
systems. Subsequently, it discusses both programming abstrac-
tions and visual programming systems for such systems.

A. Distributed Dataflow Systems
Many systems implement distributed dataflows as their

execution model.
a) MapReduce: MapReduce [1] proposed a model

for scalable and fault-tolerant data processing using paral-
lel dataflows over interconnected commodity hardware. In
MapReduce’s execution model data is exchanged through a
distributed file system in-between alternating stages of Map
and Reduce tasks. Using a fault-tolerant distributed file system
such as the Google File System [13] effectively secures the
results of each states. Consequently, if a node fails only the
computation happening on that node needs to be restarted.

b) Dryad: Dryad [22] extended this execution model
by allowing arbitrary directed acyclic graphs of user-defined
tasks. Dryad also provides multiple mechanisms for data
exchange between tasks, including direct network transmission
without storing data on disk. Compared to MapReduce, in
Dryad users can provide arbitrary task code instead of being
bound to providing code for the second-order functions Map
and Reduce.

c) Nephele: Nephele [23] implements the same flexible
graph-based execution model as Dryad does, yet adds oper-
ators with Nephele/PACTs [24]. Therefore, users can create
arbitrary directed acyclic dataflow graphs using operators like
Map, Reduce, Filter, Joins, and Cross. The outputs of these
tasks can also exchange data directly across the network,
without storing data to disk in-between.

d) Scope: SCOPE [4] also offers a large set of pre-
defined operators including, for example, Joins. However,
Scope’s key characteristic is applying features of parallel
databases for its dataflow model. First, on top of the operator
abstraction, Scope provides a declarative SQL-like program-
ming languages called SCOPEScript. Second, Scope has a
built-in automatic plan optimizer to compile efficient query
plans from these scripts.

e) Spark: Spark [2] adds a linage-based mechanism for
fault tolerance to distributed dataflows and operators with
its RDDs [14]. RDDs effectively maintain enough linage
information for each intermediate result to recompute specific
partitions in case of failures. This serves as a low overhead
alternative to disk- and replication-based fault tolerance in the
failure free case. Furthermore, Spark allows to cache results
to support repeated usage of the same dataset as, for example,
from an iterative dataflow program.

f) Flink: Flink2 [3] provides batch and stream processing
in a single system. Dataflows are built using graphs of pre-
defined operators and UDFs. In contrast to many systems,
these graphs do not have to be acyclic. Instead Flink provides
dedicated support for iterative programs, especially incre-
mental processing for algorithms with sparse computational
dependencies [25].

g) Google Dataflow: Google’s Dataflow [26] is a
dataflow system similar to Spark and Flink, also provides batch
and stream processing, yet provides an especially large number
of features with a focus on stream processing. Google’s
Dataflow system, for example, provides allows to explicitly
handle data that arrives out-of-order.

h) Discussion: Even though we built a prototype for
Flink, extending Flision to generate programs for other dis-
tributed dataflow systems would be fairly straightforward.
Moreover, we argue that a visual programming system could
abstract some of the specifics of each distributed dataflow
framework such as the particular names and options of
operators. Therefore, a single visual dataflow programming
system could in principle serve as development environment
for multiple of the described distributed dataflow systems.

B. Programming Abstractions for Dataflow Systems

There has been a lot of effort to provide more declarative
and domain specific programming abstractions.

a) Declarative High-level Programming Languages:
Many systems provide declarative SQL-like programming
abstractions for distributed dataflow systems. Examples in-
clude SCOPEScript for SCOPE [4], Hive [5] for Hadoop3,
Meteor/Supremo [27] for Stratosphere [7], as well as Shark [6]
and Spark SQL [28] for Spark. These scripting abstractions are
provided as libraries and translate to usage of the operators
that the distributed dataflow systems provide. Some of these
systems such as SCOPE, Spark, and Stratosphere automati-
cally choose among different plans using heuristic or cost-
based plan optimizations [4], [11], [12].

b) Domain-specific Libraries: Besides programming ab-
stractions for analyzing large sets of relational data with SQL-
like languages, there have been multiple efforts to provide
libraries for specific use cases such as machine learning and
graph processing. Recent efforts to make applying machine
learning methods easier and more efficient include MLLib [9]
and SystemML [10], which both use Spark as runtime system.
GraphX [8] on the other hand is an example of a graph library.
GraphX provides a vertex-centric programming abstraction,
implements many commonly used graph algorithms, and runs
on Spark.

c) Discussion: These efforts aim at providing the right
level of abstraction and, thereby, try to make programming
distributed dataflow systems easier. These libraries, however,
remain textual programming languages, requiring users to
be familiar with syntax, language concepts, and APIs. In

2Flink originated from the Stratosphere project [7]
3https://hadoop.apache.org, accessed 2016-10-08

https://hadoop.apache.org


comparison, we propose to use visual programming, so less
coding is required and users also get a better overview.

C. Visually Programming Data Analytics Pipelines

Multiple projects have applied visual programming to make
data analytics more accessible.

a) Knime Analytics Platform: The Knime Analytics Plat-
form4 [29] includes a graphical user interface to construct
programs visually out of available data transformations. Knime
provides a visual workspace where datasets and analysis mod-
ules can be dragged and dropped onto an interactive canvas.
These modules can then be connected to form a dataflow
program. Modules provide interfaces for further customization
of their behavior. Pre-defined modules exist for many use
cases, especially for data preprocessing, statistics, and data
mining. More modules can be provided by users.

b) Azure Machine Learning Studio: Azure Machine
Learning Studio5 is a graphical programming system for
constructing and running Machine Learning workflows based
on Microsoft’s Azure Machine Learning service [30]. Built-in
transformations that can be configured and used for programs
include operators for classification, regression, ranking, and
clustering. Jobs can be created completely visually and exe-
cuted on the Azure cloud.

c) Sparkflows.io: Sparkflows6 is a system with a drag
and drop interface to interactively build end-to-end data
pipelines. Created dataflow programs can be executed on a
Spark cluster. The pre-defined transformations focus on ma-
chine learning. Results can also be visualized with Sparkflows.

d) Discussion: The Knime Analytics Platform, Microsoft
Azure Machine Learning Studio, and Sparkflows are compa-
rable to our vision and to our prototype. All three solutions
provide visual environments for a dataflow analytics frame-
work. A key difference is, however, that all three of the
described platforms focus on data mining and machine learn-
ing applications, especially through pre-defined transformation
components. Flision is a general purpose programming envi-
ronment for creating analytical distributed dataflow programs.
For this reason, Flision provides not only focusses on standard
dataflow operators, but also provides integrated configuration
of operator options and editing of operator code.

VII. CONCLUSION

In this paper we proposed to use visual programming
for distributed dataflow systems like MapReduce, Spark, and
Flink. To evaluate this proposal and see whether this com-
bination actually provides benefits compared to textual pro-
gramming abstractions, we developed a prototype of a visual
programming system for Flink, called Flision. In contrast to
traditional solutions where the operations are programmed
using a programming language, with a system like Flision the
user adds operators to a graphical workspace and connects
them visually to form a graph. Each of the operators in the

4http://www.knime.org, accessed 2016-06-12
5https://studio.azureml.net, accessed 2016-06-12
6http://www.sparkflows.io, accessed 2016-10-07

graph can be configured within this workspace so that Flink
jobs can be developed completely visually. For operations
that need to be configured with UDFs, users can either load
existing UDFs into the environment or program them within
Flision. However, even though new UDFs still have to be
expressed using code, the code connecting the components
is generated automatically by Flision, reducing the overall
amount of coding in any case.

Our user testing showed that using a visual program-
ming system for parallel dataflow programming increases the
overview, supports new users, and helps to prototype. It also
reduces the amount of boilerplate and glue code. At the same
time, our user testing made it obvious that users still need to
be able to write UDFs for their components or have a large
number of pre-defined transformations available. Furthermore,
they also need to have a sound understanding of the semantics
of the available data transformations.

The participants of our user tests also suggested future work.
Some participants suggested the possibility of abstracting and
reusing entire subgraphs. This would increase the readability
of larger programs as well as make entire sequences of
components reusable at once. An example would be separating
three distinct steps of a pipeline that starts with operators for
data cleansing, then applies multiple operators that implement
a machine learning method, before the results are finally
aggregated for human consumption. A high level view of this
program could just show the three steps explicitly. Compo-
nents should also be easily shareable among communities of
users of a platform like Flision. A possible strategy for this
could be based on shared repositories. Another interesting
direction brought forward by our test participants resolves
around the idea of presenting intermediate results when a job is
executed. We believe that a combination of such features with
effective sampling could make the analysis of large datasets
much more interactive and immediate.

Even though these ideas make it obvious that much re-
search remains to be done, the results presented in this
paper show that the combination of visual programming and
distributed dataflow programming is very promising. Based
on our experiences, we think the best option is integrating
visual programming elements into existing IDEs in a way
that users can freely choose between the different program
representations.
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