
Object Versioning to Support Recovery Needs
Using Proxies to Preserve Previous Development States in Lively

Bastian Steinert Lauritz Thamsen Tim Felgentreff Robert Hirschfeld
Software Architecture Group

Hasso Plattner Institute
University of Potsdam, Germany

firstname.lastname@hpi.uni-potsdam.de

Abstract
We present object versioning as a generic approach to preserve ac-
cess to previous development and application states. Version-aware
references can manage the modifications made to the target object
and record versions as desired. Such references can be provided
without modifications to the virtual machine. We used proxies to
implement the proposed concepts and demonstrate the Lively Ker-
nel running on top of this object versioning layer. This enables
Lively users to undo the effects of direct manipulation and other
programming actions.

1. Introduction
Continuous versioning of development states provides a comple-
mentary approach to deal with recovery needs. Continuous version-
ing such as provided by CoExist [14] implicitly records current
snapshots of the development state and provides users access to
these recorded versions. Similar to undo/redo mechanisms, it runs
in the background and requires no explicit control of the user. Sim-
ilar to Version Control Systems (VCSs), it records the state of all
development artifacts at a given point in time. Finding previous ver-
sions becomes feasible by aligning the versioning with the structure
of the program so that each recorded version represents an addition,
removal, or modification of program elements such as methods and
classes. This structured form of continuous versioning, which is the
foundation of CoExist, allows to identify previous versions based
on the names of program elements. CoExist has been proposed as a
complement to undo/redo mechanisms and explicit commits using
VCSs.

While typically unanticipated recovery needs involve tedious
and time-consuming work, CoExist makes recovery tasks fast and
easy to accomplish. It helps users going back to previous devevel-
opment states even if explicit commits are missing. It also supports
detecting those changes that introduced undesired behavior even if
testing has been ignored during development. With the additional
support for knowledge recovery and re-assembling changes to com-
mits, programmers have to spent less effort on trying to avoid unan-
ticipated recovery needs.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright © ACM [to be supplied]. . . $10.00

lively-web.org lively-web.org

Figure 1. Two versions of a Lively Kernel site. Below is an excerpt
of the corresponding object graph that provides access to both
versions.

However, the current prototype has revealed two main limita-
tions, in particular for live programming systems such as Squeak/S-
malltalk [4] or the Lively Kernel [5]. First, the current mechanism
only records versions of meta-objects such as classes and methods.
This means, a version consists of a set of classes and their methods
at a particular point in time. But besides classes and methods, sys-
tems such as Squeak also consist of global state captured in class-
side or global variables. Global state implies direct or indirect ref-
erences to particular versions of classes in the system, which easily
introduces inconsistencies. Trying to avoid inconsistencies would
make the current versioning mechanism overly complex, which
suggests, for the sake of simplicity, the need for a different solu-
tion.

Second, programming often involves steps that are different
from editing source code. For example, programming can in-
volve the composition of visual elements such as in Etoys [6],
Scratch [10], or Fabrik [3]. It can also involve the creation and ma-
nipulation of individual objects such as in Self and Lively. Users
can directly manipulate the visual appearance of objects and mod-
ify their behavior as illustrated in the top of Figure 1. So, graphical

composition and direct manipulation are often an inherent part of
programming. Furthermore, objects are not necessarily defined by
classes and may only be anchored through visual elements.

With that, a generic approach to continuous versioning of de-
velopment states should not rely on the modification of classes and
methods. The versioning mechanism should capture the entire sys-
tem state including all object state. This would allow to record all
kinds of programming actions and provide access to previous states
of the entire system. With that, undesired effects of direct manipu-
lation and evaluating code snippets could easily be undone, among
others.

For this reason, this paper presents object versioning as an im-
proved and generic approach for continuously recording develop-
ment states. Object versioning relies on alternative references that
can manage multiple versions of the target object depending on the
currently active version (Figure 1). Such version-aware references
can be realized by means of proxies in order to avoid modifications
of the execution platform. We have implemented the proposed con-
cept in JavaScript using ECMAScript 6 proxies. Source transfor-
mations ensure that for every mutable object a corresponding proxy
is created. Besides checking our implementation with the Octance
benchmark suite, it has been advanced and refined to have it run
inside the Lively Kernel system. It is now possible to record devel-
opment states of a Lively system and go back to previous states as
desired.

The use of such a generic versioning mechanism is not restricted
to programming scenarios. It will be useful for all applications and
tools in the Lively system. Users could implicitly rely on undo/redo
and versioning facilities in various situations, for example, when
they author content of Lively Wiki pages or prepare slides using
Lively’s presentation tool.

With that, this paper makes the following contributions:

• We present an approach to object versioning using proxies,
which

• provides an advanced generic approach to preserve access to
previous development states, and

• allows for scoping and rolling back the effect of programming
actions.

• We present an implementation using ECMAScript 6 proxies
and document various corner cases and limitations.

• An evaluation shows the strong performance penalties of the
current implementation of ECMAScript 6 proxies.

2. Background
On the one hand, this section provides a summary of CoExist,
which provides recovery support for class-based object-oriented
programming. On the other hand, this section illustrates program-
ming by means of direct manipulation and object scripting in Lively
Kernel, for which an improved generic approach to recovery sup-
port is desirable.

2.1 CoExist
CoExist preserves fast and easy access to previous development
states [14]. It is based on the insight that the risk for tedious
recovery is caused by the loss of immediate access to previous
development states. With every change, the previous version is
lost, unless it has been saved explicitly. This version, however, can
be of value in future development states, when, for example, an
idea turns out inappropriate. For that reason, CoExist creates a new
version for every change to the code base. Users can rapidly switch
versions or can access multiple versions next to each other. CoExist
thus gives users the impression that development versions co-exist.

55 passes

3 failures

2 errors

Figure 2. Conceptual figure of CoExist featuring continuous ver-
sioning, running tests and recording the results in the background,
and side by side exploring and editing of multiple versions.

Figure 2 illustrates some of the main user interfaces concepts of
CoExist. It contributes the following concepts and tools:

Continuous Versioning creates new versions in the background
based on the structure of programs. It enables programmers
to go back to a previous development state and to start over,
which will implicitly create a new branch of versions.

User Interface Concepts support browsing and exploring version
information as well as identifying a version of interest fast. Two
different tools are provided. First, the version bar highlights
version items that match the currently selected source code
element. Hovering the items will display additional information
such as the kind of modification, the affected elements, or the
actual change performed. Second, the version browser allows
for exploring multiple versions at a glance. The version browser
displays basic version information in a table view, which allows
for scanning the history fast.

Additional Environments to explore static and dynamic informa-
tion of previous development states next to the current set of
tools. Opening an additional environment is useful, when, for
example, the programmer becomes curious about how certain
parts of the source code looked previously or how certain effects
were achieved. The additional environments also allow for run-
ning and debugging programs. With that, users are capable of
efficiently recovering knowledge from previous versions, which
avoids the need for a precise understanding of every detail be-
fore making any changes.

Continuous and Back-in-time Analysis for test cases and other
computations. CoExist continuously runs analysis programs
for newly created versions. As a default, it runs test cases to
automatically assess the quality of the change made. The test
result for a version is recorded and presented in the correspond-
ing item of the version bar (left of Figure 2). The user can also
run other analyses such as performance measurements. In addi-
tion to the continuous analysis features, CoExist provides full
access to version objects and offers a programming interface to
run code in the context of a particular version. So, whenever
programmers become interested in the impact of their changes,
they can easily analyze them in various respects. This allows
programmers to ignore these aspects of programming at other
times.

Re-assembling of Changes for sharing independent improvements
in separate commits. Users can extract selected changes to a
new branch, test the result, and commit the achieved increment.

Figure 3. The halo buttons of a basic morph.

With CoExist, programmers can change source code without
worrying about the possibility of making an error. They can rely on
tools that will help with whatever their explorations will turn up.
They no longer have to slavishly follow certain best practices in
order to keep recovery costs low.

2.2 Part Development in Lively Kernel
We first describe the Lively Kernel and the Morphic framework
before we describe an example development scenario using Parts,
direct manipulation, and object scripting.

2.2.1 The Lively Kernel and Morphic
The Lively Kernel is a programming system in the tradition of
Smalltalk and Self. Development happens at runtime. It incorpo-
rates tools and techniques to be completely self-sufficient. Thus,
programmers can create versions of the Lively Kernel with the
Lively Kernel. The Lively Kernel is a browser-based system. It is
implemented in JavaScript and renders to HTML.

The Lively Kernel implements Morphic [11], a framework for
developing graphical applications. The graphical objects of this
framework are called Morphs. Each morph has a class but can
also have object-specific behavior. They can be created by instan-
tiating a class or by copying an existing morph. (Class-based and
prototype-based programming is mixed.) The copy operation does
not establish a prototypical inheritance relationship between the
copy and the original. Instead, it creates a full copy.

Programmers can change the position of morphs by dragging
and the composition by an alternative dragging, called grabbing.
When a morph is grabbed, it can be added to another morph and
becomes that morph’s submorph. This way, a morph does not have
to be a basic shape or simple widget, but can be the interface of any
application.

Morphs offer manipulation tools called Halos (Figure 3). Ha-
los enable direct manipulation of morphs. Using halos, users can
resize, rotate, drag&drop, and copy morphs. They can also change
morph compositions by adding or removing morphs as submorphs.
Other halo buttons open tools such as an Inspector, Style Editor,
and Object Editor. While the inspector focuses on presenting all
fields and values of each object, the object editor provides means
to browse and edit object-specific scripts.

The Lively Kernel uses a Parts Bin [9] to save and publish
morphs and morph compositions with associated behavior as parts.
Users can use such published parts for their own compositions and
publish their creations to the PartsBin. Various Lively tools (such
as the Object Editor) have been created and made available by
incrementally composing morphs and adding behavior that users
considered useful during development, and then publishing these
as self-contained parts.

2.2.2 Part Development By Example
To exemplify how developers work directly on objects in the Lively
Kernel, we will outline how a user added a magnifier tool to the
Object Editor. The magnifier tool helps users find the object in the
scene graph that is currently selected for editing. Implementing the
new feature requires to create a new button morph and to add it to
the editor.

Figure 4. The Object Editor’s magnifier button as it highlights the
editor’s target.

Figure 5. Directly manipulating a button morph.

The following functionality is provided by the magnifier button:
When hovering over the button, the Object Editor’s current target
is highlighted with a rectangular overlay, as show in Figure 4.

To add such a button, a user would first create the button and
adapt its visual appearance as shown in Figure 5. The user can
start with a basic button (À), which can be found in the Parts Bin
repository. In step Á, the user resizes the button and gives it a
square extent using the Resize halo tool. Next, the user loads an
image showing a magnifier icon (for example, by dropping such an
image onto the Web page.), and adds it to the button using drag
and drop (Â). Dropping a morph onto another connects the two
morphs, making the former a submorph of the latter. Moving the
button around will then move the image accordingly. Finally, the
users adds the result of these manipulations, visible in Ã, to the
Object Editor.

Note how all these changes are directly made to actual ob-
jects: the button morph, the magnifier image morph, and the editor
morph. Users can immediately see the effects of their actions.

As the next step, a user would implement the button’s behavior.
The user adds scripts to the button that adds a translucent rectangle
over the current target on hover. In particular, the button receives
two scripts: onMouseMove and onMouseOut. The implementation of
the behavior includes the following:

• The button holds a semitransparent rectangle morph.
• When the mouse enters the button (onMouseMove), the button

resizes and adds the rectangle to the Lively Kernel world at the
position of the target.

• When the mouse leaves the button (onMouseOut), the button
removes the rectangle from the world again.

While developing the script, the Lively Kernel’s scripting tools
allow to evaluate code in the context of their target objects. Hence,
when programmers want to test a script or even just specific lines
of code, they can try the behavior directly for the actual target.

2.2.3 Recovery Needs When Developing Parts
When programmers advance the system through direct manipu-
lation and object scripting, they will encounter recovery needs
that are different from those possible when editing descriptions of
classes and methods:

Accidental changes to state The user could accidentally grap and
move a morph such as the new button and, thereby, change a
carefully arranged layout. Similarly, meaningful state can be
lost when a morph is accidentally removed from the world.

Inappropriate changes through direct manipulation The user could
make changes to the size, position, and colors of morphs to
fine-tune their visual appearance, only to decide later that an
intermediate version was most appealing.

Accidental changes to scripts The user could introduce a typos to
scripts or accidentally remove a script. Moreover, editing a
script could introduce bugs.

Inappropriate changes through scripts The user could make a mis-
take in a workspace snippet that is intended to manipulate
morph properties programmatically. Such a snippet can change
many properties of many objects.

Undesirable changes can also be introduced when users eval-
uate scripts to gain feedback on their effect. For example, a user
might explore the button’s onMouseMove script and therefore eval-
uate a few lines of code to test it. However, while developing the
script it might not check all necessary conditions before adding the
highlighting rectangle – for example, the developer might have for-
gotten that only one highlight rectangle should be visible at a time,
so before adding a new highlight, the old one should be deleted.
Therefore, evaluating code during development can leave the sys-
tem in an inconsistent state. The programmer than has to manually
recover from that state.

These development steps show that there are many situations in
which the user might want to undo previous actions. In program-
ming systems like the Lively Kernel, where programmers work on
objects, changes are always made to the state of objects. When the
state of all objects is preserved and can be re-established, previous
system states can be recovered when necessary.

3. Object Versioning
A previous version of an object is, in the simplest case, a copy of
the object before its state was manipulated. The left hand side of
Figure 6 shows an object representing an address with fields for
street, number, and city. As the user interacts with the object, its
state changes and different versions (i.e., co-existing copies) of the
object are created (Figure 6). The two objects have no additional
information to indicate to which version of the system they belong,
nor do they store any information showing that one is a copy of the
other.

To be able to access different versions of an object, its pre-
vious states need to be kept alive through version-aware refer-
ences. Version-aware references act like ordinary references, but
also manage the versions of an object and always resolve to one
of those based on context information. When, for example, a per-
son object has an address, the version-aware reference resolves to
either v1 or v2 of the address, as shown in Figure 7.

In the same way, multiple version-aware references are resolved
by traversing an object graph. Through different possible traversals
of the version-aware object graph, different versions of the system
emerge. The version-aware references all choose versions of ob-
jects that belong to the same system state. Figure 8 shows such an
object graph.

: Address

street=Kantstr.
number=null
city=null

v1 v2

: Address

street=Kantstr.
number=null
city=null

: Address

street=Kantstr.
number=148
city=Berlin

Figure 6. Preserving the previous version of the address object.

runtime version = v2

: Person

name=Joe
!

: Address

street=Kantstr.
number=null
city=null

: Address

street=Kantstr.
number=148
city=Berlin

address

v1

v2

Version-aware Reference

Figure 7. A version-aware reference relates a person object to two
versions of its address property.

: Company

CEO

: Person

: Person
: Address

street=Friedrichstr.
number=112b
city=Berlin

address

address

v1

v3

v1

v2

v3

name=Joe
!

name=Jimmy
!

: Address

street=Kantstr.
number=null
city=null

: Address

street=Kantstr.
number=148
city=Berlin

runtime version = v2

Version-aware Reference

Figure 8. An object graph with version-aware references.

3.1 Versions of the System
To establish system versions from version-aware object graphs, the
version-aware references resolve to different object versions dy-
namically based on a version identifier. As this identifier changes,
the version-aware references resolve to other versions of objects.
In order to undo a change made in version v2 of the system, the
version identifier is simply set back to v1.

Given the example situation from Figure 8, the following state-
ment would refer to three different values depending on the version
identifier:

1 Company.CEO.address.number

Evaluating the statement in version v1 would return the value
null, in version v2 the value 148, and in version v3 the value 112b.
Note that no v2 reference exists from Company to a ceo. Version
identifiers have a predecessor and a successor, so when no current
version is available, the most recent available version can be found.
This optimization allows to only create new versions of objects
when necessary.

The version identifier needs to be accessible to the version-
aware references. It might be a global (to have a single active
version of the system), but could also be thread-local, or in the
dynamic scope of an execution. However, it must not be changed
while a versioned object graph is traversed. This is automatically
true only for dynamically scoped version identifiers.

To enable our approach to actually re-establish a particular ver-
sion of the system with our approach, all mutable objects must only
be accessed via version-aware references. To satisfy this require-
ment, we propose a system transformation that uses proxy objects
as references.

3.2 Ubiquitous Proxies as Version-aware References
Applications written in JavaScript typically have to work on a va-
riety of client Virtual Machines (VMs) included in different Web
browsers. This makes a language-level implementation preferable
to an implementation of alternative references in each JavaScript
VM. We use proxies pointed to by ordinary references to delegate
to object versions transparently, as shown in Figure 9. Each prop-
erty accessed on a proxy is forwarded transparently to the correct
version of the object. Thus, proxies in this design are virtual ob-
jects [15]; they do not stand in for a specific object, but can forward
intercepted interactions to any object.

: Person

name=Joe
!

: Address

street=Kantstr.
number=null
city=null

: Address

street=Kantstr.
number=148
city=Berlin

address
v1

v2

versions
xx

versions : Dict

xx
: Proxy

Figure 9. Using a proxy as version-aware reference to connect a
person object to two versions of an address object.

The proxies fulfill three responsibilities:

1. They know which versions are available for a particular object.

2. They choose a particular version among all available dynami-
cally using context information.

3. They forward all interactions transparently to a chosen version.

As mentioned in Section 3.1, we use a source transformation
to interpose proxies consistently between all mutable objects. Our
transformation wraps object literals and constructor functions into
proxies, so all expressions that create new objects transparently
return proxies. The reference to the initial version of an object is
only available to the proxy; the reference to the proxy is passed
around instead. Consequently, all references that would usually
point to the same object point to the same proxy. This way, proxies
provide object identity. Checks that would usually compare an
object to another objects now compare a proxy to another proxy.

Although keeping many versions around might put more pres-
sure on the garbage collector, no special care has to be taken to
release versions that are no longer required. All object versions are
referenced through a single proxy, so the versions get garbage col-
lected with the proxy when it is no longer reachable. So if you con-
sider the Company from 8, once you delete v1 of the ceo reference,
both v1 and v2 of the address object are collected.

The current version identifier of the system is accessible to the
proxies. The proxies forward to the same version of the object as
long as the identifier remains constant.

To re-establish the previous version, the version identifier is set
to its predecessor.

To preserve the current version, the version identifier is set to
a new version. The proxies forward interactions to other object
versions or, when no such version of the object exist, create new
versions. Note that new versions are only necessary when a proxy
is about to delegate manipulations. As long as the state of an object
is only read, the proxy reports values from a previous version as the
old version of the object still reflects the current state. To create a
new version, a proxy copies the most recent previous version of the
object.

Such a situation is shown in Figure 10. In a new version v3 of
the system the proxy intercepts a manipulation, but has no object
version it can forward to. It therefore copies the most recent version
of the object and forwards to the copy.

: Coffee Beverage

size=Medium
numberOfEspressoShots=2
containsMilk=false

v1

v2
versions : Coffee Beverage

size=Medium
numberOfEspressoShots=3
containsMilk=false

: Coffee Beverage

size=Large
numberOfEspressoShots=3
containsMilk=true

v3

xx
versions : Dict

v1 v2 v3

next next

previous previous

xx
: Proxy

Existing Object xx

xxNew Object

System Version Object
(with version identifier)

Current Version

v1

Figure 10. A new version of an object is created for a new version
of the system.

Limitations The current design allows to preserve and re-establish
versions of the system. Without further components, however, these
versions only exist in memory and are not stored to disk.

Our current design does not support multiple predecessors or
successors.

Another limitation of the current design is that the state of
previous versions can be changed. New versions of objects are not
affected by changes to previous versions, but changes to object
versions that have not been copied shine through in subsequent
versions of the system.

In the future, the versioning might allow for branches and merg-
ing. Changes to previous states could then be handled in branches
that programmers may or may not merge into future versions.

4. Implementation
This chapter describes our implementation of object-versioning us-
ing ECMAScript 6 proxies1 in the Lively Kernel. At the time of
this writing, these proxies only have draft implementations, and the
JavaScript engines used by Chrome and Firefox provide differing
preliminary implementations of their application programming in-
terface (API). We use the harmony-reflect library2 to abstract from
these differences.

This chapter also presents our source transformation to insert
proxies for ordinary references. We use the UglifyJS3 to imple-

1 http://wiki.ecmascript.org/doku.php?id=harmony:
direct_proxies, accessed February 3rd, 2014
2 http://github.com/tvcutsem/harmony-reflect, accessed Febru-
ary 3, 2014, used version 0.0.11
3 http://github.com/mishoo/UglifyJS2, accessed March 12, 2014

http://wiki.ecmascript.org/doku.php?id=harmony:direct_proxies
http://wiki.ecmascript.org/doku.php?id=harmony:direct_proxies
http://github.com/tvcutsem/harmony-reflect
http://github.com/mishoo/UglifyJS2

ment source transformations. UglifyJS parses without relying on
JavaScript exceptions, so the transformation does not yield excep-
tions that could be caught by an open debugger. In addition, Ugli-
fyJS supports Source Maps4, which allow the browser’s developer
tools to present the original sources during debugging.

4.1 Using ECMAScript 6 Proxies for Object Versioning
The ECMAScript 6 proxies stand in for their target objects and
intercept different interactions using traps. The implementation
of the traps is provided by a separate handler object. When a
proxy’s handler does not implement a trap, the proxy forwards the
intercepted interaction to the target. On the hand, if all traps are
implemented, all interaction can be handled without forwarding to
the target object.

In our implementation, proxies delegate to one of multiple ver-
sions of an object. In Figure 11 a proxy stands in for two versions
of an address object: The proxy’s handler holds a reference to a
versions object, which in turn refers to the versions of the address

object. The proxy’s target is ommited from Figure 11 as we used
the proxies as purely virtual objects.

versions
xx

: Proxy

property

handler

: Object

// helpers
currentVersion=function()
…
!
// traps
get=function(name)
set=function(name, value)
apply=function(thisArg,args)
…

lively : Module
version : Object

property
predecessor=null
successor=null
ID=1 xx

client : Object

xx
: Object

: Address

street=Kantstr.
number=null
city=null

: Address

street=Kantstr.
number=148
city=Berlin

v1

v2

Figure 11. A proxy with a handler that forwards to two versions
of an address object.

Our handler uses all available traps to forward to the current
version of an object. Each trap retrieves the current version of the
object using the currentVersion function, which selects the object
version based on the active system version information. The ver-
sion information is available globally as lively.CurrentVersion,
an ordinary JavaScript object with three properties: an ID, a
predecessor, and a successor.

1 currentVersion: function() {
2 var objectVersion, systemVersion = lively.CurrentVersion;
3

4 while(!objectVersion && systemVersion) {
5 objectVersion = this.versions[systemVersion.ID];
6 systemVersion = systemVersion.predecessor;
7 }
8 return objectVersion;
9 }

All traps that intercept read-only access select the version to
forward to using the currentVersion function. However, traps that
intercept changes instead ensure a version of the object exists for
the current system version, because the past cannot be allowed to
change. If no current version exists, the latest available version is
copied and added to the versions dictionary. The traps that act
in this way are set, defineProperty, deleteProperty, freeze,
seal, preventExtensions, and apply. The apply trap is included
in this list because certain array functions such as push and pop

are mutating, so when they are applied, a current version must be
created.

4 https://docs.google.com/document/d/
1U1RGAehQwRypUTovF1KRlpiOFze0b-_2gc6fAH0KY0k/edit#
heading=h.ue4jskhddao6, accessed May 2, 2014

The current version remains unchanged as long as the global
lively.CurrentVersion remains constant. Changing the global
version is an undo, redo, or commit depending on whether the
version is set to a previous, following, or new version. The system
provides convenience functions for these actions. Using a global
version of the system is reasonable as JavaScript is executed single-
threaded, so the global version cannot be changed by another script.

Scope of the Versioning Using proxies allows multiple versions
of most JavaScript objects, but certain objects represent the ele-
ments of the browser’s Document Object Model (DOM) cannot be
versioned with our implementation. DOM objects are referred to
from the browser’s internal DOM structure, which is external to the
JavaScript runtime. In the Lively Kernel, this does not represent a
problem, because the state of the DOM can be derived from morphs.
Whenever the system version changes, we update the DOM from the
current set of visible morphs.

4.2 Accessing All Mutable JavaScript Objects Through
Proxies

To be able to re-establish the system state with our versioning, we
change the return values of all expressions that create new objects,
arrays, and functions. All these are mutable in JavaScript and might
have arbitrary properties added to them. Instead of letting these
expressions return references to the new objects, the expressions
return references to proxies for the objects.

In JavaScript, there are three categories of expressions that cre-
ate new objects and for each of these one or more source transfor-
mations are required:

• literals, e.g., {age: 12}

• constructors, e.g., new Person(12)

• some built-ins, e.g., Object.create(prototype, {age: 12})

4.2.1 Wrapping Literal Expressions
We use source transformations to wrap literal expressions into
calls to a proxyFor function. The expression {age: 12} becomes
proxyFor({age: 12}), [a, b] becomes proxyFor([a, b]), and
so forth. We use a global proxy table to ensure the same prox-
ies are returned for the same objects. This proxy table is a
weak-key dictionary, which allows the garbage collector to re-
claim the objects used as keys. Using the same proxies for the
same objects is essential for identity checks to work correctly, so
proxyFor(obj) === proxyFor(obj) is always true.

Literal object expressions can be wrapped in this way, but some
expressions such as function declarations, accessor functions, and
built-in functions need to be handled differently.

4.2.2 Wrapping Function Declarations
A function declaration is a function literal that creates a named
function and makes it available by the name in the surrounding
scope:

1 function add(a, b) { return a + b }

In contrast, a function expression creates a function that needs
to be assigned to a variable to be accessible:

1 var add = function add(a, b) { return a + b }

Function expressions can create anonymous and named func-
tions. The previous example creates a named function. Omitting the
function name after the function keyword would create an anony-
mous function. While an anonymous function is always a function
expression, a named function is either a function expression or a
function declaration, depending on where it is expressed. A func-

https://docs.google.com/document/d/1U1RGAehQwRypUTovF1KRlpiOFze0b-_2gc6fAH0KY0k/edit#heading=h.ue4jskhddao6
https://docs.google.com/document/d/1U1RGAehQwRypUTovF1KRlpiOFze0b-_2gc6fAH0KY0k/edit#heading=h.ue4jskhddao6
https://docs.google.com/document/d/1U1RGAehQwRypUTovF1KRlpiOFze0b-_2gc6fAH0KY0k/edit#heading=h.ue4jskhddao6

tion declaration cannot be nested into other statements such as vari-
able assignments.

When a function declaration is wrapped into a proxyFor

function call, it becomes a function expression, meaning
that it is no longer available by name in its surrounding
scope. After wrapping function declarations, they are assigned
to matching variable names: function div() {} becomes
var div = proxyFor(function div() {}). In addition, because
function declarations get hoisted in JavaScript, transformed func-
tion declarations are moved to the beginning of the defining scope.

4.2.3 Wrapping Accessor Functions
Accessor functions are functions that are executed instead of prop-
erty reads or writes. The following example uses an accessor func-
tion to allow reading a person’s age property, and have it calculated
on access.

1 var person = {
2 birthdate: new Date(1984,27,5),
3 get age() {
4 return ageToday(this.birthdate);
5 }
6 }

Wrapping the accessor function into a call to proxyFor would
not yield valid JavaScript syntax. For this reason, the object is first
created without the accessor function and the function is added
afterwards using Object.defineProperty. The object literal and
the call to Object.defineProperty are wrapped into an anonymous
functions that is immediately called to avoid polluting the variable
bindings of the originally surrounding scope:

1 var person = function() {
2 var newObject = lively.proxyFor({
3 birthdate: new Date(1984,27,5);
4 });
5 Object.defineProperty(newObject, "age", {
6 get: lively.proxyFor(function age() {
7 return ageToday(this.birthdate);
8 })
9 enumerable: true,

10 configurable: true
11 });
12 return newObject;
13 }();

4.2.4 Wrapping Constructor Functions
In JavaScript, all functions can be used as constructors when called
with the new operator and if so used, they need to return proxies.
We use the construct trap to simulate the object construction and
return a proxy around the newly created object. This trap retrieves
the current version of the constructor (Line 2), creates a new object
with the correct prototype (Lines 3–4), calls the constructor with
the new object as argument (Line 5), and returns a proxy for return
value of the constructor function or, if the constructor returned a
falsy value, the new object (Line 6).

1 construct: function(dummyTarget, args) {
2 var constructor = this.currentVersion(),
3 prototype = constructor.prototype || {},
4 newObject = Object.create(prototype),
5 result = constructor.apply(newObject, args);
6 return proxyFor(result || newObject);
7 }

4.2.5 Wrapping Built-in Globals
Some built-in global functions can be used to create new objects,
such as the built-in constructors Object and Array. Other globally
accessible functions that create new objects include, for example,
Object.create and eval.

We transform the built-in constructor functions by wrapping
each global reference into calls to the proxyFor function. For ex-
ample:

1 new Object() # => new proxyFor(Object)()
2 Object() # => proxyFor(Object)()
3 Object.create() # => proxyFor(Object).create()

The global symbols that are in this way: Array, Boolean,
Date, Function, Iterator, Number, Object, RegExp, String, JSON,
Math, Intl, XMLHttpRequest, Worker, XMLSerializer, window, and
document.

When a global function object is used as constructors (line 1),
the construct trap returns proxies for the new objects as explained
previously. When they are used just as functions as in line 2 above,
the apply trap ensures that they return proxies. When a property is
read from a proxied object, as in line 3, the get trap ensures the
result is a proxy, and that when calling it, the proxy’s construct

trap is triggered. These transformations ensure that all functions of
the globals return proxies.

4.2.6 Wrapping eval

The eval function is handled differently, because not only its re-
sult must be proxied, but also all objects created during the eval-
uation. Wen ensure this by transforming the string argument to
eval before it is evaluated. Alternatively, we could have overwrit-
ten the built-in functions to return proxies for new objects. How-
ever, this alternative was rejected, because our implementation is
a pure JavaScript library and makes itself use of the built-in types,
so we would have to ensure that the original functions are still ac-
cessible to us. Furthermore, some JavaScript engines do not allow
overwriting all built-in globals and we want our implementation of
object versioning to work in every JavaScript engine that supports
the ECMAScript 6 proxies.

4.3 Current Limitations of our Approach
Certain workarounds are required due to the preliminary imple-
mentation of ECMAScript 6 proxies in the JavaScript engines.
First, the proxies implement consistency invariants that compare
return values of the traps to the state of the target. Second, the prox-
ies do not intercept the instanceof operator, but always delegate
to the current target. Third, certain built-in JavaScript functions do
not handle proxies correctly. Finally, proxy traps appear in devel-
oper tools and thus impede debugging These workarounds might
no longer be necessary once the ECMAScript 6 specification gets
released and fully implemented by the JavaScript engines.

Disabling Target Object Invariants All proxies require a target
object, as explained in Section , and they are designed to ensure in-
variants between the return values of traps and the target’s state [1].
For example, when an object’s properties are made immutable
through the Object.freeze function, invariants ensure that the tar-
get object has in fact been frozen, even if the trap delegates the
operation to another object. As a result, freezing any version of an
object would effectively make freeze all versions. As a workaround,
we adapted our copy of the harmony-reflect library to disable these
consistency checks entirely.

Forwarding the instanceof Operator The instanceof operator
can be used to test whether an object’s prototype is in another
object’s prototype chain. Since prototype of an object is a property
and can be changed at runtime, it can be different in different object
versions. We provide a custom Object.instanceof function, which
implements the semantics of the instanceof operator but delegates
to object versions when applied with a proxy as argument. All
usages of the instanceof operator are transformed into calls to
Object.instanceof.

Unwrapping Versions for Native Code Some built-in JavaScript
functions do not work correctly with proxies, react with errors, re-
turn wrong results, or silently ignore calls when applied with prox-
ies as arguments. These built-in functions include, for example, the
concat function of array instances, all functions that manipulate
the browser’s DOM, string instance methods that take RegExp argu-
ments, and the onreadystatechanged property of XMLHttpRequest
objects. These problematic functions need to be provided with ac-
tual objects instead of proxies. Our apply trap special cases prob-
lematic built-in functions and unwraps proxies as needed.

Proxies Impede Developer Tools The current ECMAScript 6
proxies are partly implemented in JavaScript and every trapped
object interaction is visible in multiple frames in the debugger.
Consequently, the stack of the debugger is cluttered with frames
that belong to the proxy implementation, not to application code.
Moreover, the developer tools do not handle proxies correctly un-
der all circumstances, show the wrong inspect strings, or always
step over proxied functions. We currently have no workaround for
these issues.

5. Evaluation
The presented approach has been evaluated concerning functional-
ity and practicability in two different ways. First, we used the Oc-
tance benchmark suite5 to evaluate the behavior and performance
of our implementation. Octane is one of the standard benchmark
suites for JavaScript VMs.

Second, we checked our implementation with the Lively Ker-
nel. We implemented the versioning as a base layer of Lively Ker-
nel in order to have object versioning enabled for the entire sys-
tem eventually. The most recent commit of Lively we used for
the evaluation is ed0586d806. In this version, most of the Lively
Kernel’s code passed the transformations. Only the Lively Kernel’s
bootstrap code, its module system, extensions to built-in types, and
our implementation itself are excluded from the source transfor-
mations. All modules loaded after these parts are transformed at
load-time to enable versioning for them.

We could gain various insights by making the concepts run for a
large JavaScript application such as the Lively Kernel. The Lively
Kernel makes use of many features of the JavaScript language and
the browser environment such as built-in objects and functions.
These are not part of the ECMAScript standard, but are neverthe-
less used by many applications. For example, the browser offers
functions to manipulate its DOM, which the Lively Kernel uses for
rendering. These built-ins are not covered by Octane or other pop-
ular JavaScript benchmark suites.

Machine Configuration All tests and measurements were done
on May 9, 2014 using a Macbook Air with a 2 GHz Intel Core
i7 and 8 GB main memory, Mac OS X 10.9.2, and version
34.0.1847.131 of Chrome. All presented measurement results were
averaged over five runs. We used Chrome for all experiments be-
cause Lively currently works best in Chrome.

5.1 Functionality of Version-aware References
5.1.1 Testing with Octane
Method We transformed the Octane benchmarks with our source
transformations, executed the resulting code, and then checked
for JavaScript errors and compared the results of the transformed
benchmarks to their usual results. We did this to test two aspects.

5 http://code.google.com/p/octane-benchmark/, accessed Febru-
ary 3, 2014, at version 26
6 http://github.com/LivelyKernel/LivelyKernel/commits/
ed0586d80, accessed May 9, 2014

First, to test whether our source transformations yield syntactically
correct JavaScript code for the benchmarks. Second, to test whether
our proxy-based version-aware references, inserted by the source
transformations, allow to run the benchmarks without errors and
with the expected results.

Results All benchmarks in this suite run without errors and return
the same results as if executed without any source transformations.
Therefore, at least for these tests, our source transformations pro-
duce working source code and our proxy-based version-aware ref-
erences forward correctly to object versions. During the develop-
ment of our system, the DeltaBlue benchmark revealed a problem
when proxies are used as prototypes of objects. We reported the
issue to the harmony-reflect repository7. The problem was identi-
fied as an issue with the v8 JavaScript engine8. We implemented
a workaround for this problem, but the issue was subsequentely
fixed, rendering the workaround redundant.

Discussion The proxies behave correctly like particular versions
of objects in the situations tested by the benchmarks. While these
benchmarks do not test JavaScript’s features systematically, they
cover a wide range of important language features.

5.1.2 Testing with the Lively Kernel
Method We transformed the JavaScript modules of the Lively
Kernel at load-time to test whether it loads and works correctly with
our proxy-based version-aware references. Furthermore, we tested
whether the system allows re-establishing versions of the Lively
Kernel’s state in practice. Here, we tried multiple example scenar-
ios, including the undo of changes to the state and behavior of ba-
sic morphs, morph compositions, and the state of more complicated
graphical applications such as text editors and developer tools. With
this, we tested that the source transformations yield valid JavaScript
code for the modules of the Lively Kernel, that the version-aware
references delegate to the correct versions of objects, and that the
version-aware references are used consistently.

Results The Lively Kernel loads when its modules are trans-
formed to use our version-aware references. Most of its basic func-
tionality works as expected and we were able to preserve and re-
establish runtime states of multiple examples. However, not all
functionality works as expected and we were, thus, not able to re-
establish all preserved states. In particular, we learned about the
many built-in functions that currently do not handle proxies cor-
rectly in Chrome and for which we implemented the workaround
described in Section 4.3.

Discussion Most of the tested functionality of the the Lively Ker-
nel works correctly. This includes the entire bootstrap process, ren-
dering graphical objects, loading parts from the Lively Kernel’s
Parts Bin, and using the Lively Kernel’s halo controls. However,
certain functionality of the Lively Kernel is not yet working cor-
rectly or even yields errors. The remaining issues here are expected
to be problems related to the built-in functions that do not work
correctly when proxies are provided as arguments. Our implemen-
tation already unwraps object versions from proxies for many built-
in functions, as explained in Section 4.3, but the configuration does
not cover all problematic built-in functions yet.

At the same time, the proxies are not yet fully supported by
Chrome and we expect these issues not to be problematic anymore
when proxies get fully implemented by Chrome’s JavaScript en-
gine.

7 http://github.com/tvcutsem/harmony-reflect/issues/18, ac-
cessed April 23, 2014
8 http://code.google.com/p/v8/issues/detail?id=2804, ac-
cessed April 23, 2014

http://code.google.com/p/octane-benchmark/
http://github.com/LivelyKernel/LivelyKernel/commits/ed0586d80
http://github.com/LivelyKernel/LivelyKernel/commits/ed0586d80
http://github.com/tvcutsem/harmony-reflect/issues/18
http://code.google.com/p/v8/issues/detail?id=2804

5.2 Practicability: Memory Consumption
We measured the memory overhead imposed by the version-aware
references and how much memory is consumed when versions
of the Lively Kernel’s state are preserved. Therefore, we used
Chrome’s built-in memory profiler9. It allows to take heap snap-
shots. These snapshots contain all reachable JavaScript objects. For
each snapshot, Chrome shows the total size in MB.

5.2.1 Memory Overhead of Version-aware References
Method We measured the memory required for loading a Lively
Kernel world with and without version-aware references. We took
heap snapshots right after the world was completely loaded without
interacting with the system. We used an empty Lively Kernel world
for this experiment and did not preserve any versions.

Results As shown in Figure 12, loading an empty Lively Kernel
world requires three times more space with proxies than without
proxies.

Figure 12. Memory consumption when starting a Lively Kernel
world with and without proxies.

Discussion When loaded with proxies, the system requires space
for the proxies. Even without preserving multiple versions of any
object, the system uses a proxy for each object. These proxies
require additional space: Each proxy comprises of at least a proxy
object, a proxy handler object that specifies the proxy’s behavior,
and an object to hold all object versions.

We expect the memory overhead to increase linearly with the
number of objects accessed through proxies. While the system cre-
ates proxies for most objects, it does not use proxies for all objects.
In particular, it does not create proxies for objects that are present
before our implementation of object versioning is loaded and all
objects used by our implemenation itself. We expect the number
of objects that are excluded from versioning to be relatively stable.
All additional objects created at runtime will be accompanied by
proxies. The memory overhead does not appear to be problematic
at the moment.

5.2.2 Memory Consumption When Preserving Versions
5.2.3 Method
We measured how much memory is consumed when multiple ver-
sions of the system are preserved while working on a group of
morphs. The three states for which we took snapshots are shown
as À, Á, and Â in the upper half of Figure 13. In particular, we did
the following in this experiment:

1. Version 1: We measured the memory consumed at State À in
the initial version of the system.

9 http://developers.google.com/chrome-developer-tools/
docs/heap-profiling, accessed May 8, 2014

2. Version 2: We created a new version to preserve the initial state
and then changed the state towards State Á in the new version.
Subsequentely, we measured the memory consumption for this
state.

3. Version 3: We preserved the previous state, changed the state to
State Â in a third version, and measured the memory consump-
tion again.

This experiment does not show how much memory is required
exactly for storing multiple versions of particular objects. Instead,
the experiment shows the overall memory consumption of the en-
tire Lively Kernel while our implementation is used realistically.

The snapshots include the size of all reachable JavaScript ob-
jects, not just the versions of the morph objects shown Figure 13.
The reachable JavaScript objects in these snapshots are all objects
of the Lively Kernel. For example, the tools we used to change the
morph states between the snapshots are implemented in JavaScript.
Their state is part of the system state.

We closed all tools before taking memory snapshots to exclude
their state from the snapshots, but the Lively Kernel caches some
state of these tools. The cached state might be different in the three
states. Thus, the size of the cached state might be different in the
three snapshots. Furthermore, previous versions of the cached state
might get preserved with the versions of the system.

5.2.4 Results
Figure 13 shows the size of the three snapshots. State À required
the least memory. State Á requires 1.8 MB more memory. It also
requires 0.3 MB more memory than State Â.

Figure 13. Memory consumed for three different states when the
previous states are preserved in separate versions.

5.2.5 Discussion
The sizes of the three snapshots are not significantly different. Even
though it is not clear how much space is used for preserving the
previous states of just the morphs, the results show that preserving
system states requires relatively little memory. Our implementation
does not copy all objects for each version, but only creates copies
when objects change from one version to another, effectively stor-
ing only the differences between system versions. Therefore, the
memory required for preserving versions of the system depends on
how objects change in each version. In the presented scenario, the
space required for preserving the three states is insignificant to the
space already required for running the Lively Kernel.

The results also show that the memory consumption does not
always increase even when previous states are preserved: State Â
requires less memory than State Á. One explanation for this is that
not all objects are preserved with the versions. One category of such
objects are the objects that only provide access to the elements of
the browser’s DOM, as described in Section 4.1.

http://developers.google.com/chrome-developer-tools/docs/heap-profiling
http://developers.google.com/chrome-developer-tools/docs/heap-profiling

O
ve

rh
ea

d
(in

 ti
m

es
 th

e
tim

e)

0

100

200

300

400

Crypto DeltaBlue EarleyBoyer NavierStokes RayTrace Regexp Richards Splay

129
149

90

196

90

229
211

405

Figure 14. Execution overhead for the Octane benchmark suite.

5.3 Practicability: Impact on Execution Speed
We measured the overhead that our implementation imposes on
running benchmarks and the Lively Kernel. A discussion of the
results follows at the end of this section.

5.3.1 Octane Benchmark Suite
Method We ran the Octane benchmarks10 with and without previ-
ous transformation of the benchmark code and, therefore, with and
without version-aware references. The source transformations for
this were done separately before measuring the execution times.

Results Figure 14 shows how much more time the benchmarks
take when their source is transformed before execution and ref-
erences are, therefore, version-aware. Executing individual bench-
marks takes between 90 and 405 times longer with version-aware
references than without. On average the execution is slowed down
by a factor of 187.5.

5.3.2 Microbenchmarks
We implemented a microbenchmark to measure the overhead the
proxies impose on resolving references. In particular, the mi-
crobenchmark shows how much time the proxies require to inter-
cept and forward property reads to the single version of an object.

Method We measured how long it takes to resolve a reference
as well as read and call a function property a million times. The
reference connects a client object to a server object, which has
an empty function:

1 for (var i=0; i < 1000000; i++) {
2 client.server.empty();
3 }

We compared the execution times of three different setups:

Setup 1 The client object holds a reference directly to the server.

Setup 2 The client object holds a proxy as its server property. In
this setup, we used the proxy handler described in Section 4.3
for the proxy. The proxy has access to the actual server object
as one of its version objects. It selects the server object when
it intercepts the property read.

Setup 3 The client object’s server property is also a proxy but
one created with a fixed target and without proxy handler. The

10 Note: We reduced the input size of the Splay benchmark by an order
of magnitude to prevent the browser from prompting for user input during
the benchmark’s execution. The prompt is triggered due to the long time
required to run the benchmark. It cannot be disabled and would influence
the benchmark result.

fixed target is the server object to which the proxy then for-
wards by default.

In all setups, the server object holds a reference that directly
refers to the empty function.

Results Table 1 shows the results of running the microbenchmark
in the three setups. Using a proxy with our proxy handler takes
three orders of magnitude more time than using an ordinary refer-
ence does: Instead of on average 10 milliseconds the test requires
on average about 11000 milliseconds to finish. The difference be-
tween Setup 3 and Setup 1 is an order of magnitude less: 2000
milliseconds compared to 10 milliseconds. This shows that even
a proxy with a fixed target and the default proxy behavior slows
down the execution of the microbenchmark close to 200 times.

Setup 1 10 milliseconds
Setup 2 11000 milliseconds
Setup 3 2000 milliseconds

Table 1. Times to run the three setups of the microbenchmark.

5.3.3 Loading a Lively Kernel World
Method We measured how long it takes to load a specific Lively
Kernel world with and without source transformations and, thus,
proxies. Loading a world includes requesting the required modules
from the Lively Kernel’s server, client-side code to resolve depen-
dencies among those modules, evaluating the code of the loaded
modules, and deserializing the graphical state of the world’s scene-
graph. Additionally, in case proxies should be used, the sources of
all modules also are transformed while loading the world.

Results It takes eight times more time to load a world with object
versioning: instead of around 4 seconds, the user would have to
wait around 32 seconds until the world becomes responsive.

5.3.4 Typical Lively Kernel Interactions
Method We measured the time three user interactions take when
using proxies and compared this to the time the interactions usually
take. We measured the time from the user events until the single-
threaded JavaScript engine becomes responsive again programmat-
ically. The three typical interaction we chose to investigate are:
bringing up the halo buttons on a particular morph, opening the
Lively Kernel’s main menu, and opening the Lively Kernel’s Sys-
tem Code Browser.

We chose these three interactions as we expect them to be more
impacted by the version-aware references compared to interactions
that are more browser-supported and less reliant on the execution
of JavaScript code such as dragging elements around the screen.
All three interaction trigger code from multiple different modules,
including event handling code, rendering code, and tool-specific
code.

Results Figure 15 shows the results. Each of the three interactions
takes on average 43 times the time when triggered after the system
was loaded with proxies.

5.3.5 Discussion of the Execution Overhead
The results of our evaluation show that the execution overhead is
currently impractical. The Octane benchmarks indicate that execut-
ing real JavaScript programs takes two to three orders of magnitude
more time. Similarly, the Lively Kernel tools are significantly less
responsive. Even though we expected a certain execution overhead
with our approach, the current overhead is too high.

O
ve

rh
ea

d
(in

 ti
m

es
 th

e
tim

e)

0

10

20

30

40

50

Halos World Menu SCB

42
40

47

Figure 15. Execution overhead for three user interactions in the
Lively Kernel.

The microbenchmarks show that a considerable part of the over-
head is introduced by using the ECMAScript 6 proxies. Even when
these proxies are used to forward to a fixed target instead of a dy-
namically chosen target, they introduce a substantial overhead: It
takes 200 times the time to have a proxy intercept and forward
property reads than it takes to read a property after resolving an
ordinary reference.

For this reason, we still consider our approach feasible for
providing object versioning for the Lively Kernel. However, the
performance of our current implementation needs to be improved
before it provides practical recovery support to programmers.

6. Related Work
Related work is two-fold: Approaches related to recovering previ-
ous system states and approaches related to our technical solution
and, thus, to scoping and grouping changes into first-class objects.

6.1 Recovering Previous System States
CoExist [14] provides recovery support through continuous ver-
sioning in Squeak/Smalltalk. For each change made to source code,
CoExist creates a new version of the system sources, resulting in a
fine-grained history of changes without requiring precautionary ac-
tions by the developer. As in our approach, preserved versions are
part of the program runtime and can be re-established easily. Sim-
ilar to this approach are Changeboxes[2], an approach to captur-
ing and scoping changes to a system using first-class entities called
Changeboxes. However, Changeboxes are primarily useful for re-
viewing the evolution of a system. In contrast, to undo changes us-
ing Changeboxes is rather tedious [14]. However, both CoExist and
Changeboxes preserve only changes to the source code of classes,
while our system preserves the state and behavior of objects. Object
versioning, in contrast, preserves the state and behavior of objects.

Back-in-time Debuggers [7], also known as Omniscient Debug-
gers, allow developers to inspect previous program states and step
backwards in the control flow to undo the side effects of statements.
Approaches for this are either based on logging or replay: either the
debugger records information to be able to recreate particular previ-
ous situations, requiring mainly space for the different states, or the
debugger re-executes the program up to a particular previous situ-
ation, requiring mainly time to re-run the program. Our approach
is similar to logging-based back-in-time debugging, re-establishing
a previous state through preserving information. However, back-in-
time debuggers need to be able to undo the effects of each statement
separately, while our system’s versioning granularity is arbitrarily
and can, for example, correspond to programmer interactions with
the system. Additionally, we intend object versioning to be active
during all development tasks, not only when debugging.

Software transactional memory (STM) [13] captures changes to
values in transactions, analogous to database transactions. Each
transaction has its own view of the memory, which is unaffected
by other concurrently running transactions. Multiple versions of
the system state can coexist and which version is read and writ-
ten to depends on the transaction. STM and our approach are sim-
ilar in that multiple versions of the system state can coexist and
that a previous state can be re-established if necessary. However,
STM provides concurrency control and an alternative to lock-based
synchronization, while our approach provides recovery support to
developers when changes turn out be inappropriate. Due to these
different goals, our versions are also first-class objects, which can
be stored in variables and be re-established at any time, while STM
transactions are created implicitly through particular control struc-
tures and committed immediately upon success.

6.2 Dynamically Scoping First-class Groups of Changes
Worlds[16] provide a language construct for controlling the scope
of side effects: changes to the state of objects are by default only
effective in the world in which the changes occurred. These worlds
are first-class values can be spawned from an existing world, which
establishes a child-parent relationship between the two worlds.
Worlds provide a language construct for experimenting with differ-
ent states of the system, while object versioning allows to preserve
versions of the system to recover previous states: Our approach
does not include extensions to the host programming languages
and no conditions for combining versions with their predecessor
versions.

Object Graph Versioning[12] allows programmers to preserve
access to previous states of objects. Fields of objects can be marked
as selected fields. When a snapshot is created, the values of these
selected fields are preserved. Therefore, not every state can be
re-established, but states that are part of global snapshots. The
approach, thus, provides fine-grained control to programmers re-
garding which fields of which objects should be preserved when.
Since Object Graph Versioning aims to support implementing
application-specific undo/redo or tools, individual fields are ver-
sioned only when programmers explicitly mark them as selected.

Practical Object-oriented Back-in-Time Debugging[8] is a
logging-based approach to back-in-time debugging that uses al-
ternative references to preserve the history of objects. These alter-
native references, called Aliases, are actually objects and part of
the application memory. They contain information about the his-
tory and origin of the values stored in fields. Aliases can not only
revert to previous states of the system, but also retrace the flow
of all values, while object-versioning only preserves the system
states. However, as with back-in-time debugging, the alias refer-
ences are intended to be used in explicit debugging sessions, while
our version-aware reference are intended to be used at all times.

7. Outlook and Summary
We presented an approach to preserving access to previous states of
objects in programming systems such as the Lively Kernel. The ap-
proach is based on version-aware references that can be enabled for
existing JavaScript environments without changing the VM. These
references manage different versions of objects transparently, i.e.,
they automatically resolve to one of multiple versions of an object;
to which version in particular can easily be changed. Thereby, dif-
ferent preserved states can be re-established.

Our approach uses a whole-system source transformation to en-
sure that for each object that is created, a proxy is created and re-
turned instead of the object. Thus, references to proxies are passed
around and all access goes through the proxies. Moreover, versions
of an object are reclaimed together with their proxy by the ordinary
garbage collector, keeping the memory overhead reasonable.

An issue with our current implementation is that the execution
overhead is not yet practical, with a slowdown of about three or-
ders of magnitude. We assume that browser vendors have not spent
significant resources on optimizing the proxies, because the EC-
MAScript 6 proxy specification is, at the time of this writing, still
being draftet. It seems reasonable to assume that further optimiza-
tions will be included in the browsers once the ECMAScript 6
specification is finalized. Alternatively, instead of using proxies,
version-aware references could be implemented differently: using
source transformations the traps of our proxies could be inserted
directly around all relevant operations, removing one indirection.
Preliminary performance tests indicate that this alternative imple-
mentation of version-aware references could be faster than proxies
as currently available in browsers.

Another issue is that, while our implementation allows to pre-
serve and re-establish versions, these versions need to be created
explicitly and there are no tools yet to find and manage versions.
Instead of putting the burden of remembering to create a new ver-
sion on the programmer, the system could create versions of the
runtime for any change to an object caused by an action of the pro-
grammer, as in CoExist. Such actions would entail a) manipulating
properties of a morph directly with a halo tool or through drag and
drop b) adding, removing, or editing a script of a morph or a method
of a class c) evaluating a code snippet d) triggering code execution
through a mouse or keyboard interaction. This way, whenever pro-
grammers realize changes were inappropriate, they can undo their
actions.

To complement this our system could support developers in
finding and re-establishing relevant states by storing and present-
ing additional information about versions. Such information could
include timestamps, the kind of action that triggered preserving the
version, as well as which objects, classes, or files did change, and
how the change affected benchmarks and tests.

Provided a fast proxy implementation and proper tool support,
the proposed approach allows developers to focus on the program-
ming task. They can directly manipulate parts or evaluate code
snippets to try out ideas without having to anticipate errors. When
errors do occur, recovery is fast and easy to accomplish, because
previous versions of the system are immediately available.

References
[1] T. Cutsem and M. S. Miller. Trustworthy Proxies: Virtualizing Ob-

jects with Invariants. In Proceedings of the 27th European Confer-
ence on Object-Oriented Programming, ECOOP ’13, pages 154–178.
Springer, July 2013.

[2] M. Denker, T. Gı̂rba, A. Lienhard, O. Nierstrasz, L. Renggli, and
P. Zumkehr. Encapsulating and Exploiting Change with Changeboxes.
In Proceedings of the 2007 International Conference on Dynamic
Languages, ICDL ’07, pages 25–49. ACM, August 2007.

[3] D. Ingalls, S. Wallace, Y.-Y. Chow, F. Ludolph, and K. Doyle. Fabrik:
A Visual Programming Environment. In Conference Proceedings on
Object-oriented Programming Systems, Languages and Applications,
OOPSLA ’88, pages 176–190. ACM, January 1988.

[4] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay. Back
to the Future: The Story of Squeak, a Practical Smalltalk Written in
Itself. In Proceedings of the 12th ACM SIGPLAN Conference on
Object-oriented Programming Systems, Languages and Applications,
OOPSLA ’97, pages 318–326. ACM, October 1997.

[5] D. Ingalls, K. Palacz, S. Uhler, A. Taivalsaari, and T. Mikkonen. The
Lively Kernel–A Self-supporting System on a Web Page. In Self-
Sustaining Systems, S3, pages 31–50. Springer, May 2008.

[6] A. Kay. Squeak Etoys Authoring and Media. Technical report,
Viewpoints Research Institute, February 2005. URL http://www.
vpri.org/pdf/rn2005002_authoring.pdf. Published Febru-
ary 2005. Available at http://www.vpri.org/pdf/rn2005002_
authoring.pdf. Accessed March 7, 2014.

[7] B. Lewis. Debugging Backwards in Time. In Proceedings of the Fifth
International Workshop on Automated Debugging, AADEBUG’03,
pages 225–235. Springer, September 2003.

[8] A. Lienhard, T. Gı̂rba, and O. Nierstrasz. Practical Object-Oriented
Back-in-Time Debugging. In Proceedings of the 22Nd European
Conference on Object-Oriented Programming, ECOOP ’08, pages
592–615. Springer, July 2008.

[9] J. Lincke, R. Krahn, D. Ingalls, M. Röder, and R. Hirschfeld. The
Lively PartsBin–A Cloud-Based Repository for Collaborative Devel-
opment of Active Web Content. In Proceedings of the 2012 45th
Hawaii International Conference on System Sciences, HICSS ’12,
pages 693–701. IEEE, January 2012.

[10] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond.
The Scratch Programming Language and Environment. Transactions
on Computing Education, 10(4):16:1–16:15, November 2010.

[11] J. H. Maloney and R. B. Smith. Directness and Liveness in the
Morphic User Interface Construction Environment. In Proceedings
of the 8th Annual ACM Symposium on User Interface and Software
Technology, UIST ’95, pages 21–28. ACM, December 1995.

[12] F. Pluquet, S. Langerman, and R. Wuyts. Executing Code in the Past:
Efficient In-memory Object Graph Versioning. In Proceedings of the
24th ACM SIGPLAN Conference on Object Oriented Programming
Systems Languages and Applications, OOPSLA ’09, pages 391–408.
ACM, October 2009.

[13] N. Shavit and D. Touitou. Software Transactional Memory. In
Proceedings of the Fourteenth Annual ACM Symposium on Principles
of Distributed Computing, PODC ’95, pages 204–213. ACM, June
1995.

[14] B. Steinert, D. Cassou, and R. Hirschfeld. CoExist: Overcoming
Aversion to Change. In Proceedings of the 8th Symposium on Dynamic
Languages, DLS ’12, pages 107–118. ACM, January 2012.

[15] T. Van Cutsem and M. S. Miller. Proxies: Design Principles for Robust
Object-oriented Intercession APIs. SIGPLAN Notices, 45(12):59–72,
October 2010.

[16] A. Warth, Y. Ohshima, T. Kaehler, and A. Kay. Worlds: Controlling the
Scope of Side Effects. In Proceedings of the 25th European Confer-
ence on Object-oriented Programming, ECOOP’11, pages 179–203.
Springer, July 2011.

http://www.vpri.org/pdf/rn2005002_authoring.pdf
http://www.vpri.org/pdf/rn2005002_authoring.pdf
http://www.vpri.org/pdf/rn2005002_authoring.pdf
http://www.vpri.org/pdf/rn2005002_authoring.pdf

	Introduction
	Background
	CoExist
	Part Development in Lively Kernel
	The Lively Kernel and Morphic
	Part Development By Example
	Recovery Needs When Developing Parts

	Object Versioning
	Versions of the System
	Ubiquitous Proxies as Version-aware References

	Implementation
	Using ECMAScript 6 Proxies for Object Versioning
	Accessing All Mutable JavaScript Objects Through Proxies
	Wrapping Literal Expressions
	Wrapping Function Declarations
	Wrapping Accessor Functions
	Wrapping Constructor Functions
	Wrapping Built-in Globals
	Wrapping eval

	Current Limitations of our Approach

	Evaluation
	Functionality of Version-aware References
	Testing with Octane
	Testing with the Lively Kernel

	Practicability: Memory Consumption
	Memory Overhead of Version-aware References
	Memory Consumption When Preserving Versions
	Method
	Results
	Discussion

	Practicability: Impact on Execution Speed
	Octane Benchmark Suite
	Microbenchmarks
	Loading a Lively Kernel World
	Typical Lively Kernel Interactions
	Discussion of the Execution Overhead

	Related Work
	Recovering Previous System States
	Dynamically Scoping First-class Groups of Changes

	Outlook and Summary

