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Computing, storage, and network resources are available as a utility to-
day through the methods of cloud computing. Users can provision the
resources, platforms, and services they need and pay only for their usage.
The key technology enabling this is virtualization, yet orchestration and
automation tools, distributed application architectures and execution mod-
els, as well as higher-level platforms also define how virtual resources are
offered and consumed today. At the same time, the rise of cloud comput-
ing has been accompanied by cultural shifts, where most notably software
development, systems operations, and quality assurance are merging in
their roles, processes, and tools. Major trends that have been shaping
cloud computing recently include serverless computing, which abstracts
resources and resource management entirely from consumers through a
fully automatic horizontal application scaling, and the emerging comput-
ing paradigms of the Internet of Things, which integrate heterogeneous
distributed resources beyond centralized data centers. Meanwhile, current
research on cloud infrastructures and operations increasingly employs ma-
chine learning to automate resource management and failure handling.

1 Introduction

Cloud computing as a computing paradigm emerged from a history of develop-
ments that increased the sharing of available computer resources [94, 112]. Batch
systems allowed multiple users to use computers in a time-shared manner, before
computers became small and affordable enough to become personal computers.
Larger user groups in industry and research, however, quickly outgrew the re-
sources of single computers, leading to the development of clusters. In clusters
many computers are connected in a local network, typically hosted in a single room
and often equipped with relatively homogeneous resources and software stacks on
all nodes. Usually many users within an organization share one or more clusters,
so that users reserve a fraction of the entire cluster resources for a particular time.
Centralizing the resources into dedicated clusters and sharing access to these clus-
ters makes sense from an economically point of view: centrally housing, operating,
and maintaining a larger set of nodes organized in a single cluster can typically
be done more efficiently than with decentralized resources. Moreover, statistical
multiplexing sharing allows for increased utilization of shared cluster resources,
especially when the intensity of workloads varies over time [4].
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Computing needs that go beyond the resources of single clusters were addressed
by grids, in which heterogeneous and widely distributed resources—be it single
computers or entire clusters—are connected to form a unified computing platform.
Users of grid systems can submit their jobs, which are then executed by the partici-
pating heterogeneous and distributed nodes of the grid. These nodes all run a grid
system, managing the resources and effectively abstracting both the heterogeneity
as well as the distribution of the nodes.

These developments of resource sharing lead to the vision of computing as a
utility, accessible to everyone at self-service, with seemingly unlimited resources
available and billed by usage, comparable to how energy and water are made
available to customers in the respective grids. The central technology that made
this vision of cloud computing a reality is virtualization. It allowed not only to
safely run applications of different customers in isolation on the same shared
resources in a data center, but to do so with a high degree of efficiency, flexibility
in scheduling loads, and tolerance to failures of individual components.

Similar to cluster resource sharing within one organization, yet at orders of mag-
nitude higher scale, cloud providers serve numerous organizations simultaneously,
taking advantage of statistical multiplexing and economies of scale: Large num-
bers of nodes can be acquired, housed, powered, cooled, and maintained much
more cost-efficiently by a single large provider than by many separate entities all
managing considerably smaller infrastructures. That is, the large size of the data
centers of major cloud providers and the large number of customers allow for
high degrees of resource utilization, despite varying demands of individual users.
In addition, as a value proposition especially for users with varying or growing
computing needs, cloud computing offers ways to shift upfront capital expenses to
continuous operational costs, having users pay for resource usage instead of the
resources themselves.

1.1 The NIST Definition of Cloud Computing

The publication 800-145 of the National Institute of Standards and Technology [80]
provides a definition of cloud computing and defines it as “a model for enabling
ubiquitous, convenient, on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications, and services)
that can be rapidly provisioned and released with minimal management effort
or service provider interaction”. This cloud model is composed of five essential
characteristics, three service models, and four deployment models.

The five essential characteristics of cloud computing by this definition are on-
demand self-service, broad network access, resource pooling, rapid elasticity, and measured
service. Users provision resources themselves as needed and without interacting
with service provider personell. They access resources and services over networks,
using the standard mechanisms and protocols of the Internet. Under the assump-
tion that not all customers require resources simultaneously, schedulers assign the
resources currently required from large pools of resources to specific reservations,
so any user allocation is provided with physical resources according to its current
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demand. This is supported by rapid elasticity, which allows to reserve and use
exactly as many resources as actually needed over time, reserving additional re-
sources as numbers of requests or queries increase and returning surplus resources
as soon as there is less demand. To connect usage to costs, provisioned services are
measured and usually billed by reservation time or measured usage. This provides
an incentive for providers to offer resources in the first place and for users to only
reserve the resources actually needed.

The three service models of the NIST definition are named infrastructure as a
service (IaaS), platform as a service (PaaS), and software as a service (SaaS). laaS
describes virtual resource provisioning, where the customer is free to choose—but
also responsible for—the operating system, the middleware, the programming en-
vironment, and the applications running on top. PaaS balance the responsibilities
of customers and providers at a higher level of abstraction than IaaS. The provider
promises to take care of scalability, availability, and maintenance of the execution
environment, so customers can focus on designing, implementing, and providing
their own applications. Thus, customers only control their applications. This ad-
vantage comes at a higher operational cost per time-unit and a reduced flexibility
regarding the choice of runtime and development environment. SaaS represents a
fully transparent environment, where the customer simply uses a particular service
without the possibility to run own applications. There are also plenty additional
service abbreviations, such as Hardware as a Service or Security as a Service, yet
the three initial service models remain defining for cloud computing.

The deployment models described in the NIST definition determine which cus-
tomer groups are eligible for using a particular cloud infrastructure. A public cloud
is available to the general public. It is set up on the premises of a cloud provider,
who can be a business, an academic institution, a government organization, or a
combination of these. In contrast, a private cloud is dedicated to a single organiza-
tion, yet the organization is not necessarily owning or operating the cloud. This can
also be outsourced to a third party managing the infrastructure on or off premises.
Between those two deployment models there are community and hybrid clouds.
A community cloud is exclusively used by a specific community of users from
organizations that have a shared interest, whereas hybrid clouds are compositions
of two or more distinct cloud infrastructures.

1.2 Recents Trends Around Cloud Computing

Virtualization is the enabler of cloud computing, but also leads to new problems.
In particular, the ease of provisioning and running virtual servers as needed and
without worrying about physical infrastructures often yields server sprawl, as
all the virtual machines and replicated application components still need to be
managed. The complexity of managing and orchestrating hundreds of virtual
servers, applications, components, software versions, dependencies, as well as
production and test deployments has been addressed mainly by cultural shifts,
specifically the DevOps movement and the idea of infrastructure as code (IaC), yet
also by new orchestration tools [10, 85].
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Aside of ongoing developments in virtualization technology, with for example
OS-level containment features that allow isolated environments with significantly
reduced footprints and start-up times, and cultural shifts, which aim at faster and
more continuous releases of cloud applications, there are also efforts to further
raise the level of abstraction for users with increasingly managed cloud services
such as PaaS offerings, including those enabling serverless computing [7]. These
cloud services take care of the underlying infrastructure, fault tolerance, scaling
and load balancing, while also providing program runtimes in terms of languages,
libraries, and external interfaces, allowing users to fully focus on their applications
as long as their applications fit with the platform runtimes.

The increasingly connected, sensor-equipped, and distributed devices of the In-
ternet of Things (IoT) pose new challenges for distributed application architectures
and execution models. These systems produce sensor data streams, which need to
be processed continuously, often with specific quality of service (QoS) requirements
such as low end-to-end latencies. This can be achieved with stream processing,
following the distributed dataflow model popularized by MapReduce [32]. Such
distributed stream processing systems support continuous, low-latency processing
of constantly arriving streaming data and provide features to analyze infinite data
streams such as windowed aggregations and recovery from partial failures. How-
ever, many distributed data management and processing systems currently still
expect to be run on centralized and homogenous resources, while new distributed
computing paradigms such as edge and fog computing [31, 100] propose to inte-
grate more heterogeneous and dynamic resources such as devices, gateways, and
distributed servers outside of centralized data centers. Likely, sharing resources
will also be beneficial in these environments, yet efficient and dependable manage-
ment of dynamic and heterogeneous resources is still a significant challenge for
sensor stream processing and other IoT applications.

Outline. The remainder of this report is organized as follows: Section 2 looks at
virtualization as the key technology enabling cloud computing. Section 3 discusses
tools and practices for managing large sets of virtual resources. Section 4 out-
lines how fault-tolerant and scalable distributed applications can be run on cloud
resources. Section 5 presents central methods and systems for data-intensive appli-
cations. Section 6 looks at high-level managed cloud platforms, including serverless
computing. Section 7 describes the main ideas of the emerging distributed comput-
ing paradigms that connect the IoT to clouds. Section 8 concludes this report with
a summary of current research on cloud computing methods, including some of
our own results.

2 Foundation of Clouds: Virtual Resources

Before virtualization technology became mature and popular, users and organiza-
tions were required to run their business-critical applications and workloads on
dedicated physical servers, usually hosted in their own data centers for privacy
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and security reasons. Virtualization then enabled isolation, high resource utiliza-
tion, rapid provisioning, and dynamic elasticity. It allowed to safely and efficiently
serve the computation and storage needs of external customers with the resources
of one’s data center. First, virtualization allows to safely host virtual machines of
multiple different customers on the same physical resources. Second, it allows a
significantly increased amount of flexibility as system virtualization allows not
only to run multiple virtual machines on a single physical machine, but each of
these virtual machines can be assigned a specific amount of resources and run its
own operating system. In comparison to the resources of large cloud providers,
dedicated physical resources of single organizations have a much higher chance of
being either underutilized or overutilized with the assigned workload. This is true
even if a set of applications is optimally consolidated on a fitting set of physical
resources. Cloud providers simply have significantly larger optimization spaces in
all resource management decisions as they are able to consolidate the workloads
of users of multiple distinct organizations, while virtualization furthermore allows
to actively balance loads such as by migrating virtual machines from one phys-
ical node to another at runtime and with little noticeable impact on application
performance.

Virtualization allows to snapshot the state of a virtual server, whereas single
dedicated bare-metal servers are often enough single points of failures. With snap-
shots and live migration servers can be available through planned maintenance
and quickly re-instated in case of unforeseen outages. Moreover, with cloud oper-
ating systems that manage resources and provide interfaces to users and systems,
IaaS providers allow their users to quickly provision virtual resources, including
automatic scaling of current reservations.

The central idea of virtualization is to introduce a sandbox in which a customer’s
application can be executed in isolation and using a specific amount of the avail-
able resources. This is true for both system virtualization [108], in which virtual
resources come in form of virtual machines, and containerization [82, 109], in which
virtual resources are provided as containers.

Figure 1 shows an overview over the three main virtualization approaches.

Operating System

Hardware Hardware Hardware

Figure 1: Approaches to virtualization, from left to right: system virtualization, OS-level
virtualization, and process-level virtualization.
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System virtualization allows multiple guest systems (including the guest operat-
ing systems) to run on virtualized hardware. In OS-level virtualization, programs
run in virtualized environments called containers. These containers run on the
same operating system kernel. Process-level virtualization provides an sandbox
and abstraction on top of the operating system APIs for a certain program.

General-purpose virtual resources in cloud environments are provided predomi-
nantly through system virtualization, yet increasingly also using OS-level virtual-
ization, while process virtualization is often employed in addition for applications,
either by users of virtual resources or in higher-level cloud platforms as part of the
provided environment.

2.1 System Virtualization

In system virtualization, access to resources by guest operating systems, which can
then run arbitrary user applications, is virtualized. This includes access to main
memory and hardware devices. It requires the same instruction set architecture for
efficient execution of virtual machines3, yet allows for different hardware character-
istics and different operating systems. System virtualization VMMs are classified
as Type-I or Type-II hypervisor. Type-I hypervisors run directly on the hardware,
while Type-II hypervisors run on top of a host operating system.

In order to allow any guest operating system to function unchanged within the
virtualized environment, it needs to be disempowered without noticing. One sim-
ple approach to system virtualization is the idea of trap-and-emulate. If access to
resources that need to be virtualized can only happen via privileged instructions,
guest programs can be executed natively in unprivileged mode and if a privileged
instruction causes a trap, this instruction can be emulated by the VMM. Popek and
Goldberg [95] define a set of conditions for a computer architecture to support effi-
cient virtualization. The most important condition is that the sensitive instructions
are a subset of the privileged instructions. Sensitive instructions are instructions
that either attempt to change some global state of the computer or where the behav-
ior of the instruction is dependent on some global state of the computer. Processor
architectures that fulfill these requirements allow the use of the trap-and-emulate
approach.

On processor architectures that don’t fulfill Popek and Goldbergs requirements
for efficient virtualization, like IA-32, a different approach is necessary. One way
to virtualize these architectures is binary translation. In binary translation, the
program is rewritten by the VMM during execution, so that all sensitive instructions
are either replaced by a trapping instruction or directly by an emulation of this
instruction. Another approach is paravirtualization, that changes the requirements
for the guest system by not allowing any unchanged guest to be executed inside
the virtual machine but rather only guest systems that are adapted for this VMM.

3While emulating system virtualization allows virtualizing the instruction set architecture, emu-
lation is seldomly used by cloud providers. This is not only due to the increased virtualization
overhead, but also due to the availability of most workloads for all architectures.
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Prominent examples of system virtualization technologies are VMWare ESXi
Server [25], Xen [8], and features for hardware-assisted virtualization such as Intel’s
Virtualization Technology [120]. For their cloud offerings, Amazon Web Services
has been using Xen for a long time, and now uses a KVM-based VMM.

2.2 OS-Level Virtualization

Containers, in contrast to virtual machines, are isolated environments mostly used
for single guest applications. A specified process is started and isolated using kernel
containment features. Examples for such containment features include namespaces,
cgroups, and capabilities in the case of the Linux kernel [61]. Prominent examples
for containers on Linux are LXC containers* and docker> [82]. Besides provid-
ing user tools for efficient creation and management for containers, docker also
includes a form of declarative description for building new container instances,
called dockerfiles, and an ecosystem of public repositories for sharing container
images, from which container instances can be started.

In comparison, os-level virtualization allows for smaller images due to the shared
operating system kernel, for faster startup of instances as only isolated processes are
created for the containerized applications, and also for a higher density on a single
host as well as reduced overhead as neither CPU instructions nor resource access
need to be virtualized by a hypervisor. Virtual machines on the other hand are
currently still the much more mature technology and, at the same time, hypervisors
consist of an order of magnitude less code than operating system kernels. From
this point of view it is fair to consider virtual machines safer when assessing the
current state of affairs [37]. Furthermore, live migration of containers is not yet
widely available, whereas live migration of virtual machines is well understood
and widely used [37].

2.3 Process-Level Virtualization

Process-level virtualization describes virtual machines used on top of a operating
system for a specific class of programs. Programs are translated to an intermediate
representation (e.g. bytecode) and are executed inside a VM that abstracts the
specifics of the underlying Operating System and hardware. Examples include Java
Virtual Machine [70] and the Common Language Runtime [19]. While many PaaS-
offerings employ process-level virtualization, it is always combined with system
virtualization for security purposes.

4https://linuxcontainers.org/1xc/, accessed 2022-02-16
5https://docs.docker.com/, accessed 2022-02-16
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3 Management of Virtual Resources: Tools and Practices for
Cloud Infrastructures

Virtualization considerably eases the provisioning and running of virtual servers.
Users can instantiate and re-start virtual servers as needed and without worrying
about the specifics of the physical infrastructure. However, this still leaves ample
resource, dependency, and configuration management tasks for users to conduct.

As it becomes easier to provision new, duplicate running, and re-instate previ-
ously snapshotted virtual machines and containers, users tend to make use of larger
numbers of such appliances and, consequently, also cloud resources. This is referred
to as server sprawl, pointing to management complexities that directly result from
the sheer number of virtual servers and application components started. Moreover,
such large sets of virtual resources also tend to collect considerable amounts of
technical debt over time through configuration drift and snowflake servers [85]. That is,
IaaS cloud users create virtual machine instances and replicate server application
components with a single click or automatically through APIs, yet as they update
specific configurations manually over time and without full documentation, it be-
comes increasingly hard to understand and reproduce system states when servers
fail, when specific components need to be replicated, or configuration problems
becomes apparent.

The complexity of managing and orchestrating hundreds of virtual servers and
application components as well as their dependencies has been addressed by new
tools and through shifts in engineering processes in recent years. Important tools for
managing large virtual infrastructures include cloud operating systems, resource or-
chestrators, and automation engines. At the same time, multiple previously mostly
distinct software development roles are increasingly combined into new roles un-
der the umbrella of DevOps and its ongoing paradigm shift. Moreover, describing
desired cloud infrastructures in source code, aptly referred to as infrastructure as
code (InC), which can be executed to recreate systems with the help of automation
engines, makes it significantly easier to reproduce defined cloud system states.

Figure 2 depicts infrastructure code alongside the central systems for managing
cluster resources.

3.1 Tools for Cloud Resource Management

Cloud operating systems, container orchestrators, and automation tools help to
manage large infrastructures and system deployments based on declarative descrip-
tions of the desired state of servers, networks, and systems. These three classes
of systems are often used together and can collectively make otherwise manual
and often not well documented administrative processes so repeatable that it be-
comes normal to re-build infrastructures and systems regularly, instead of making
changes to already deployed and running systems.
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Figure 2: Infrastructure definition code is the input for orchestration and automation tools,
which translate usually declarative specifications of desired cluster states into specific
imperative operations for cloud operating systems managing infrastructures.

3.1.1 Cloud Operating Systems

Cloud operating systems like OpenNebula6 [83] and OpenStack? [105] allow to
provision sets of virtual resources that run on physical infrastructures of data
centers. For this, they provide dashboards and APISs, so that resource provisioning
can be done by both users and systems.

OpenStack is an open-source cloud operating system mostly deployed to manage
IaaS clouds and provide virtual machines. It can, however, also provide access to
containers and bare-metal resources. It is a modular systems build around core
components for compute resources, images, block storage, and virtual networking.
On top, OpenStack provides APIs for programmatic use as well as dashboards for
users and administrators. Advanced features include auto-scaling, load balancing,
and resource orchestration.

3.1.2 Resource Orchestration Tools

Orchestration systems are control systems for managing clusters of resources. Their
main tasks are scheduling and deployment, network and storage configuration,
monitoring and logging, as well as component replication. Advanced features of
orchestration systems include auto-scaling and load balancing. Typically, orches-
tration tools take declarative descriptions of the cluster state as input and translate
these into imperative operations. Then they continuously monitor cluster states
to trigger operations when clusters deviate from the states specified by users, for
instance, after component failures or with changing loads.

A prominent example for an orchestration system for Linux containers is Ku-
bernetes® [21]. It manages cluster nodes and groups of containers. These container
groups, called pods, belong to one application and are deployed on one cluster
node. Usually these pods run replicated, are scheduled across different nodes, and
the load is balanced by Kubernetes. More advanced features of the orchestrator
include horizontal auto-scaling and possibilities to influence its scheduling.

6https ://opennebula.io/,accessed 2022-02-16
7https://www.openstack.org/, accessed 2022-02-16
8https://kubernetes.io/, accessed 2022-02-16
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3.1.3 Automation Engines

Automation engines like Ansible?, Chef'®, and Puppet'" work similarly to many
orchestration systems. They also translate declarative specifications into imperative
operations that move infrastructures and systems to a desired state and then contin-
uously monitor and, if necessary, re-establish the state. In contrast to orchestration
tools like Kubernetes, however, their scope is much bigger, making them more
flexible tools. A tool like Ansible, for instance, can be used for everything from
configuring access rights to installing dependencies on a group of servers as well
as to starting and stopping the services of a particular user.

Ansible both defines a language and is an engine for automating configuration
management and resource orchestration. The language is declarative, so users
describe the state they want systems to be in, not the steps necessary to get there.
The system design is agent-less, so it connects to components as a user would,
relying on ssh connections instead of implementing a continuously running process
for various platforms. Moreover, Ansible provides ways to describe specific tasks,
set variables, define hosts, group these different entities, and finally make use of
this to manage server resources and configurations.

3.2 Practices Relevant for Building Cloud Infrastructures

Configuration drift and snowflake servers are introduced when virtual IaaS re-
sources, operating systems and middlewares, or distributed applications compo-
nents are installed, configured, updated, or otherwise maintained without proper
documentation and full reproducibility. The main idea addressing these problems
is always establishing desired states of infrastructures completely from basic virtual
resources, in contrast of applying any partial changes to already running compo-
nents. Moreover, the build process should be described in a declarative manner,
expressing the desired state, not the steps to reach it and manual steps should
be avoided in this process. When infrastructures are managed in this way —
constantly rebuilding them to implement adjustments — the infrastructures are
referred to as immutable infrastructures.

A closely related idea is continuous integration/delivery (CI/CD). CI/CD aims
to provide faster feedback by integrating smaller changes and having these reach
production systems sooner. The practice advocates constantly building, testing,
and releasing small sets of changes, instead of having individual developers gather
larger sets of changes locally or waiting to release bigger adjustments to customers
less frequently. The reason for this is that developers get feedback faster. Developers
might notice a problem with a specific code change quicker in production right
after they made the change, while still very aware of all the reasoning around the
change. This approach ties nicely with the idea of combining roles in DevOps, as it

9https://www.ansible.com/, accessed 2022-02-16
Ohttps://www.chef.io/, accessed 2022-02-16
Thttps://puppet.com/, accessed 2022-02-16
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is then the same person or team noticing the issue in production and responsible
for coming up with a fix for the issue.

3.2.1 Infrastructure-as-Code

The central idea of IaC [85] is to provide full reproducibility and increased docu-
mentation by capturing every aspect of the server setup in source code that can
be versioned and shared among users. This infrastructure code is then executed to
re-build the entire infrastructure and parts of services to make changes. Typically,
the infrastructure code declaratively describes the desired cluster state and runs on
automation engines.

The key is to default to re-building everything from scratch instead of actively
updating and maintaining already deployed infrastructure and application com-
ponents. If this is done for every change, infrastructures do effectively become
immutable, once deployed. With this approach, virtual infrastructures become dis-
posable as they can be re-build efficiently at any time, so that cluster states become
reproducible. Moreover, the configuration and management steps needed to es-
tablish specific cluster states are also documented by the infrastructure code. The
declarative code typically visibly distinguishes between deliberate and default con-
figuration as well as between specific hosts and groups of hosts, thereby reducing
the complexity of the management as the entire process becomes more transparent
to everyone involved.

3.2.2 DevOps and Continuous Delivery

The DevOps movement integrated tools and processes from previously more dis-
tinct roles in software development, quality assurance, and system operations [10].
People responsible for specific components or microservices, often referred to as
DevOps Engineers, are responsible for implementing the specific application part,
for testing it, and for making sure it runs correctly in the production environment.
This combination of responsibilities aims to foster faster feedback as well as to have
smaller increments of working software reach users quicker.

The DevOps paradigm is rooted in the ideas of iterative software development.
The idea is that iterations between code, test, and deploy can be shorter without
handovers between distinct teams between development, testing, and deployment.
Moreover, if a person or team runs tests directly after making changes to a system,
feedback loops are short. The same is true when the responsibilities also include
monitoring application parts in production, where there is always the chance
that real-world usage differs from implemented test cases. With the same people
responsible for developing and keeping a component running, they are likely to be
able to spot and fix issues with any new versions they deployed quickly, simply
because of the familiarity with the specific change and application part in general.
In contrast, when a development team instead hands over new versions to a testing
team, which then in turn forwards tested updates to an operations team, there is
knowledge lost with each handover.

A central practice of the DevOps paradigm is to continuously integrate, test,
and deploy software. Instead of integrating concurrent developments with a main

11
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version of the software only sporadically, making it potentially difficult to in-
tegrate diverging changes, developers merge their changes into a main version
continuously. So, whenever they finish an atomic change, moving a system’s im-
plementation from one version that can be build and deployed to another, they
push their changes to a common repository. Thus, teams have a common view on
the state of their software project, only different by small changes currently being
worked on. Moreover, teams then use tools that automatically build the software
and run the implemented test cases against it. These tools are referred to as CI
servers. These server tools react on every change that is pushed to the mainlines of
software projects, pull the latest version, build it, and test it. This practice is called
continuous integration (CI). CI servers contribute to the common view on the state
of software projects as they prominently display the current state of the mainlines
of a central repository. Typically, they show states as red and notify all responsible
engineers whenever a specific version does not build and test as expected. Then
further changes should not be pushed, before the current issue is fixed and the sys-
tem is in a green state again. Beyond CI, there is continuous delivery (CD), which also
builds and tests code, yet then furthermore automatically deploys new versions of
the software, at least to staging environments — but possibly also to production, if
no issues are detected while new versions run on the staging environments.

4 Scalable and Fault-Tolerant Distributed Cloud
Applications

Virtualization and IaaS clouds make it easy to provision large clusters of resources
for users. However, scaling applications effectively to many resources requires that
components are replicated and that the load among these replicated components
is well balanced.

Both scalability and fault tolerance are addressed by horizontal scaling, in which
components are replicated across an increased number of resources, in contrast to
vertical scaling, in which components are instead deployed to the same number
of resources yet ones with increased capacities. Scaling, deployment, monitoring,
and re-starting of failed components is supported by orchestration and automation
tools. Such tools furthermore often support auto-scaling. The decision to scale in or
out can be triggered by simple metrics and thresholds such as resource utilization
averages, by sets of rules supplied to automation engines, or by models of the
scale-out behavior.

An architectural pattern well aligned with the goal of scalability and fault tol-
erance are microservice architectures, in which distributed applications are build
out of small components that each can be developed, tested, deployed, scaled, and
recovered separately.

12
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4.1 Stateless Components

Stateless components only require replication and load balancing for scalability
and availability even in case of failures. That is, since no state is managed beyond
the execution scope of a single request or invocation, these components neither
need to partition nor to replicate any state across workers. This makes it easy to
increase and decrease the number of deployed stateless components dynamically
in response to loads and while monitoring defined QoS requirements.

Load balancing between stateless applications can be implemented efficiently
using network protocols such as Internet Protocol (IP) and Domain Name Sys-
tem (DNS), as long as requests fit into a single packet. IP anycast messages are
forwarded automatically to one of multiple receivers that share an IP address, while
the DNS protocol was designed around the idea of an hierarchical load balanc-
ing, where local and regional DNS servers can resolve domain names to different
IPs and, therefore, servers. This is used with many global services such as search
engines, web applications, news portals, and streaming services, where globally
distributed server networks serve the same data to users in their proximity.

4.2 Stateful Components

Stateful components on the other hand use data partitioning for scalability or,
additionally, data replication for both scalability and fault tolerance. Partitioning
is typically done horizontally using partitioning functions like hash partitioning
or range partitioning. Horizontal partitioning, which distributes the same type
of data across workers, is called sharding. If data is replicated in a distributed
system, this distributed state can become inconsistent. Developers and users need
to be aware of the level of provided consistency. Therefore, distributed systems
typically guarantee a specific level of provided consistency. But, consistency models
have an impact on the scalability of applications. Stronger models include strict
consistency, linearizability, and sequential consistency. A model popular with many
scalable databases such as NoSQL data stores is eventual consistency [65]. The only
guarantee provided here is that all replicas will converge to the same state at some
point in time.

A prominent research result regarding scalability and consistency is the CAP the-
orem [20]: Essentially, given commodity hardware and large-scale systems, network
components will fail resulting in a partitioned network, in which certain compo-
nents cannot reach specific other components. For this situation, system architects
need to decide beforehand between consistency or availability: when the data on
reachable replicas can still be changed unreachable replicas become temporarily
inconsistent or, else, even the reachable components can no longer be updated to
preserve consistency with the unreachable components. That is, the system is for
the time of the network partitions either inconsistent or unavailable.

Besides often not providing strict consistency, NoSQL data stores typically sac-
rifice consistency in case of network partitions [99]. This design makes the data
stores more scalable, especially horizontally across cluster resources such as a set

13
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of VMs in a public cloud or a provider’s PaaS data storage service. Data in NoSQL
stores is often organized in some form of tables, yet is designed to accommodate
various types of data such as graphs, documents, key-value data, and time-series
data [99]. Though, while many of these data stores still apply the notion of tables,
rows, and column, they frequently do not require upfront table schemas, as is,
for instance, the case with many wide-column stores. Furthermore, many NoSQL
stores provide other programmatic interfaces than SQL such as low-level query
interfaces, which often do not follow a defined standard.

4.3 Microservices Architectures

Server applications typically consist of multiple components. Usually there are at
least different components for the user interface, the business logic, and storing
data. In a microservice architecture [26], though, system are broken up in many
more services that can be deployed and scaled individually, with advantages for
their development, testing, and operation, yet often also introducing new chal-
lenges. Figure 3 contrasts a microservice architecture to a monolithic system.

A good practice is to design systems so they consist of components that each
exhibit high levels of cohesion yet low levels of coupling. This can be achieved
by breaking up monoliths into many small and mostly isolated components in a
microservice architecture, yet certainly still relies on carefully designing individual
components, so that they can be understood, adapted, and put to use without many
dependencies.

a)

User Interface

User Interface

Business Logic

Database

Figure 3: Architecture styles for multi-component cloud applications: a) a classical three-
tier application design (monolith), contrasted to b) a microservice architecture.

Microservices can be developed by separate teams that are typically free to use
the technologies of their choice for implementing the service. Moreover, each of the
services can be deployed, replicated, and scaled individually. This, however, does
arguably lead to system designs that consist of many components that each need to
be configured, managed, and monitored, often in a range of different technologies,
so that each component is best understood and advanced by the responsible team.
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Generally, microservices allow for a much more fine-grained orchestration (i.e.
configuration and dependency management, monitoring and failure handling,
replication and load balancing on the basis of small components that in the best
case exhibit strong cohesion and loose coupling), yet keeping track and managing
many small services can also quickly become difficult for large-scale microservice
architectures.

5 Data-Intensive Distributed Cloud Applications

Increasing amounts of data are being recorded and generated. A major reason
for this is the digitalization and the IoT. More business and other processes are
automated with information and communications technology. Large numbers of
sensors deployed in cities, factories, and homes continuously record and emit data.
A growing number of sciences generates large volumes of data in experiments.
User-generated content, especially in connection with the Web and the enormous
user bases of Internet companies, is another major reason for the increasingly large
volumes of data. Additional, users also generate immense datasets in the form of
log data, which companies process for their core business but also to gain further
insights into their customers.

The increasing size of datasets, the decreasing prices of commodity hardware, in
particular for long-time storage, and the possibilities of leasing as many resources
as needed in clouds have led to the development of distributed systems that utilize
clusters of homogeneous resources for handling large amounts of data. The two
main tasks here are (i) providing access to and (ii) facilitating the analysis of large
volumes of data.

5.1 Distributed Data Storage

The main classes of systems that provide access to large amounts of data are
distributed storage systems and scalable data stores. These systems distribute data
by splitting up larger files into blocks, also called chunks, or tables into partitions,
which are then distributed across a set of workers. Moreover, typically data is
replicated for fault tolerance and potentially also scalability, using a load balancer.
This approach is exemplified in Figure 4, in which a file is split up into multiple
blocks, which are then stored on a set of nodes, with each block being stored
twice in the cluster. There are several scalable data stores that directly build on
top of distributed storage systems, for instance NoSQL databases that make use of
underlying distributed file systems.

Prominent examples for distributed file systems are the Google File System
(GFS) [39] and Hadoop Distributed File System (HDEFS) [106]. GFS stores large files
across commodity cluster, following a main-worker architecture and storing chunks
of large files replicated across workers. HDFS is an open-source implementation
of the same design. Ceph [125] is also a popular distributed storage system. In
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Large File

Figure 4: A large file is split up into multiple blocks and replicas of these blocks are stored
across a set of connected worker nodes.

addition to file storage, it also stores objects for applications and block devices to
VMs.

Distributed systems for managing more structured data include the wide-column
stores BigTable [24] and Cassandra [68]. Without requiring an upfront schema, these
systems store data in rows and columns, allowing specific parts of the data to be
indexed and read efficiently. They also gather writes in memory before committing
them to disks, secured by logs, to provide fast, yet dependable write access. The
systems replicate and partition data, with eventual consistent replicated data points
and the data being available even in case of network issues within a cluster.

5.2 Distributed Data Processing

Distributed systems for the analysis of large volumes of data usually implement
data-parallelism. An important class of distributed data-parallel processing sys-
tems are those following a dataflow model such as MapReduce [32], SCOPE [23],
Spark [132], and Flink [22]. These systems typically offer restricted programming
models that allow users to construct programs by composing graphs of opera-
tors. These operators are second-order functions such as Map and Reduce, yet
also typical database operators like Joins. The execution models and runtimes of
these systems then execute the operators of a job graph with specific levels of
data-parallelism. That is, multiple task instances of operators in a job graph process
data at runtime. Each task instance handles a partition of the entire data flowing
through the job. Figure 5 shows an example dataflow graph to be submitted in
parallel on a set of cluster nodes.

The systems take care of task parallelization, data partitioning, scheduling and
deployment, communication between nodes, and fault tolerance. Fault tolerance is
usually achieved by checkpointing intermediate data or by keeping track of linage,
to be able to re-compute specific lost partitions. This way, dataflow systems support
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Job and scale-out

o-o'ce

Q Cluster
A Manager
- Worker

Node

Figure 5: A distributed dataflow job is submitted by a user to a cluster manager in order
to run the job in parallel on a set of worker nodes.

users by providing high-level programming abstractions that hide the complexities
of parallel programming and distributed systems, allowing users to express dis-
tributed data-parallel programs by writing sequential code only, while the system’s
distributed runtimes realize an efficient and fault-tolerant distributed execution
of these programs, at least as long as problems fit the restricted programming
and execution models well enough. The problems that do fit well are data-parallel
to a large extent, where the amount of parallelizable work exceeds the overhead
introduced by distributed communication.

For continuous monitoring, be it to oversee large IT infrastructures or the phys-
ical world with the distributed sensors and devices of the IoT, systems need to
be able to ingest and process data streams. For these use cases existing batch pro-
cessing systems such as Spark and Flink have been equipped with support for
stream processing. At the same time, there are also dedicated stream processing
systems such as Storm [119] and Samza [89]. Essential features for distributed
stream processing include windowed aggregations, mechanisms for out-of-order
processing, and fault tolerance mechanisms for continuous streams, usually based
on checkpointing input data and operator state, besides the general requirement
of low-latency processing of the continuously arriving data. Typical fault tolerance
requirements are at-least-once and exactly-once processing. Two principle strate-
gies for continuous low-latency processing are using small batches that match the
required windows of a program, which is referred to as microbatching and was
used for Spark Streaming [133], and actual continuous processing with perma-
nently deployed stream processing jobs as done for instance by Storm and Flink.
Typically, the latter can achieve lower latencies, yet this often comes at the expense
of throughput. Both Flink and Spark offer abstractions to realize batch and stream-
ing jobs, thereby providing unified data processing platforms. Similarly, Google’s
Dataflow model [1], with a managed service to run Dataflow jobs on Google’s

17



The Methods of Cloud Computing

cloud, as well as the Apache Beam project’ to run jobs on open-source systems
such as Flink, also execute both batch processing and streaming jobs.

Systems like MapReduce, Spark, and Flink have been used for relational data
processing [5, 38, 90, 117, 131], large-scale graph analysis [44], and machine learn-
ing [72, 81]. Though inspired by dataflow systems, new distributed systems have
been designed and implemented for deep learning, most notably Tensorflow [92]
and PyTorch [92]. These systems are optimized to compute the gradient of a given
loss function for large training datasets, implementing parallel training on CPUs
and GPUs as well as clusters and other resources.

Using large sets of virtual resources such as VMs or containers for running
data-parallel systems offers advantages especially to organizations and users with
irregular or growing large-scale data processing needs. Today there are also various
fully managed platforms like Amazon EMR"3, which can be used to run distributed
data-parallel processing systems such as MapReduce and Spark without managing
cluster infrastructures and systems.

6 Cloud Platforms and Managed Services

Managed cloud platforms provide their services at a higher level of abstraction
than infrastructure services, yet in comparison to the SaaS model they still allow
consumers to deploy their own programs using the platform’s programming model,
libraries and runtime, and infrastructure. That is, consumers do not control the
operating system, server hardware, network, and storage, but they still can run
their own applications as long as those fit the platform’s programming system.

6.1 Platform Services

A platform’s programming system is made up of pre-defined programming lan-
guages and models, available libraries and means for interactions with external
systems, as well as possibly development tools. The platform providers then take
care of the operation and maintenance of the entire hardware, operating system,
and middleware layers. Platforms often provide integrations with other platforms
by the same provider, like compute platforms that are well integrated with man-
aged storage and web servers. Their task is furthermore to ensure availability in
case of planned maintenance and even unforeseen outages as well as enabling
transparent scalability. This way consumers have a significantly reduced develop-
ment and maintenance effort, yet this comes at the cost of flexibility as applications
often need to be written for a particular platform, using the specific APIs of this
platform, and also slightly higher costs than equivalent resource usage on the IaaS
level.

2https://beam.apache.org/, accessed 2022-02-16
Bhttps://aws.amazon.com/emr/, accessed 2022-02-16
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6 Cloud Platforms and Managed Services

Platforms typically charge on a much finer granularity than IaaS services. That
is, not just by the time of usage, but per query, message, request or similar fine-
grained metrics. This allows customers to reduce upfront expenses even more and
subsequently applications deployed on platforms can have very low operational
costs until they become popular.

6.2 Serverless Computing

Serverless computing is an execution model in which customers do not need to
manage resources since the services scale dynamically automatically. This model
is enabled by high-level Paa$S offerings, namely function as a service (FaaS) and
backend as a service (BaaS).

At an even higher level than the initial PaaS platform offerings, many cloud
providers today also offer services in FaaS service models, in which consumers
only write single functions that are executed in a fully managed environment
as events or requests are received. That is, the functions are event-triggered and
ephemeral. They are required to be stateless and there is typically a maximum
execution time for each function invocation. Given the reduced scope of programs
on FaaS platforms, they align nicely with microservice architectures [7].

FaaS platforms start and scale function instances horizontally as necessary. They
do not induce any costs as long as no events or requests trigger functions to be
executed, shifting costs from reservations to paying only for actual usage.

Besides relying on FaaS components, serverless computing architectures usually
also make use of BaaS offers. BaaS are fully managed services for specific backend
functions such as user authentication, session state, and databases. Firebase was an
early provider of BaaS offerings that included a database and the synchronization of
session state. AWS Cognito is an example of an Baa$S service for user authentication.

While serverless computing’s comprehensive resource management and ease of
use have led to considerable adoption, there are also voices criticizing the simplistic
auto-scaling and scheduling policies implemented with many Faa$S platforms today,
which are arguably at odds with the data-driven, distributed computing models
that have been developed and became popular over the last two decades [52]. In
particular, decoupling computation and storage can quickly lead to poor data lo-
cality, if data first has to be moved to functions, before they can execute. Similarly,
if systems only allow for isolated, ephemeral, and stateless functions, without sup-
porting any composition of programs out of individual functions, passing results
from one function to the next can also lead to inefficiencies. For this reason, several
research and development efforts aim to provide efficient implementations of ad-
dressable stateful functions. For instance, Apache Flink StateFun'™ implements an
API and runtime for stateful functions on top of the Apache Flink system. Another
example is Cloudburst/Anna [110, 130]. Like StateFun, this project addresses the
shortcomings of current serverless FaaS platforms by providing stateful functions.

14https://github.com/apache/flink-statefun, accessed 2022-02-16
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It does so by relying on the Anna autoscaling key-value store for state sharing
and mutable caches co-located with function executors for data locality, thereby
implementing a logical separation of compute and storage, yet at the same time a
physical co-location.

A concern raised with all managed platforms and typically increasingly with
higher levels of abstraction is vendor lock-in, since programs then rely considerably
on the particular environment of specific platforms.

7 Fog Computing and the Internet of Things

With a growing number of connected IoT devices and sensor platforms that are
widely distributed across people’s homes, cities, and factories [2, 29, 58, 60], there
is a need for system architectures that can record and process the data generated
by these devices.

Fog computing is a conceptual model that tries to create architectures that al-
low for widely distributed systems in which local fog nodes can react quickly to
sensor inputs. As such, fog computing moves some of the characteristics of cloud
computing closer to traditional control systems.

QoS requirements for some applications are increasing as more and more use
cases require response times within pre-defined latency bounds. As networks
are not yet capable to reliably satisfy these requirements, shortening the distance
between customers and cloud resources—and therefore placing aspects of the pro-
cessing closer to the sources of data—is the currently followed approach addressing
this need for bounded latencies.

For example, in urban infrastructures like public transport systems or water
networks more and more sensors get deployed, which then continuously record and
emit environment information that are processed to have infrastructures quickly
adapt to measured environment conditions automatically.

Typically, the sensor data streams are received, handled, and forwarded by sensor
platforms, which are small devices. These devices are installed at the source of the
sensor data and widely distributed across the infrastructures. They are connected
to gateways, for instance using wireless communication technology for sending
to and receiving from mobile access points. Often, the data ultimately ends up at
central clusters of cloud resources, where a perceived unlimited amount of compute
and storage resources are available. However, before reaching these central cloud
resources the sensor data streams first go through a number of edge/fog layers,
each with increasing amounts of available resources, but each also adding more
latency and typically aggregating streams from larger numbers of sensor platforms,
as shown in Figure 6.

It can offer significant advantages in terms of reduced latencies and saved band-
width as well as overall system scalability to deploy computation tasks directly on
IoT devices and other edge/fog layers close to the data sources. The idea of the
fog and edge computing paradigms is therefore to utilize not only central cloud
resources, but to extend execution models beyond clouds and thereby utilize the
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Figure 6: Available resources in IoT environments: from distributed devices over local
access points and intermediate resources to finally abundant virtual resources in clouds.

available resources in-between the sensor sources and cloud resources. At the same
time, task execution on IoT devices and other edge resources might not be feasible
for more compute-intensive tasks as well as for storing large amounts of data due
to the often significantly constrained capacities at these layers, especially in case of
fully autonomous, battery-powered sensor platforms.

This leads to a pattern in many fog architectures, where edge and fog nodes
on the lower levels are mainly executing simpler but very data-reducing tasks
like averaging data in time windows and are responsible for latency-sensitive
computations similar to traditional control systems. The more resource-intensive
tasks like data analytics are then done in the upper levels and the cloud.

8 Research Outlook

Extensive ongoing research in the methods of cloud computing aims to further
automate operational tasks such as cloud system monitoring and resource config-
uration. In addition, the advent of edge and fog computing poses a multitude of
new challenges, which need to be addressed to further decentralize cloud infras-
tructures.

8.1 Increasing Cloud Automation

Given the scales of today’s infrastructures, the large numbers of replicated com-
ponents that cooperatively respond to the requests of thousands of users in many
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cloud applications, and the high number of concurrent tasks used in massively
parallel data processing, further automation of IT operations is absolutely essential.
Human operators are simply no longer able to grasp the sheer amount of mon-
itoring and log information at these scales. A major current trend in addressing
this problem is ML-supported IT operations, in which extensive monitoring data is
used with machine learning methods in order to provide as-automated-as-possible
operations based on the current measured state of systems. This is applied for
various resource management problems, including for capacity planning, load bal-
ancing, scheduling, threat analysis, and anomaly detection [43, 46, 55, 67, 75, 84, 88,
115, 118, 134]. Given the amount of continuous monitoring data and the possibility
of concept drifts, especially semi-supervised and unsupervised machine learning
methods such as clustering algorithms lend themselves to analyze monitoring data
on-the-fly and with little human involvement [56, 103, 107]. On the other hand,
with recurring tasks such as periodically scheduled batch jobs also supervised
methods can be applied, as previous executions can be used to train models for
future executions.

To ensure a high availability and provide resilient clouds a central goal for dis-
tributed applications and services is noticing and increasingly also remediating
anomalies and threats before they become failures, so downtimes of systems can be
avoided or at least reduced [30, 78, 79]. This is especially necessary in light of the
continued trends of using commercial off-the-shelf hardware and open-source soft-
ware. For instance, even the critical services of telecommunication service providers,
which are known for their high levels of required availability, have been migrated to
open-source software stacks and virtualized network functions [9, 45, 50]. Such use
cases demand to move beyond reacting to failures and instead require anticipating
failures, often using machine learning.

To ensure a high degree of efficiency and performance of distributed data-parallel
processing jobs, a central approach is modeling and predicting the scale-out be-
havior and the impact of heterogeneous resources, data locality, and interference
among co-located workloads [3, 6, 33, 54, 62, 114, 116, 122, 123]. That is, using sta-
tistical models, resource management systems automatically select adequate types
and amounts of cloud resources for the performance requirements of jobs, schedule
applications with complementary resource demands onto shared resources, and
continuously adapt reservations to workload characteristics monitored at runtime.
With this, systems aim to provide the required performance and dependability, yet
at the same time also utilize resources well.

An optimization objective that warrants special attention is the goal to reduce
a workload’s footprint on the environment through the associated greenhouse
gas emissions of consumed energies. Despite steadily improving efficiencies in
large-scale centralized cloud data centers, energy demands are expected to further
increase in the next years [76]. One approach to this problem are efforts to shift
work to when and where energy supplies have a relative low carbon-intensity [47,
96, 127, 137], because the energy is supplied from renewable sources such as solar
or wind, relying on machine learning to forecast as well as match supply and
demand.
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A recurring challenge when using machine learning methods to optimize the
monitoring and management of cloud infrastructures is the unavailability of train-
ing data for applications and jobs to be executed. One specific trend addressing
this issue is to use reinforcement learning, so systems continuously learn, for in-
stance, how to schedule workloads based on a function expressing the quality of
scheduling decisions [28, 73, 74, 98, 104, 113, 136]. Another approach is to share
and reuse runtime data and possibly also performance models across different
execution contexts such as specific clusters [101, 102, 129], assuming that in the
end many people run the same algorithms, often using implementations stemming
from popular libraries, and also the same kind of resources, such as in public
clouds.

8.2 Increasing Cloud Decentralization

The Internet of Things, cloud computing, and machine learning will allow for more
adaptive cities, factories, and houses, yet this vision of intelligent cyber-physical
systems will not be implemented with centralized cloud resources alone. Instead,
new distributed computing paradigms for the IoT such as edge and fog computing
will bring resources closer to sensor-equipped edge devices [31]. This will have
considerable advantages, including lower latencies, reduced network bottlenecks,
decreased energy consumption for wide-area communication, and in many cases
also considerable benefits for security and privacy. At the same time, this shift —
away from centralized large-scale cloud data centers of a few major provides and
towards decentralized resources of many more and also smaller providers — will
come with new challenges. The emerging compute infrastructures, spanning a con-
tinuum from IoT devices and edge resources to clouds, will be significantly more
heterogeneous, dynamic, and distributed. First, resources of different providers,
with various capacities and capabilities, will need to communicate and cooperate.
Second, resources will also far more frequently join and leave as well as move
around. Third, resources will be distributed across larger distances, relying on
wide-area networks and a variety of network protocols and protocol implementa-
tions.

8.2.1 Resource Management

A key challenge with the shared compute infrastructures of the future will be the
efficient use of all resources, including for compute, storage, and networking. This
is currently addressed at various levels of abstractions, yet often presents itself as a
problem of allocation and scheduling [40].

In decentralized architectures, without perfect knowledge of globally available
resources and workloads, the resource management consequently needs to use lo-
cally available information to schedule tasks and allocate resources. One possibility
is the opportunistic information exchange between, and subsequent task offloading
to, nearby peers in edge and fog computing [11, 69].

Embedding the task scheduling into well-known programming paradigms some-
times allows for better placement decisions. The resource management in fog ar-
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chitectures has consequently been investigated in the context of stream processing
systems and in the serverless computing model, among others. When adapting the
concept of distributed stream processing systems to the execution on distributed
heterogeneous nodes [53, 57, 86, 135], the scheduling needs to take current resource
capacities of dynamically changing distributed compute and network infrastruc-
tures into account. In distributed stream processing, the scheduling decision itself
is still usually controlled centrally. In the context of the serverless computing model,
there are concepts to schedule the function executions in FaaS frameworks on edge
and fog nodes [87, 93, 97], taking the heterogeneity of the execution nodes into
account. The placement of the functions executions often presents itself as an off-
loading decision that is triggered by reaching resource limitations or in some cases
efficiency and energy consumption considerations.

8.2.2 Machine Learning

The increasing decentralization of previously typically centralized systems can also
be seen in the area of machine learning, where the desire to improve machine learn-
ing on private data led to the concept of federated learning. In federated learning
multiple decentralized clients can train a common machine learning model on their
private local data without the data leaving devices but rather by transferring the
updates of the weights of a neural network. These weight updates are sent to a
central server that creates a new common model by averaging the updates, which
is sent back to the clients [63, 66].

In cases where there are distinct local characteristics in the data of the distributed
clients, personalized federated learning can help to strike the balance between learn-
ing global characteristics and specializing on the local data. For this personalization,
different methods are discussed, including multi-task learning, meta-learning, and
model-agnostic meta-learning [34, 36, 59].

Taking the reduction of central control further, decentralized federated learn-
ing replaces the central server with a decentralized consensus mechanism like a
blockchain. Thus, not only the data, but also the control of the learning process
becomes decentralized [13, 27, 64, 71, 124, 126]. Gossip learning refers to an alter-
native strategy in decentralized learning where the distributed clients each send
their updates to another—most of the time randomly sampled—peer [17, 35, 41, 48,
51,91, 121].

8.2.3 Testing and Dependability

An important prerequisite for the widespread adoption of IoT systems is that they
are tested adequately, especially if they implement critical tasks in areas such as
medicine, manufacturing, and cities. However, this is much more difficult for IoT
systems, compared to the refined practices and tools available for cloud-based
applications.

In software development in general, the continuous testing of small software
changes is widely recognized as best practice. For cloud software this is usually fa-
cilitated by the use of staging environments in which software changes are deployed
automatically through continuous integration / continuous delivery (CI/CD) sys-
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tems. These staging environments essentially behave like production environments,
and—in the practice of blue-green deployment or rolling deployments—become
the production environments if no major issue is detected while traffic is gradually
routed to the new environments.

While test environments for the software of less centralized architectures like
edge and fog computing will not be able to exactly reproduce the production envi-
ronment to the same extend as this is possible for cloud software, experimentation
and continuous testing is possible in test environments using virtual resources and
emulation [15, 16, 49, 77, 111, 128].

When using such test environments for IoT software, one important tradeoff
happens between the realism and the scale of the test environment. Hardware
testbeds allow for more realistic testing, while the testing anywhere close to an
actual scale is usually only possible with virtual test environments. Hybrid test
environments try to incorporate both virtual and physical nodes to make this
tradeoff simpler and get some benefits from both approaches [12, 18].

Another important aspect of increasing the realism of the test environments
of IoT systems is the consideration of not only the IT resources but also the rest
of the physical environments in which they will operate. By definition, IoT sys-
tems integrate with their environment through actuators and sensors. Including
a simulation of the environment—Ilike traffic flow, water network, or energy grid
simulations—in the testing of IoT systems can consequently further improve the
realism [14, 42].
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