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Many distributed data analysis jobs are executed repeatedly in production clusters. Examples include daily ex-
ecuted batch jobs and iterative programs. These jobs present an opportunity to learn workload characteristics
through continuous fine-grained cluster monitoring. Therefore, based on detailed profiles of resource utiliza-
tion, data placement, and job runtimes, resource management can in fact adapt to actual workloads. In this
paper, we present a system architecture that contains four mechanisms for an adaptive resource management,
encompassing data placement, resource allocation, and container as well as job scheduling. In particular, we
extended Apache Hadoop’s scheduling and data placement to improve resource utilization and job runtimes
for recurring analytics jobs. Furthermore, we developed a Hadoop submission tool that allows users to re-
serve resources for specific target runtimes and which uses historical data available from cluster monitoring

for predictions.

1 Introduction

Modern distributed data-analytic frameworks
such as Spark (Zaharia et al., 2010b) and Flink (Car-
bone et al., 2015) allow to process large datasets in
parallel using a large number of computers. Often, ap-
plications of these frameworks (i.e. jobs) run within
virtualized containers on top of cluster resource man-
agement systems like YARN (Vavilapalli et al., 2013),
which provide jobs a specific amount of resources
for their execution. In addition, a co-located dis-
tributed file system such as HDFS (Shvachko et al.,
2010) stores the data that is to be analyzed by the
data-analytic frameworks. This design allows to share
cluster resources effectively by running data analytic
jobs side-by-side on a single cluster infrastructure
composed of up to hundreds or more nodes and ac-
cessing shared datasets. Thereby, one challenge is
to realize an effective resource management of these
large cluster infrastructures in order to run data ana-
Iytics in an economically viable way.

Resource management for data-analytic clusters
is a challenging task as analytic jobs often tend to
be long running, resource-intensive, and consequently
expensive. For instance, in most resource manage-
ment systems the user needs to specify upfront how

many resources a job allocates for its execution in
terms of number of containers as well as cores and
memory per container. Furthermore, users often tend
to allocate too many resources for their jobs. In terms
of numbers, a productive cluster at Google achieved
aggregate CPU utilization between 25% and 30% and
memory utilization of 40%, while resource reserva-
tions exceeded 75% and 60% of the available CPU
and memory capacities (Verma et al., 2015). Further-
more, another challenge for effective resource man-
agement is that data-analytic jobs often have different
workload characteristics and, thus, stress different re-
sources. For instance, some frameworks provide li-
braries for executing scalable machine learning jobs
such as Spark MLIib (Meng et al., 2016), which of-
ten tend to be more CPU-intensive. On the contrary,
jobs containing queries for data aggregation tend to
be more I/O-intensive (Jia et al., 2014). Knowing the
dominant resource of a job in advance can be used
to schedule a job with other jobs for a better node
utilization and less interfere between jobs. For data-
intensive jobs, achieving a high degree of data locality
can reduce the network demand due to the availabil-
ity of input data on local disks. In this case, data can
be ingested faster and the computation can start im-
mediately (Zaharia et al., 2010a). However, the set



of containers, in which a job and its tasks is running,
is chosen by the resource manager that often sched-
ules containers without taking the location of data into
account. Thus, the task scheduling of data-analytic
frameworks is restricted to the set of nodes the con-
tainers are running on.

Besides, identifiable workloads characteristics
such as containing more I/O- or more CPU-intensive
jobs, typically workloads also contain many analyt-
ics jobs that are executed repeatedly. This is the case
for iterative computations, yet also for recurring batch
analytics, for which the same job is executed on a
weekly or even daily schedule. Such recurring batch
jobs can make up to 40% of all jobs in productive
clusters (Agarwal et al., 2012; Chaiken et al., 2008).

In summary, on the one hand cluster workloads
can vary significant in terms of which resources are
most dominant and thus which optimizations are most
effective, while workloads often have defining charac-
teristics as well as consist of repeatedly executed jobs.
Therefore, we argue that resource management for
data-analytic clusters should automatically adapt to
the workloads running on the resources. Furthermore,
detailed knowledge of a job’s resource usage and
scale-out behavior also allows to execute jobs more
efficiently as well as with respect to user performance
requirements. The basis for this knowledge on work-
load characteristics and particular jobs is fine-grained
cluster monitoring, in case of resource-managed clus-
ters on a container-level. Moreover, user performance
requirements can be collected to not only adapt to
job characteristics but also make informed decisions
based on user needs.

In this paper we report our experience of applying
adaptive resource management for distributed data
analytics based on such fine-grained container-level
cluster monitoring. In particular, we present a system
based on Hadoop' that allows to manage different as-
pects of resource management and which we used to
improve job execution time, increase resource utiliza-
tion, and meet performance demands of users. The
system measures job runtimes and the resource con-
sumption of every single job based on all its execu-
tion containers utilizations. In addition, we record
information on the input data to improve data local-
ity of the frameworks and colocate related files on
the same set of nodes. We further schedule combina-
tions of jobs to run together on the cluster for which
we observed high overall resource utilization and lit-
tle inference when executed co-located. The system is
also capable of taking user performance constraints in
terms of runtime targets and automatically allocating

1Apache Hadoop, http://www.hadoop.apache.org/,
accessed 2017-03-20

resources for these targets, after modeling the scale-
out performance of a job based on previous runs. In
addition, the system dynamically adapts resource al-
locations at runtime towards user-defined constraints
such as resource utilization targets at barriers between
dataflow stages.

Outline. The remainder of the paper is structured
as follows. Section 2 provides background on sys-
tems used for data analytics. Section 3 presents our
idea of adaptive resource management. Section 4 ex-
plains our system architecture for adaptive resource
management. Section 5 presents four different appli-
cations of our idea of adaptive resource management.
Section 6 discusses related work. Section 7 concludes
this paper.

2 Background

This section describes distributed dataflow sys-
tems, distributed file systems, and resource manage-
ment systems. Together these systems often form the
setup of shared nothing compute clusters used for data
analytics.

2.1 Distributed Dataflow Systems

In distributed dataflow systems tasks receive inputs
and produce outputs. These tasks are data-parallel,
so each parallel task instance receives only parts of
the input data and produces only parts of the output
data of the entire dataflow. The tasks usually are user-
defined versions of a set of defined operators such as
Map, Reduce, and Join. A Map, for example, is con-
figured with a user-defined function (UDF). A Join,
in contrast, is configured by defining the join crite-
ria, i.e. which attributes have to match for elements
to be joined. Therefore, operators like Joins, but also,
for example, group-wise reductions require elements
with matching keys to be available at the same task
instances. If this is not already given from the pre-
ceding tasks, the input data is re-partitioned for these
operations.

In general the tasks form a directed graph, of-
ten supporting joins of multiple separate dataflows or
even forks of a single one. Some frameworks also
support iterative programs with cyclic directed graphs
or features like result caching. Besides data paral-
lelism, task parallelism is often realized in form of
pipeline parallelism. Typically, the computation is
distributed and orchestrated by a master across many
workers. Workers expose their compute capabilities
via slots, which host either single task instances or
chains of subsequent task instances.



Key features of such distributed dataflow systems
include effective task distribution, fault tolerance,
scalability, processing speed, and usability. More-
over, program code typically does not contain details
on the execution environment, which instead is speci-
fied in separate configuration files, allowing the same
program to be used in different environments. Con-
sequently, developers can concentrate on application
logic, while cluster operation teams focus on system
specific such as resource allocation and configuration.

2.2 Distributed File Systems

In distributed file systems large files are typically
fragmented into blocks, which are then stored across
multiple nodes. Each node can store many blocks of
multiple different files and the blocks of a large file
can be stored across many nodes.

Such systems typically also follow the mas-
ter/worker pattern. The master stores metadata, such
as which block of which file is stored on a particular
node. This metadata is usually structured as file direc-
tories, allowing users to access files by specifying the
path to a file. When a client requests a file from the
master, the master returns the exact block locations,
which the client consequently uses to read the actual
file blocks directly from the workers.

Key features of distributed file systems include
fault tolerance, scalability, as well as usability. Fault
tolerance is usually realized using replication, so that
each block is often replicated three times, each one
stored on different nodes or even different racks. The
systems then implement fault detection and recovery
to continuously re-replicate blocks in case of failures.
Regarding usability, from a user’s perspective the dis-
tributed nature of the file system is abstracted. That
is, access to the distributed files is usually just as easy
as accessing local files, except for maybe read/write
performance. To increase access performance, a com-
monly applied technique is selecting compute nodes
for tasks with a maximum of input data locally avail-
able.

2.3 Resource Management Systems

Resource management systems allow to share cluster
resources among multiple users and applications. Of-
ten, these systems also support multiple different an-
alytics solutions such as different distributed dataflow
systems. Thus, users can select per application which
framework is best for their task. Then, users re-
serve parts of the cluster for a time through contain-
ers. These containers represent compute capabili-
ties. Often, a container is a reservation for a num-

ber of cores and an amount of main memory. Nodes
can host multiple such containers—as many as do fit
their resources—and multiple containers on a number
of hosts are typically reserved for a single application.
Resource management systems also usually fol-
low the master/worker pattern, with a central master
responsible for scheduling and orchestration, while
workers host application containers. More advanced
system designs apply master replication for fault tol-
erance or decentralized scheduling for scalability. In
case of multiple schedulers used for scalability, usu-
ally optimistic concurrency control schemes are used.
There is also a middle-ground between centralized
and decentralized resource managers with hybrid so-
lutions with, for example, hierarchical designs.

3 Adaptive Resource Management

The goal of adaptive resource management is to
continuously improve the resource utilization of a
data-analytic cluster. The overall idea is to learn about
the cluster workloads and automatically adapt data
and container placement as well as job scheduling
based on these information. Workloads often have
predictable characteristics since up to 40 % of jobs
in productive clusters are recurring (Agarwal et al.,
2012; Chaiken et al., 2008). For these jobs, the exe-
cution logic stays the same for every execution, how-
ever the input data may changes. Typical scenarios for
recurring jobs include when new data becomes avail-
able or at discrete times such as for hourly or nightly
batch reports.

User and Job and
Performance Cluster
Requirements Monitoring

Adjust
Resource
Management

e

Figure 1: Adaptive resource management cycle.

Figure 1 illustrates the process of our adaptive re-
source management approach. The distinct steps in
this cycle are:

e User and Performance Requirements: User spec-
ify performance requirements regarding runtime
targets. For instance, a recurring job should be
finished in an hour. Based on previous runs of that



job, the necessary set of resources is estimated and
allocated.

e Job and Cluster Monitoring: Jobs that are exe-
cuted on the cluster are continuously monitored
on a fine-grained container level. Based on this
historical workload data, job repositories are gen-
erated. Repository data includes execution time,
data placement, data access pattern, resource uti-
lization, and resource allocation. These detailed
profiles allow to learn for future executions of jobs
and, thereby, improve resource utilization.

e Adjusted Resource Management: Adaptive re-
source management is achieved by data block
placement, container placement, and job schedul-
ing. Data blocks are placed on as many nodes as
used by a job for optimal data locality. In addi-
tion, related files are colocated on the same set of
nodes. Containers of jobs that use these data as
input are placed on these nodes. Job scheduling is
used to run jobs with complimentary resource us-
age and low interference together. As in many re-
source management systems resource utilization
of containers is not strictly limited to the number
of resources used for scheduling, it is beneficial to
schedule an I/O intensive job with an CPU inten-
sive job.

4 System Architecture

This section describes our system architecture for
implementing adaptive resource management for dis-
tributed data analytics. The system consists of a
monitoring component called Freamon that provides
container-level job monitoring for Hadoop deploy-
ments. It monitors resource utilization of single data
analytic jobs by monitoring all its execution contain-
ers that run on different nodes. A data analytic job
can be any application that supports execution on
Hadoop YARN. In addition, Freamon measures the
total node utilization to analyze interference of dif-
ferent container placements as well as storage utiliza-
tion and data block placements. Different adaptive
resource management application use Freamon’s his-
torical job data for adaptive container placement, data
block placement, and container scheduling decisions.

Figure 2 shows how Freamon is integrated with
existing systems and its components for providing
fine-grained monitoring which then enables adaptive
resource management applications. Freamon relies
on Hadoop YARN and HDFS. The Compute Layer
is represented by YARNS slave nodes (i.e. NodeM-
anagers), which provide data analytic jobs with clus-
ter compute resources through containers. The Data
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Figure 2: System overview for applying adaptive resource
management.

Layer includes all HDFS slave nodes (i.e. DataN-
odes), which are responsible for storing datasets in se-
ries of blocks distributed across all available DataN-
odes. Both layers are running on all cluster nodes.
An important reason for co-locating both systems is
to improve data locality, the attempt to execute tasks
on nodes where the input data is stored. Data locality
can reduce the network demand due to the availability
of the input data on local disks and, thus, ingestion is
faster, allowing computation to start earlier.

The FAgent runs on every node and collects differ-
ent node-related system metrics. It collects resource
utilization of the whole node such as cpu, disk, net-
work, and memory data. In addition, Freamon tracks
resource utilization on a more fine-grained container-
level, in which the data analytic jobs are executed.
Thereby, it is to mentation that resources of contain-
ers are not strictly allocated. A container can gain
more resources if available. Thus, containers execut-
ing jobs are competing for available node resources.
The advantage is that a job can use more resources, if
available. With Freamon, we know exactly how much
a job was utilizing from a node and can use this infor-
mation later for resource savings for recurring jobs.
The agent uses the proc filesystem and monitors the
pid of the container executing the job. It is also a
frontend to other unix monitoring tools if available.
Records are sent periodically to the Freamon moni-
toring master.

Freamon is the master monitoring component, in
which all information about resource utilizations col-
lected by the distributed FAgents come together. In
addition, it communicates with the YARN master



node (i.e. ResourceManager) to gather job-specific
data of finished jobs like: runtime, name, application
framework, and scheduling profile including num-
ber of containers, cores as well as memory used for
scheduling. Freamon also collects information about
datasets that are processed by jobs. These informa-
tion contain the size of input datasets as well as data
placements, e.g. on which nodes the data blocks are
stored and how often the data is accessed by analyz-
ing the HDFS audit log. All job profiles are stored in
a repository of historical workload data. The job and
data profiles can be accessed by different adaptive re-
source management applications.

Adaptive Resource Management Applications
Adaptive resource management applications use
Freamon’s fine-grained cluster monitoring and work-
load repository for different purposes. For example,
the Allocation Assistant uses job runtimes for auto-
matic resource allocation according to users’ perfor-
mance targets, whereas the two Colocation Assistants
for container as well as data placement aim for im-
proved data locality, local data exchange, resource
utilization, and throughput. Different applications of
adaptive resource management are discussed in Sec-
tion 5 in more detail.

S Applications of Adaptive Resource
Management

This section summarizes four specific adaptive re-
source management techniques for distributed data
analytics that we implemented. The contribution of
this section is to show the applicability of adaptive re-
source management for distributed data analytics us-
ing the envisioned container-level cluster monitoring
system in more detail.

5.1 Data Colocation Assistent
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Figure 3: Data Colocation Assistant - data and container
colocation for data-intensive applications.

The performance for data-intensive jobs often de-
pends on the time it takes to read input data. Fur-
thermore, many jobs are recurring and, for example,
are triggered at a discrete time for daily or nightly
execution or when new data becomes available. For
this recurring data-intensive jobs, it is possible to de-
cide where to store the input data in the distributed
file system and containers before the job execution
starts. The Data Colocation Assistant (Renner et al.,
2016) uses these characteristics and consists of a data
block and container placement phase. First, it allows
to mark sets of files as related, which, for instance,
often are processed jointly. These data blocks of the
related files are automatically placed on the same set
or subset of nodes during the data placement phase.
Afterwards during the container placement phase, the
job and its containers are scheduled on these nodes,
where the data was placed before. The main ad-
vantage of CoLoc is a reduction of network trans-
fers due to a higher data locality and some locally
performed operators like grouping or joining. Thus,
especially data-intensive workloads benefit this adap-
tive resource management application. Figure 3 illus-
trates the process of the adaptive data and container
colocation application.

5.2 Resource Allocation Assistant
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Figure 4: Resource Allocation Assistant - resource selection
based on modeled scale-out behavior of a recurring job.

Given a runtime target, the Resource Allocation
Assistant (Thamsen et al., 2016b) automatically se-
lects the number of containers to allocate for a job.
For this, the Resource Allocation Assistant models
the scale-out behavior of job based on previous runs.
Therefore, we do not require dedicated isolated pro-
filing of jobs. Instead, the Resource Allocation As-
sistant retrieves runtime information on the previous
executions of a job from Freamon’s workload repos-
itory and then uses linear regression to find a func-
tion for the job’s scale-out performance. In particu-
lar, we use both a generic parametric model for dis-



tributed computation and nonparametric regression.
The parametric model is used for extrapolation and
when not enough data is available for effective mod-
eling with the nonparametric approach. The nonpara-
metric approach allows to interpolate arbitrary scal-
ing behavior with high accuracy when enough sam-
ples are available. The Resource Allocation Assis-
tant automatically selects between both models using
cross-validation. When the scale-out model is deter-
mined, this model is used to allocate resources for the
user’s runtime target. In particular, the Resource Al-
location Assistant uses the lowest scale-outs within
user-defined bounds that satisfies the target constraint.
This process is shown in Figure 4.

5.3 Job Colocation Assistant
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Figure 5: Job Colocation Assistant - job scheduling based
on resource usage and interference.
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The Job Colocation Assistant (Thamsen et al.,
2017) schedules jobs based on their resource usage
and interference with other jobs. In particular, it se-
lects jobs to run on the cluster based on the jobs al-
ready running on the cluster, as shown in Figure 5.
For this, it uses a reinforcement learning algorithm to
learn which jobs utilize the different resources best,
while interfering with each other least. Consequently,
this scheduling scheme can make more informed de-
cisions as time goes by and jobs are executed repeat-
edly on the cluster, yet does not require dedicated iso-
lated profiling of jobs. To measure the goodness of
colocation we take CPU, disk, and network usage as
well as I/0O wait into account. CPU, disk, and network
usage we rate highly when utilized high, while we use
I/O wait as indicator of interference. That is, lower
I/O wait is better. The computed colocation prefer-
ences are then used to select the next job from the
queue of scheduled jobs.

5.4 Dynamic Scaling Assistant

The Dynamic Scaling Assistant (Thamsen et al.,
2016a) adjusts resource allocations at runtime to meet
user-defined execution constraints such as resource
utilization targets. For these dynamic scalings, we
use the barriers between dataflow stages. In partic-
ular, there are barriers between the iterations of iter-
ative dataflow programs. Scaling at these barriers al-
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Flgure 6: Dynamic Scaling Assistant - resource allocation
adjustment for dataflow jobs at synchronization barriers.
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lows to adjust the resource allocation without having
to migrate task state. Moreover, scaling can be done
on the basis of runtime statistics that reflect the en-
tire elements of the dataflow. That is, at a barrier all
elements of the previous stage have been processed
and, thus, are reflected in, for example, the average
resource utilization of the nodes. This is important
as data characteristics such as key value distributions
can have a significant influence on the performance of
dataflows. This is, for example, the case when the par-
titions are uneven and worker nodes with little work,
therefore, have to wait on worker nodes with lots of
work at barriers.

6 Related Work

This section describes related work in four cate-
gories: distributed dataflow systems, distributed file
systems, resource management systems, as well as
work on using analytical cluster resources adaptively.

6.1 Distributed Dataflow Systems

MapReduce (Dean and Ghemawat, 2004) offers a
programming and an execution model for scalable
data analytics with distributed dataflows on shared
nothing clusters. The programming model is based
on the two higher order functions Map and Reduce,
which are both supplied with UDFs. The execution
models comprises the data-parallel execution of task
instances of these two operations, where each Map
phase is followed by a Reduce phase. In-between both
phases the intermediate results are written to disk and
shuffled: elements with the same key are read by the
same Reduce task instance. Fault tolerance is given
because a distributed file system with replication is
used for the intermediate results.

Systems like Dryad (Isard et al., 2007) and
Nephele (Warneke and Kao, 2009) added the possi-
bility to develop arbitrary directed acyclic task graphs
instead of just combinations of subsequent Map
and Reduce tasks. SCOPE (Chaiken et al., 2008),
Nephele/PACTs (Battré et al., 2010) and Spark (Za-



haria et al., 2010b) then added more operators such
as Joins. Spark also introduced an alternative ap-
proach to fault tolerance: instead of saving interme-
diate results in a fault-tolerant distributed file system,
Spark’s Resilient Distributed Datasets (RDDs) (Za-
haria et al., 2012) store enough linage information
to be able to re-compute specific partitions in case of
failures. Spark also enables users to explicitly cache
intermediate results for future usage. This allows, for
example, to speed up iterative computations that re-
quire an input repeatedly.

Flink (Carbone et al., 2015; Alexandrov et al.,
2014) and Google’s Dataflow (Akidau et al., 2015)
add many features regarding continuous inputs and
scalable stream processing. Flink uses in fact a stream
processing engine for both batch and stream process-
ing. Furthermore, they add functionality to define
windows for, for example, joins and aggregations.
They also provide mechanisms to deal with elements
that arrive late. Spark also provides a system for
stream processing (Zaharia et al., 2013). However,
Spark uses microbatches and no true streaming en-
gine for this.

6.2 Distributed File Systems

Distributed File Systems focusing on data analytics
typically store a file in series of blocks and stripe
the data block across multiple servers. In addition,
most add redundancy to the stored data by replicat-
ing the data blocks to provide fault tolerance against
node failures. HDFS (Shvachko et al., 2010) is part
of Hadoop and currently the de-facto storage system
for storing large datasets for data analytic tasks. Other
famous storage systems are Ceph (Weil et al., 2006),
GlusterFS (Davies and Orsaria, 2013), and XtreemFS
(Hupfeld et al., 2008).

Alluxio, former known as Tachyon (Li et al.,
2014), is a memory-centric distributed storage system
enabling data sharing at memory-speed supporting
many Hadoop compatible frameworks such as Spark,
Flink or MapReduce. It stores data off-heap and can
run on top of different storage systems such as HDFS
persistant layer.

6.3 Resource Management Systems

Different resource management system with a fo-
cus on data analytics like YARN (Vavilapalli
et al.,, 2013), Mesos (Hindman et al., 2011), or
Omega (Schwarzkopf et al., 2013) have been devel-
oped. In these systems, users can allocate cluster re-
sources by usually specifying the number of contain-
ers and their size in terms of cores and available mem-

ory. After these containers are deployed on the cluster
infrastructure, distributed dataflow systems are exe-
cuted here. YARN is part of Hadoop and emerged
of the MapReduce framework, and thus mainly fo-
cuses on batch jobs. One significant difference be-
tween YARN and Mesos is that YARN is a mono-
lithic and Mesos a non-monolithic two-level sched-
uler. Other known cluster resource management sys-
tems include Microsoft’s Apollo (Boutin et al., 2014),
and Google’s Borg (Verma et al., 2015)

6.4 Adaptive Resource Management

The most related architectures are Quasar (Delimitrou
and Kozyrakis, 2014) and Jockey (Ferguson et al.,
2012).

Quasar (Delimitrou and Kozyrakis, 2014), which
is a successor system to Paragon (Delimitrou and
Kozyrakis, 2013), automatically performs resource
allocation and job placement based on previously ob-
served and dedicated sample runs. Quasar also adjusts
allocations at runtime after monitoring. In contrast,
our architecture also encompasses data placement and
selecting the next job from the queue of scheduled
jobs.

Jockey is a resource manager for Scope, which
performs initial resource allocation and further adapts
the allocation at runtime towards a user-given runtime
target. For this, Jockey uses detailed knowledge of
the execution model and instrumentation to gain com-
prehensive insights into the jobs. Jockey, however,
does not take care of data placement and also does
not schedule jobs.

Further related systems in regards to automatic
resource allocation include, for example, FElasti-
sizer (Herodotou et al., 2011a), which is part of the
Starfish (Herodotou et al., 2011b) and also selects re-
sources for a user’s runtime target.

Related systems in regards to dynamic scaling
and other runtime adjustments include many works
in the area of large-scale stream processing. Works
such a StreamCloud (Gulisano et al., 2012) and QoS-
based Dynamic Scaling for Nephele (Lohrmann et al.,
2015) have investigated adaptive dynamic scaling for
large-scale distributed stream processing. There is
also work on adaptively placing and migrating tasks
at runtime based on execution statistics. An ex-
ample is placing tasks that exchange comparably
large amounts of the data onto the same hosts in
Storm (Aniello et al., 2013)

In regards to adaptive data placement, the closest
related works are Scarlett (Ananthanarayanan et al.,
2011) and ERMS (Elastic Replica Management sys-
tem) (Cheng et al., 2012). Both systems mine access



patterns of applications and use these information to
increase and decrease data replication factor of files
that are accessed most to improve throughput.

7 Conclusion

In this paper, we presented an architecture of a set
of applications that make resource management for
distributed dataflows more adaptive based on clus-
ter monitoring. Our solution monitors job runtimes,
container-based resource utilization, and data access.
Based on these information, we adapt different as-
pects of resource management to the actual workload
and, in particular, repeatedly executed dataflow jobs
such as recurring batch jobs. Specifically, we adapt
the following aspects of resource management: data
placement, resource allocation, job scheduling, and
container placement. The four adaptive resource man-
agement applications we implemented are:

1. First, we place data on as many nodes as used by
a job for optimal data locality.

2. Second, we allocate as many resources for a job as
a user’s runtime target requires after modeling the
scale-out performance of a job using its previous
runs.

3. Third, we schedule jobs to run together that ex-
hibit a high overall resource utilization yet little
inference when executed co-located.

4. Fourth, we adjust resource allocations at run-
time towards user-defined constraints such as uti-
lization targets at barriers between subsequent
dataflow stages.

While we have presented these four different tech-
niques before, this paper presents them as applica-
tions in an overall architecture. In the future, we want
to evaluate how well these techniques work together
and also implement further ideas for adaptive resource
management based on fine-grained cluster monitor-
ing.
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