
Orca: A Single-language Web Framework
for Collaborative Development
Lauritz Thamsen∗, Anton Gulenko∗,

Michael Perscheid†, Robert Krahn†, and Robert Hirschfeld†

Software Architecture Group
Hasso Plattner Institute

University of Potsdam, Germany
∗{firstname.lastname}@student.hpi.uni-potsdam.de
†{firstname.lastname}@hpi.uni-potsdam.de

David A. Thomas
Bedarra Research Labs

Ontario, Canada
dave@bedarra.com

Abstract—
In the last few years, the Web has been established as a

platform for interactive applications. However, creating Web
applications involves numerous challenges since the Web has been
created to serve static content. In particular, the separation of
the client- and the server-side, being only connected through the
unidirectional Hypertext Transfer Protocol, forces developers to
apply two programming languages including different libraries,
conventions, and tools. Developers create expert knowledge by
specializing on a few of all involved technologies. Consequently,
the diverse knowledge of team members makes collaboration in
Web development laboriously.

We present the Orca framework that allows developers to
work collaboratively on client-server applications in a single
object-oriented programming language. Based on the Smalltalk
programming language, full access to existing libraries, and a
bidirectional messaging abstraction, Orca provides a consistent
environment that supports common idioms and patterns in client-
and server-side code. It reduces expert knowledge and the num-
ber of development tools and, thus, facilitates the collaboration
of Web developers.

Keywords-Collaborative Web Development, Orca, Smalltalk,
JavaScript

I. INTRODUCTION

From its beginnings, the Web has evolved from a system
for serving static documents to a platform for deploying
interactive applications. To support this evolution, numerous
technologies have been developed to leverage the original ar-
chitecture of the Web. As of today, servers provide services [1],
clients run self-supporting systems and display interactive user
interfaces [2], and polling idioms allow servers to send data
spontaneously to clients [3].

However, the Web’s distinction between the client- and the
server-side renders Web development more complicated than
necessary. For example, the communication between the two
parts is often uniquely implemented for a specific application,
since there is no broadly established way to expose Web appli-
cation interfaces without exposing implementation details [4].
Further, developers combine numerous Web technologies such
as scripting languages, frameworks, database mappers, com-
munication protocols, and graphical markup languages. De-
velopers need to remember syntactic and semantic differences

as well as the functionality and interfaces of two standard
libraries. These development practices force developers to
mix functional, procedural, and declarative development styles
in their application sources, which considerably reduces the
readability of their implementations [5].

The duality of programming languages and the multitude of
applied technologies unavoidably lead to distinct and heteroge-
nous code bases, vocabularies, development practices, and,
thereby, expert knowledge. For these reasons, development
teams become inflexible and the collaboration while devel-
oping a single Web application becomes difficult.

We present the Orca framework that allows developers to
work collaboratively on all aspects of Web applications in a
single object-oriented language. Orca reduces the dominant
difference between client and server by letting developers
describe client parts, server functionality, and client-server
communication in the language and development environment
of the server. Our Smalltalk/Squeak [6] implementation au-
tomatically translates client-side parts of the Web application
into readable JavaScript code. For these translated parts, it
provides a client-side runtime, access to JavaScript libraries
within Smalltalk, and transparent message passing between
client and server. Thus, developers can express complete
applications in a single programming language and teams are
able to share not only a homogenous code base and tools, but
also knowledge in a consistent vocabulary.

The contributions of this paper are as follows:
• A Web framework that allows to program both the

client- and the server-side in a single object-oriented
programming language and development environment
(Section III, IV).

• A Smalltalk-to-JavaScript translator that automatically
generates readable code and a client-side environment
that permits access to language features and existing
libraries of both languages (Section V-A).

• A bidirectional messaging abstraction that enables objects
on clients and the server to communicate transparently
(Section V-B).

The remainder of this paper is organized as follows. Sec-
tion II illustrates the challenges of Web development in teams.

Section III introduces our Orca framework, while Section IV
shows an example application. Section V describes Orca’s
implementation. Section VI evaluates our approach based on
the example application. Section VII discusses related work,
while Section VIII concludes this paper.

II. CHALLENGES IN WEB DEVELOPMENT

We describe the development of a chat application by a team
of programmers to demonstrate why Web development today
is more challenging than it should be. The chat application
allows users to type in their names and to send notes to other
participants. These interactions trigger dynamic updates of the
browser’s user interface.

The development team confronted with the task of imple-
menting this application has to apply various technologies.
They express the user interface using HTML, CSS, and
JavaScript and implement the server functionality of chat
message distribution in an additional language.

Although this server-side language can be chosen freely, the
team does not use JavaScript for this task, because JavaScript
has some problematic features [7]. For example, there are
implicit global variable definitions, equality relationships that
are not transitive, automatic type conversion for values that
are neither equal nor identical, and four distinct function
invocation patterns. If developers write JavaScript by hand,
they can accidentally inject security threats [8]. Nevertheless,
the team has to describe the client-side in JavaScript to allow
the chat application to run in any browser. Further, the team
directly applies the unidirectional Hypertext Transfer Protocol
(HTTP) to transfer notes to the server.

Spreading implementations across these technologies ren-
ders the development of the example complicated and la-
borious. Developing Web applications using two different
programming languages has several drawbacks as there are
differences in syntax, semantics, object models, means of mod-
ularization, and standard libraries. The developers have to deal
with this duality of languages either individually or by splitting
up into client- and server-side teams. When they decide not
to split up according to technologies, each developer has to
constantly switch between languages. Splitting up, however,
inevitably leads to expert knowledge as each programmer
works with a subset of all involved technologies—the team
becomes more dependent on individual developers.

Client- and server-side developers have to negotiate inter-
faces and data flows for most features. For example, adding
author names to chat notes requires changes to the interface
on the client-side, changes to the data model on the server-
side and adaptions to the communication between both. Even
with object interfaces, serialization formats, and server routes
in place, both need to agree on the structure of transmitted
content. Further, the developers mirror parts of the implemen-
tation across languages as the idea of notes is necessary both
on the client and the server. This duplication violates principles
of good software design [5].

The described development process is characteristic for
Web development in general. First, the chosen application

demonstrates all aspects of a typical Web application as it
is interactive and collaborative [9]. Second, although teams
apply popular Web frameworks as Ruby on Rails [10] and
Django [11] that claim to alleviate Web development, these
frameworks do not reduce the number of necessary tech-
nologies. Client-side developers are still using JavaScript,
while the server-side language is called from within HTML
templates, forcing client and server developers to mix up their
implementations.

Even though development of Web applications is special in
that it is tied to the Web’s technology stack with JavaScript,
HTML, and CSS on the client-side and HTTP for client-
server communication, these technologies can be abstracted.
A unified and object-oriented solution for Web development
can render the direct application of the unidirectional commu-
nication protocol, graphical markups, and two programming
languages unnecessary while providing full access to libraries
on client and server.

III. THE ORCA FRAMEWORK

The Orca Web framework strives to reduce the difficulties of
conventional Web development. It allows the development of
all aspects of Web applications in a single language to increase
the consistency of implementations. Although using multiple
languages can alleviate programming of applications if specific
languages are chosen for their eligibility as, for example,
Domain Specific Languages (DSLs), the languages of the Web
are either general purpose as JavaScript or no longer applied
as originally intended as HTML and CSS [12]. Therefore,
Orca solely relies on the Squeak/Smalltalk language. Using
Smalltalk avoids the aforementiond ambigious features of
JavaScript.

Development in a single language should not restrict devel-
opers in expressing client-side programs. This is important
since executing logic on client-side can increase interface
responsiveness and reduce network reliance [13]. Therefore,
Orca does not apply markup generation or wrappers for
JavaScript libraries, but allows the expression of arbitrary
client-side code in Smalltalk.

Figure 1. The main components of Orca as single-language Web development
solution.

Four main components, as depicted in Figure 1, constitute
the Orca Web framework and enable its single-language Web

development approach.
1) A compiler or interpreter that translates the client-side

part to readable JavaScript code. This translator reflects
semantic differences like variable scope, default values
for initialization and returns, and provides access to
literals and language features available in JavaScript.
The generated JavaScript code maintains the chosen lan-
guage’s semantics as developers do not write JavaScript.
A server-side translator allows caching of generated code
for numerous clients.

2) A JavaScript runtime environment that emulates the
language features that have no direct equivalent in
JavaScript. This runtime provides the object model,
access to available objects, and emulations of primitives
or operators.

3) Mechanisms to express JavaScript features that have
no equivalent in the server-side language. For these
mechanisms, the compiler has to implement rules, while
the client-side runtime implements semantics.

4) Abstractions for the communication between remote ap-
plication parts. For a complete single-language program-
ming experience, it enables bidirectional communication
and remote invocations.

In Orca, developers apply the same syntax, semantics,
object model, and standard library to express both client
and server, while utilizing existing JavaScript functionality.
Instead of writing HTML and CSS, they apply JavaScript
widget libraries. Rather than applying HTTP directly to request
data from server routes, remote invocations are similar to the
language’s invocation mechanisms, including addressing the
language’s entities instead of URLs.

The Orca framework further incorporates deployment fa-
cilities as, for example, a Web server to allow developers to
concentrate on programming instead on configuring a server’s
dispatch, request handling, and caching.

IV. ORCA BY EXAMPLE

We present an example application to give an intuition of
developing Web applications with Orca.

A simple chat application, as shown in Figure 2, allows
receiving and sending chat notes. The server-side of the chat’s
implementation distributes such notes among participants,
while the browser displays them to users. Instead of describing
the complete implementation, we will focus on parts of the
interface and the client-server communication.

First, we create a new Orca application, set the application’s
name, define necessary JavaScript libraries, and declare which
classes are required on the client-side in addition to certain
classes of Smalltalk’s standard library and the application class
itself (Listing 1). When an application class has been created
and configured, it is immediately available on the application
server.

The ChatWindow is one of three classes that constitute the
implementation of this chat example as shown in Figure 3.
Instances of the ChatWindow class represent an arbitrary
number of clients and display notes, while a single ChatHub

Figure 2. The chat participants share notes through a central server.

ChatWindow class>>#requiredClasses

↑ { ChatNote. }

Listing 1. The client-side requires the classes for chat windows and notes.

instance distributes notes among all chat participants. Both
the ChatWindow instances and the ChatHub singleton use
ChatNote objects. That is, the model for notes is necessary
on both the client- and the server-side.

We use the application’s initialization to setup the desired
user interface including the chat’s button (Listing 2).

The button gets a label and a callback. Orca comes with
predefined user interface elements, although arbitrary HTML
tags can be used. Orca’s class for interface elements is called
OrcaWidget and its initialization shows how to create an
arbitrary HTML element (Listing 3).

The Js class provides access to global JavaScript objects
on the client-side and in this case to the Document object.

Figure 3. The chat’s implementation includes objects for the client’s window,
the server’s message distribution and for chat notes.

ChatWindow>>#initializeButton

self sendButton:
(OrcaSubmitButton new

text: ’ Submit ’;
onClickDo: [self sendChatNote])

Listing 2. The initialization of the chat window creates a button.

OrcaWidget>>#initialize

self
node: (Js Document createElement

value: self class htmlTag);
children: OrderedCollection new.

Listing 3. The Orca widget initialization creates document nodes.

ChatWindow>>#sendChatNote
| chatNote|
chatNote := ChatNote

text: messageInput text
author: nameInput text.

self remoteHub spread: chatNote.

Listing 4. The client sends a chat note to the server.

This object provides the createElement() function that
creates a new HTML element with a supplied HTML tag.
Since an object’s function can be either retrieved or evaluated
in JavaScript, we use the message value: to explicitly
evaluate retrieved functions. We have chosen this message
selector since JavaScript functions and Smalltalk blocks are
conceptually similar and value: is used to evaluate Smalltalk
blocks.

Revisiting our button’s initialization, the onClickDo:
message receives a Smalltalk block as callback and sets it
as an element’s property. The callback is executed on every
click on the button and invokes the sendChatNote method
(Listing 4).

To understand how the note is transferred to the server and
to all clients, we need to know what the remoteHub object
is. On initialization, the client-side of the chat registers with
the server-side (Listing 5). The asRemote message creates a
proxy object for the ChatHub class of the server-side. This
client-side proxy object forwards the uniqueInstance
message to the class on the server-side. The invoked method
returns a proxy for the singleton to the client. The method
further sends the client’s chat window to the chat hub object.
This way, the hub receives a proxy for this client-side object
and can send messages to it as in the spread: method (List-
ing 6) which executes whenever the button’s sendChatNote
is clicked.

Since clients may be no longer available, the server might
receive an exception on the attempt to send a note to a client.
In this example, we use this exception to inform all participants
that the unreachable client left the chat.

When a note reaches a client, the client creates a new

ChatWindow>>#registerWithHub

self remoteHub:
ChatHub asRemote uniqueInstance.

self remoteHub registerWindow: self.

Listing 5. The client-side initialization connects client and server.

ChatHub>>#spread: aChatNote
self registeredChatWindows do:

[:each |
[each

performForked:
#displayChatNote:

with: aChatNote]
on: ClientTimedOut
do: [:ex | self

informParticipantsAbout:
ex timedOutClient]].

Listing 6. The server spreads chat notes among clients.

ChatWindow>>displayChatNote: aChatNote

| noteWidget |
noteWidget := ChatNote for: aChatNote.
self add: noteWidget.

Listing 7. The chat window displays received notes.

element for the message and adds it to the display (Listing 7).

The presented implementation of a chat application with
Orca demonstrates our single-language Web development
approach. The complete application—including the client-
side and client-server communication—is expressed solely in
Smalltalk. This is possible through a Smalltalk-to-JavaScript
translator, a custom client-side environment, and a bidirec-
tional remote messaging abstraction.

V. IMPLEMENTATION

Orca is a single-language Web framework implemented in
Smalltalk/Squeak.

This section shows how Orca’s compiler translates Smalltalk
code to JavaScript, how its custom client-side environment ex-
ecutes the translated code, and how it makes all JavaScript fea-
tures available in Smalltalk. The section further describes how
Orca enables client-server communication through Smalltalk
messages.

A. Expressing Client-side Functionality in Smalltalk

1) Translating Smalltalk to JavaScript: Orca’s Smalltalk-
to-JavaScript translator generates the client-side of an Orca
application. Besides syntactic translation, it takes semantic
differences between both languages into account.

Variable declarations are translated directly, but each vari-
able is initialized to the default value nil instead of
undefined. If there is no explicit return from a method, a
return statement is added that returns the receiver, consistent
with Smalltalk semantics.

Orca’s compiler translates message sends to function calls.
A mapping from Smalltalk message selectors to JavaScript
function names avoids collisions of Smalltalk messages and
instance variables because there is no different scope for
functions and properties and no overloading in JavaScript.

The compiler translates Smalltalk literals to calls to global
functions with the primitive JavaScript equivalent as argu-
ment. These functions produce Smalltalk-typed objects for
the JavaScript values without adapting objects of JavaScript’s
standard library.

The compiler also takes care of Smalltalk cascades. As there
is no similar structure in JavaScript, it compiles them into
equivalent statements.

JavaScript code translated with Orca does not apply
JavaScript control structures directly. Each message send is
translated to a function call; including Smalltalk messages as
ifTrue:ifFalse:. The compiler translates necessary parts
of Smalltalk’s standard library to allow calling these func-
tions. This way, Orca allows translation of arbitrary Smalltalk
without any type analysis. It translates the code directly and
produces a JavaScript version with the exact call structure.

The compiler applies JavaScript code conventions and pre-
serves comments to alleviate debugging the client-side with
the browser’s tools.

In the future, we would like to use type analysis to enable
the compiler to use JavaScript control structures for perfor-
mance and readability reasons.

2) Running Smalltalk in JavaScript: The translation of
our compiler depends on features of Smalltalk that are not
present in JavaScript. Therefore, Orca provides a Smalltalk-
like environment for the JavaScript runtime.

Although Smalltalk and JavaScript are both dynamically
typed and object-oriented programming languages, they are
based on two distinct object models. JavaScript objects are
prototypes, whereas Smalltalk objects are instances of classes.
Orca applies JavaScript’s prototypical inheritance to emulate
Smalltalk’s class system on the client.

After the initialization of the Smalltalk standard library,
the runtime creates objects that are part of every Smalltalk
runtime. For example, it creates globally accessible singletons
like nil, true, false.

Besides the object model and literally accessible objects,
some programming concepts of Smalltalk have to be emulated
in JavaScript. For example Smalltalk’s doesNotUnderstand
mechanism or non-local method returns of blocks are required
to maintain the semantics of translated code. The implemen-
tation of Smalltalk’s doesNotUnderstand concept relies on the
compiler’s collection of used message names. These message
names are collected to create a new root class of the class
hierarchy that provides default implementations for all actually
sent messages. For Smalltalk’s non-local method returns, Orca
uses JavaScript exceptions to return the block’s home context.

Orca emulates required primitives of Squeak’s virtual ma-
chines that have no software implementation.

3) Expressing JavaScript in Smalltalk: For complete single-
language development, developers need to be able to express
any client-side programs in Smalltalk.

We achieve that by mapping JavaScript operators and values
to equivalent Smalltalk messages and objects. Further, func-
tions are mapped to the native interface of Smalltalk blocks.

Other aspects of the JavaScript language require an explicit
representation in the Smalltalk environment. For example,
Orca allows assignment and testing of object slots by using
explicit JavaScript-only objects. Messages that conform to
Smalltalk’s conventions for accessing instance variables are
used as getters and setters of object slots. Other explicitly im-
plemented JavaScript features include creating plain JavaScript
objects through the new operator or literals.

These mechanisms enable developers to take advantage
of existing JavaScript functionality instead of writing and
maintaining wrappers for libraries. For example, the browser
interface, which is used to build and manipulate the structure
of the application’s Web interface, is accessible.

Objects on the client-side have two representations to
achieve interoperability with library code. There is one rep-
resentation for Orca’s Smalltalk environment in JavaScript
and one for the original environment. Upon entering Orca’s
Smalltalk environment within JavaScript, JavaScript objects
are automatically boxed to resemble Smalltalk equivalents of
their JavaScript equivalents.

B. Expressing Client-server Communication in Smalltalk

With Orca, objects on client and server interact through
messages. Orca implements transparent message passing as
in Distributed Smalltalk [14] to allow code to invoke local
and remote methods.

When messages address remote objects, Orca forwards them
transparently. The framework serializes objects and creates re-
quests. However, remote messages still require local receivers.
Orca provides proxies for objects that are not part of the
local address space. Client-side proxies hold an identifier for
an actual object of the server, whereas server-side proxies
additionally contain a reference to a certain client. Remote
Object Maps resolve these identifiers on client and server.
Remote messages to such proxy objects transfer arguments
and return values. Orca’s remote messaging transfers numbers,
strings, characters, booleans, and the pseudo-variable nil by
value. The default option for instances of other classes is
to transfer a reference instead of an actual object. That is,
a proxy is generated transparently on such messages and is
supplied as parameter. Orca further lets developers specify
that objects should be passed by values despite being none
of the mentioned types. Instances of classes that return true
on copyOnSend messages are passed by value and will,
therefore, be locally available in the receiver’s environment.
Since remote messages are orders of magnitude more expen-
sive than local messages, developers might apply this copy
mechanism as optimization. When an object is passed by
value, the object’s class has to be available in the target
environment.

Like local sends, remote sends are synchronous by de-
fault. However, Orca also provides message sends that do
not wait for remote answers, but directly receive Smalltalk’s
nil value. These one-way sends are available through
the performForked:withArgs: message that expects a
message selector and arguments.

Further, clients or the server might no longer be available,
but still be referenced. In this case, the sender receives an
exception after a timeout.

Orca’s message passing mechanism is built on top of a
bidirectional abstraction layer that applies long polling. In
addition to allowing server-side sends at anytime our ab-
straction layer handles allocation of answers. This way, Orca
alleviates the implementation of control flows that request
further information on requests without responding to the first
request immediately.

In the future, we will address security concerns as clients
can currently send any messages to all global Smalltalk
objects.

VI. EVALUATION

This section evaluates whether Orca alleviates Web develop-
ment by discussing its impact on the development process of
the chat application. Further, we explain certain compiler op-
timizations that reduce the execution time of Orca’s generated
client-side code significantly.

A. Development of Orca Applications

With Orca, teams design and implement the application in a
single development and runtime environment. The developers
use a more consistent tool chain, including a single code
browser, search facilities, test runner, and refactoring tools.
A single source code management system contains the team’s
code. There is considerably less distinction of client and server
programming—both apply the same language, standard library,
and the same conventions. Section II discusses that this is
not the case with traditional Web development. The team has
to cope with multiple sources and differences between both
applied programming languages.

Development solely in Smalltalk increases readability and
understandability of the system as the listings in Section IV il-
lustrate. The whole team is able and encouraged to understand
all parts of the implementation.

Orca’s Smalltalk-to-JavaScript compiler translates arbitrary
Smalltalk code. It produces valid code that relies on our
emulation of the Smalltalk environment to execute on the
client. Our research team and five experienced JavaScript and
Smalltalk developers evaluated the readability of the resulting
JavaScript code. It is formatted according to JavaScript coding
conventions, includes the original comments, and keeps the
structure of the Smalltalk code. The generated code can be
debugged in its actual JavaScript runtime environment and
insights can be easily applied to the Smalltalk source code.

Orca reduces the amount of source code and prevents du-
plications between client and server. The chat implementation
showed that developers do not need to write or call any
serialization routines and that no code has to be mirrored
across languages. They do not create HTTP requests on the
client-side, dispatch them on the server-side, and specify
responses. Developers express the communication on the level
of abstraction of Smalltalk. That is, already existing object

interfaces are used instead of ad-hoc interfaces defined by
name-value pairs, serialization formats and server routes.

For larger and more complex applications, we think that
development might be impeded by the implicit nature of
proxy-based message forwarding. Orca, therefore, exposes its
bidirectional communication layer to application developers
and comes with simpler messaging abstractions as, for
example, remote block evaluation.

To summarize, the development of Web applications with
Orca avoids many of the problems of traditional Web devel-
opment. The development team can focus on writing homoge-
nous application code in a single development environment.
There is no context switching between technologies and, thus,
likely less expert knowledge.

B. Execution of Orca Applications

Server-side logic, client-server communication, and client-
side functionality constitute Orca applications. The server-side
of Orca applications executes as fast as regular Smalltalk,
while remote one-way sends can transfer parameters as value
and, thereby, in an equal number of HTTP requests as used
manually. However, the generated client-side of Orca applica-
tions is expected to be slower than manual implementations.

To measure the performance of the generated code, we
implemented the ackermann(3, 4) [15] function with
Orca and compared its execution time to that of native
JavaScript. We chose this recursive algorithm, because its
execution includes arithmetical operations, conditional control
structures, and numerous method calls. The experiment was
conducted with an Intel Core i7 processor, 8 GB of main
memory, the operating system Windows 7 and the Google
Chrome browser version 15.0.874.121. We used JavaScript’s
Date().getTime() function and averaged 50 runs.

The plain JavaScript version took 0.4 milliseconds, while
the Orca version was finished within 207 milliseconds.

Orca’s generated version runs orders of magnitude slower
than the JavaScript implementation. The main performance
loss results from the compiler’s preservation of the character-
istics of the original Smalltalk code. That is, message sends
express arithmetic operations and control flow. Further, the im-
plementation of our custom environment wraps each message
send into two functions. For these reasons, the addition of two
numbers, for example, results in a callstack of at least eight
invokations in addition to the actual + statement, while an
ifTrue: statement requires nine calls and, further, creates a
short-living BlockContext object.

A number of optimizations can improve Orca’s compiler.
The first improvement should be to remove one of the func-
tions wrapped around each method call. Experiments showed
a performance gain of 15%.

Further, performance can be increased through using
JavaScript operators for arithmetic operations and control flow.
We could apply similar techniques as used by optimizing
compilers of polymorphic code [16]. The compiler would
detect variables that are likely of a certain type through

static analysis of message sends. For such variables, it could
generate type checks as well as JavaScript control structure
and operators. On successful type checks, the JavaScript
engine would execute operators directly, while the original
polymorphic implementation would be executed otherwise.
The overhead created by the type checks is considerably low
compared to the performance gain we encountered.

We modified the generated code for the ackermann(3,
4) function to measure the proposed optimizations. All opti-
mizations resulted in code that ran only five times slower than
our manual JavaScript implementation of the example.

An issue with generating optimized code is reduced read-
ability. Such compilation should, therefore, only be feasible
for production versions that developers will less likely debug.
Another problem might pose the increased code size, but as
Orca transports code compressed, loading a web page should
still be sufficiently fast.

In conclusion, we demonstrated that the measured low
performance is not inherent to our approach. In the future, we
will reduce the performance penalties through the proposed
optimizations and will experiment with different type analysis
tools such as TypeHarvester [17].

VII. RELATED WORK

1) Server-centric Web Frameworks: Numerous Web frame-
works support the development of database-driven, server-
centric Web applications [18]. Such frameworks as, for ex-
ample, Ruby on Rails, Django, and Seaside [19] run on the
server-side and generate HTML for the browser. Ruby on Rails
and Django both rely on HTML templates and inline calls to
server-side functionality. That is, such template-based frame-
works continue to build user interfaces with HTML pages and
mix different programming paradigms and languages in their
source files, which reduces readability and maintainability. In
contrast, Seaside provides an embedded DSL for HTML com-
ponents and, therefore, can be considered as a single-language
approach to server-centric Web application development. All
three examples have in common that developers express client-
side logic either directly in JavaScript or through JavaScript
wrappers. In contrast, Orca allows expression of client-side
functionality in the server-side language including facilitating
JavaScript widget libraries.

2) Single-language Web Frameworks: GWT is a framework
for single-language Web development in Java based on a Java-
to-JavaScript compiler, emulation of the Java Runtime, and a
widget library. Similar components resemble the Python-based
single-language Web framework Pyjamas [20]. Both generate
browser-specific client-side code and, thereby, relieve devel-
opers from ensuring interoperability across multiple browsers.
GWT and Pyjamas allow embedding JavaScript code directly
into the host language. Pyjamas code can inline JavaScript
code, while GWT’s JavaScript Native Interface (JSNI) only
allows implementation of whole JavaScript methods due to
Java’s static type system. However, JavaScript calls to existing
libraries still need to be wrapped for complete single-language
development. In contrast, Orca enables developers to express

JavaScript within Smalltalk. Both GWT and Pyjamas do not
incorporate bidirectional remote invocations as Orca does. In
comparison of all three approaches, GWT provides the most
complete tool support, while Orca provides the most integrated
single-language development approach.

3) HOP: The HOP programming language [21] is a
Scheme-dialect for developing multimedia Web applications.
It is based on two execution strata; one executes JavaScript on
the client-side, while the other executes Scheme on the server-
side. HOP provides a Scheme-to-JavaScript compiler [22],
syntax to escape inline between both strata, and bidirectional
communication through an event loop and remote function
invocation. In contrast to Orca’s translator, HOP’s compiler is
optimized for performance. We experienced HOP’s generated
JavaScript to be unreadable and, therefore, difficult to debug.
While HOP is build on the functional programming language
Scheme, Orca is based on Smalltalk’s object-oriented and
class-based development style.

4) Amber: Amber [23] is a self-contained Smalltalk imple-
mentation in JavaScript. It includes a Smalltalk-to-JavaScript
compiler, inline calls to JavaScript functionality, and syntax to
use JavaScript objects from within Smalltalk. For performance
reasons, Amber tries to use native JavaScript values where
possible, making it necessary to implement considerable parts
of the standard library in the compiler. In contrast to Orca,
Amber is a pure client-side environment. It can not directly
be used to implement Web applications that require server
functionality and client-server interactions.

5) Lively Kernel: The Lively Kernel [24] is an open and
self-supporting JavaScript environment that runs completely in
the browser. The Morphic user interface environment [25] and
the absence of separation between design-time and run-time al-
low rapid application development through direct composition
and immediate feedback, while its wiki-like deployment [26]
supports collaborative development efforts. In contrast to Orca,
Lively Kernel development happens in JavaScript. Further-
more, although the Lively Kernel is currently deployed with
server-side JavaScript through Node.js [27], the client-side and
the server-side are less integrated than their counterparts in
Orca.

6) Dart: The Dart Programming language [28] was de-
veloped as language for usage on both clients and servers.
Dart aims on better support for modularity and developer
collaboration by providing classes, interfaces, optional types,
libraries, and tools. To our most recent knowledge, a Dart
program is compiled to JavaScript and then executed in a
Web browser. As a general purpose language, Dart does not
include support for client-server communication. Compared to
Orca, the Dart language aims on unifying client- and server
programming, while Orca is a framework that further incorpo-
rates client-server communication, Web server infrastructure,
and integration with existing JavaScript libraries.

7) Native Client: Native Client [29] is a sandbox for multi-
threaded execution of untrusted x86 native code in browsers.
The browser extension runs such code in its own address
space, but provides interfaces for side effects to the JavaScript

environment. Since Native Client is not supported by all major
browsers, Native Client programs do not run as ubiquitously
as JavaScript and, therefore, Orca programs. Further, Native
Client is not a Web development framework but a code
execution sandbox.

VIII. CONCLUSION

With Orca, development teams can work collaboratively on
all aspects of Web applications. Our framework enables devel-
opment of the client and server in the Smalltalk programming
language, provides access to existing functionality of both
languages, and alleviates client-server communication. Orca,
thereby, unifies client- and server-resident parts and interaction
between them.

Developers neither program in two distinct environments
nor specialize on certain parts of Web applications. Instead of
only gaining expert knowledge on the subset of an application,
the developer and their team share a homogenous, single-
language code base, a consistent vocabulary of idioms and
patterns, and development tools for implementing, testing and
refactoring.

In the future, we want Orca’s compiler to be able to generate
the client-side in two different versions with one of which is
optimized for readability while the other aims on performance
through direct application of JavaScript operators and control
structures. Furthermore, we will restrict remote messaging to
certain global Smalltalk objects to address security concerns.

Nevertheless, the Orca framework already permits the con-
struction of complete Web applications within Smalltalk and,
thereby, enables development teams to work with a single
development solution.

IX. ACKNOWLEDGMENTS

We would like to thank Hauke Klement, Lars Wassermann,
Robert Strobl, Sebastian Woinar, and Stephan Eckardt for their
valuable contributions to Orca. We would also like to express
thanks to Fabian Bornhofen, Thomas Bünger, and Eugenia
Gabrielova for their comments on drafts of this paper.

REFERENCES

[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web Services:
Concepts, Architectures and Applications, 1st ed. Springer, 2010.

[2] A. Taivalsaari, T. Mikkonen, D. Ingalls, and K. Palacz, “Web Browser
as an Application Platform,” in Proceedings of the 2008 34th Euromi-
cro Conference Software Engineering and Advanced Applications, ser.
SEAA ’08. IEEE Computer Society, September 2008, pp. 293–302.

[3] D. Crane and P. McCarthy, Comet and Reverse Ajax: The Next-
Generation Ajax 2.0, 1st ed. Apress, 2008.

[4] T. Mikkonen and A. Taivalsaari, “The Mashware Challenge: Bridging
the Gap between Web Development and Software Engineering,” in Pro-
ceedings of the FSE/SDP Workshop on Future of Software Engineering
Research, ser. FoSER ’10. ACM, November 2010, pp. 245–250.

[5] ——, “Web Applications - Spaghetti Code for the 21st Century,” in
Proceedings of the 2008 Sixth International Conference on Software
Engineering Research, Management and Applications, ser. SERA ’08.
IEEE Computer Society, August 2008, pp. 319–328.

[6] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay, “Back to the
Future: The Story of Squeak, a Practical Smalltalk Written in Itself,” in
Proceedings of the 12th ACM SIGPLAN Conference on Object-oriented
Programming Systems, Languages and Applications, ser. OOPSLA ’97.
ACM, October 1997, pp. 318–326.

[7] D. Crockford, JavaScript: The Good Parts, 1st ed. O’Reilly Media,
2008.

[8] C. Yue and H. Wang, “Characterizing Insecure JavaScript Practices on
the Web,” in Proceedings of the 18th International Conference on World
Wide Web, ser. WWW ’09. ACM, April 2009, pp. 961–970.

[9] M. Anttonen, A. Salminen, T. Mikkonen, and A. Taivalsaari, “Trans-
forming the Web into a Real Application Platform: New Technologies,
Emerging Trends and Missing Pieces,” in Proceedings of the 2011 ACM
Symposium on Applied Computing, ser. SAC ’11. ACM, March 2011,
pp. 800–807.

[10] S. Ruby, D. Thomas, and D. Hansson, Agile Web Development with
Rails, 3rd ed. Pragmatic Bookshelf, 2009.

[11] A. Holovaty and J. Kaplan-Moss, The Definitive Guide to Django: Web
Development Done Right, 2nd ed. Apress, 2009.

[12] M. Jazayeri, “Some Trends in Web Application Development,” in
Proceedings of the 2007 Future of Software Engineering, ser. FOSE
’07. IEEE Computer Society, May 2007, pp. 199–213.

[13] J. Kuuskeri and T. Mikkonen, “Partitioning Web Applications Between
the Server and the Client,” in Proceedings of the 2009 ACM Symposium
on Applied Computing, ser. SAC ’09. ACM, March 2009, pp. 647–652.

[14] J. K. Bennett, “The Design and Implementation of Distributed
Smalltalk,” in Proceedings of the ACM SIGPLAN Conference on Object-
oriented Programming Systems, Languages and Applications, ser. OOP-
SLA ’87. ACM, January 1987, pp. 318–330.

[15] W. Ackermann, “Zum Hilbertschen Aufbau der reellen Zahlen,” Math-
ematische Annalen, vol. 99, pp. 118–133, 1928.

[16] D. Ungar, R. B. Smith, C. Chambers, and U. Hölzle, “Object, Message,
and Performance: How they Coexist in Self,” Computer, vol. 25, pp.
53–64, October 1992.

[17] M. Haupt, M. Perscheid, and R. Hirschfeld, “Type Harvesting: A Prac-
tical Approach to Obtaining Typing Information in Dynamic Program-
ming Languages,” in Proceedings of the 25th Symposium on Applied
Computing, ser. SAC ’11. ACM, March 2011, pp. 1282–1289.

[18] I. Vosloo and D. G. Kourie, “Server-centric Web frameworks: An
Overview,” ACM Computing Surveys, vol. 40, pp. 4:1–4:33, May 2008.

[19] S. Ducasse, A. Lienhard, and L. Renggli, “Seaside: A Flexible Environ-
ment for Building Dynamic Web Applications,” IEEE Software, vol. 24,
no. 5, pp. 56–63, September 2007.

[20] Leighton, Luke K. C., “Pyjamas Book,”
http://pyjs.org/book/output/Bookreader.html, 2009, retrieved December
12th 2011.

[21] M. Serrano, “Programming Web Multimedia Applications with Hop,”
in Proceedings of the 15th International Conference on Multimedia, ser.
MULTIMEDIA ’07. ACM, September 2007, pp. 1001–1004.

[22] F. Loitsch and M. Serrano, “Hop Client-Side Compilation,” in Draft
Proceedings of the 8th Symposium on Trends in Functional Languages,
ser. TFP ’08, 2008, pp. 141–158.

[23] N. Petton, “Amber Documentation,” http://amber-
lang.net/documentation.html, 2011, retrieved December 16th 2011.

[24] D. Ingalls, “The Lively Kernel: Just for Fun, Let’s Take JavaScript Seri-
ously,” in Proceedings of the 2008 Symposium on Dynamic Languages,
ser. DLS ’08. ACM, July 2008, pp. 9:1–9:1.

[25] J. H. Maloney and R. B. Smith, “Directness and Liveness in the Morphic
User Interface Construction Environment,” in Proceedings of the 8th
Annual ACM Symposium on User Interface and Software Technology,
ser. UIST ’95. ACM, December 1995, pp. 21–28.

[26] R. Krahn, D. Ingalls, R. Hirschfeld, J. Lincke, and K. Palacz, “ Lively
Wiki - A Development Environment for Creating and Sharing Active
Web Content,” in Proceedings of the 5th International Symposium on
Wikis and Open Collaboration, ser. WikiSym ’09. ACM, October 2009,
pp. 9:1–9:10.

[27] S. Tilkov and S. Vinoski, “Node.js: Using JavaScript to Build High-
Performance Network Programs,” IEEE Internet Computing, vol. 14,
pp. 80–83, November 2010.

[28] The Dart Team, “Dart Programming Language Specification,”
http://www.dartlang.org/docs/spec/dartLangSpec.pdf, 2011, retrieved
December 16th 2011 (Draft Version 0.06).

[29] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar, “Native Client: A Sandbox
for Portable, Untrusted x86 Native Code,” in Proceedings of the 2009
30th IEEE Symposium on Security and Privacy, ser. SP ’09. IEEE
Computer Society, May 2009, pp. 79–93.

