
Network-Aware Resource Management for
Scalable Data Analytics Frameworks

Thomas Renner, Lauritz Thamsen, Odej Kao
Technische Universität Berlin, Germany
{firstname.lastname}@tu-berlin.de

Abstract—Sharing cluster resources between multiple frame-
works, applications and datasets is important for organizations
doing large scale data analytics. It improves cluster utilization,
avoids standalone clusters running only a single framework and
allows data scientists to choose the best framework for each
analysis task. Current systems for cluster resource management
like YARN or Mesos achieve resource sharing using containers.
Frameworks execute their tasks in containers, which they receive
after specifying resource requirements. Currently, the container
placement is based on available computing capabilities in terms of
cores and memory, yet neglects to also take the network topology
and data locations into account.

In this paper, we propose a container placement approach that
(a) takes the network topology into account to prevent network
congestions in the core network and (b) places containers close
to input data to improve data locality and reduce remote disk
reads in a distributed file system. The main advantages of intro-
ducing topology- and data-awareness on the level of container
placement is that multiple application frameworks can benefit
from improvements. We present a prototype integrated with
Hadoop and an evaluation with workloads consisting of different
applications and datasets using Apache Flink. Our evaluation
on an 64 core cluster, in which nodes are connected through a
fat tree topology, shows promising results with speedups of up
to 67% for workloads, in which the network is an important
resource.

I. INTRODUCTION

More and larger datasets become available through data-
sensing mobile devices, wireless sensor networks, software
logs, and user-generated content. Gaining insights into the
data is becoming increasingly relevant for more and more
applications. For analyzing this data quickly and efficiently,
different scalable data analytic frameworks have been devel-
oped. Prominent examples include MapReduce [1], Dryad [2],
Spark [3], Flink [4], Naiad [5], and Storm [6]. Each of these
frameworks has advantages and disadvantages, and the best
choice depends on the type of data analysis task (e.g. batch,
stream, or graph processing), the structure and size of the data,
as well as the data scientists skills. Thus, there is a growing
need to share cluster resources between different users and
frameworks. For this reason, the frameworks typically run
within containers on cluster resource management systems
like YARN [7] or Mesos [8], where they grant rights to use
specific amounts of resources. Furthermore, the data that is
to be analyzed typically resides in a co-located distributed
file system such as HDFS [9]. This design is attractive for
companies and data center providers, because it allows to run
workloads consisting of different applications and multiple

frameworks on the same datasets in a shared cluster. It also
provides higher resource utilization [10] and enables multi-
tenancy. Thus, different users and organizations can share a
cluster in a cost-effective manner [11]. Furthermore, from the
user’s perspective, data scientists also have more freedom to
choose the most appropriate of the different frameworks for
their analysis task at hand.

When the cluster size increases and tasks are highly dis-
tributed in containers, it is likely that data needs to be accessed
from remote disks and tasks communiate with each other over
the network. This can cause a lot of network traffic, especially
for data-intensive applications. Various authors identified the
network as a major bottleneck for distributed data analytics.
Some introduced task schedulers that preserve data locality by
placing tasks on nodes close to their input data [11]–[16]. Oth-
ers introduced network optimizations including load balancing
in multi-path networks or network traffic prioritization [17]–
[20]. However, most of these works are implemented on the
framework level instead of the level of resource management
and, thus, support only standalone clusters running a single
framework. Moreover, to our best knowledge none of these
works explicitly addresses container placement in hierarchical
networks on the resource management level.

Large clusters for data analytics are typically organized in
hierarchical network topologies like fat trees [21]. In such
designs, nodes are grouped into racks of 20-80 nodes at the
lowest level and multiple paths with different hop counts can
exist between two nodes [14]. Typically, bandwidth between
nodes within a rack is higher than bandwidth between nodes
in different racks, because paths between switches are shared
by more nodes [11]. Despite, container placement in many
resource management systems is based on compute resource
profiles without taking information on the network topology or
data locality into account, e.g. requests that require 10 contain-
ers with 4096 MB memory and 2 virtual cores. However, even
with optimal compute scheduling the network can become
a bottleneck [22]. Especially, when multiple data-intensive
applications run in parallel on a cluster.

With this motivation, we explore the problem of sharing re-
sources between multiple workloads in hierarchical networks.
In particular, we present a network-aware container placement
approach for data analytics applications. A key advantage of
improving container placement is that workloads consisting
of different frameworks, applications and datasets in a shared
cluster can benefit from this optimization.



Fig. 1: Data analytic architecture based on Apache Hadoop [23] and organized in a fat tree topology [21]

We use simmulated annealing [24] to find acceptably good
container placements based on a weighted cost function in
a fixed amount of time. The cost function tries to optimize
network by improving network bisection bandwidth and relies
on two main factors:

1) Data Locality: placing containers near to the job input
data, so frameworks can place source tasks locally to
input data.

2) Container Closeness: placing containers close to each
other with a few as possible network links between
different racks involved.

We weighted the factors of this cost function for workloads
in which the network is an important resource. This is, for
example, often the case with iterative programs [5] [25] as
used in machine learning and graph analysis. We implemented
our approach on top of YARN and evaluated it with workloads
consisting of Flink jobs, which allows us to run iterative
programs. The experienced performance improvements for
such workloads lie between 39 - 67 %.

The rest of the paper is organized as follows. Section II
introduces the background and motivation of our network-
aware container placement approach. The system architecture
is presented in Section III. Section IV presents the design
of our scheduler in more detail. Evaluation and results are
given in Section V. Related work is discussed in Section VI.
Section VII concludes this paper with remarks on future work.

II. BACKGROUND AND MOTIVATION

This section describes a typical cluster setup for scalable
data analytics as the targeted environment for our container
placement approach. First, we have a closer look at the
physical infrastructure focusing on network aspects. Then, we
discuss the typical software stack and architecture as well
as resulting challenges based on Apache Hadoop [23], on

which our proposed architecture, prototype implementation
and evaluation is based.

Large clusters with hundreds of nodes are often organized
in hierarchical multi-path networks [14]. One widely used type
of topology for such networks is the fat tree topology [21].
In such a topology, also shown in Figure 1, physical nodes
are grouped into racks of 20 - 80 nodes at the lowest
level by commodity switches. Furthermore, multiple paths
and different hop counts between two nodes can exist. In
addition, bandwidth capacities become higher as one moves
up the tree. However in data analytic clusters, the available
bandwidth between nodes in the same rack can be higher than
the bandwidth between nodes located in different racks. The
reason is that links between racks are shared by more nodes
at the same time, which can result in network congestion on
the core layer links [11]. Therefore, it is preferable to place
applications close to each other as well as close to input data to
avoid network traffic on the upper layers as much as possible.

Two main components of Hadoop [23] are the cluster
resource management system YARN [7] and the distributed
file system HDFS [9]. Typically, both system are running
co-located, allowing mixed workloads consisting of different
frameworks, applications and datasets on a shared cluster.
Both systems follow the master/slave pattern. The master
node oversees and coordinates data storage and computing
functionalities. The slave nodes make up the majority of hosts
and do the work of storing the data and running computations
within containers. In the following, we will discuss both
systems as shown in Figure 1 in more detail and highlight
the motivation for our container placement approach.

YARN consists of four main components: ResourceMan-
ager, NodeManager, Application Master and Container. The
ResourceManager is YARN’s master component. It is the cen-
tral arbitrator of all resources and is responsible for scheduling



application workloads on available resources. The scheduling
function is based on an application resource request specifying
the amount of needed containers as well as memory and
CPU requirements per container. Currently, the scheduler takes
no network information into account and, thus, treats the
network as a black box. A NodeManager running per-node
is responsible for monitoring containers and their memory
and CPU usage, reporting to the Resource Manager. Together,
the central Resource Manager and the collection of Node
Managers create the computational infrastructure. An Appli-
cationMaster running per-application has the responsibility of
requesting and receiving appropriate resource containers from
the Resource Manager. The negotiation and the placement
does not take network or data locality into account. This can
lead to high container distributions over the network and,
thus, more network traffic, because of remote reads from
a distributed file system and communication among tasks
on different nodes. In addition, the ApplicationMaster tracks
the application status and monitors its progress (e.g. if an
application is finished, cancelled or still running). A Container
represents successfully allocated resources, provided by the
Resource Manager. A container grants rights to an application
to use a specific amount of resources on a node, and, thus,
provides an execution environment. Typically, one framework
worker is executed in one container.

The cluster resource management system is typically co-
located with the distributed file system HDFS [9]. In such
file systems, data is replicated over multiple nodes for fault-
tolerance and faster access. Many frameworks try to exploit
data locality by scheduling tasks close to the input data
to maximize system throughput, because available network
bandwidth is often lower than the clusters disk bandwidth [26].
HDFS consists of two main components, namely NameNode
and DataNode. A single NameNode acts as a master that
regulates access to files by clients and manages the file
system name space. Multiple DataNodes, usually one per node,
manage storage attached to the nodes that they run on. A file
is split into one or more blocks and these blocks are stored
replicated on DataNodes.

Data analytic frameworks such as MapReduce [1],
Spark [3], or Flink [4], or Naiad [5] are typically executed on
top of a cluster resource management system and a distributed
file system. In general, these frameworks split data across
many nodes, process them data-parallely and finally transfer
and merge intermediate results. Thus, they allow to process
a huge amounts of data, but also generate a lot of network
traffic.

III. SYSTEM ARCHITECTURE

This section describes the system architecture of our con-
tainer placement approach. The architecture is based on YARN
and HDFS, which are booth introduced in Section II.

As shown in Figure 2, the architecture follows a master
and slave model. The slave nodes make up the majority of
nodes and do the work of storing the data and running the
computations within container. Therefore, each slave node

hosts a NodeManager and DataNode daemon. The master
nodes consist of a ResourceManager, NameNode and a SDN
network controller [27]. They manage data storage as well as
network and computing functionalities. The ResourceManager
receives job submissions from the users, and is responsible for
allocating needed resources and containers. The SDN network
controller automatically gets the current network topology
and could be used for flow switching in future work. The
NameNode provides information about block localities, which
is used to improve data locality. The Placement component is
the focus of this paper and contains the logic for our placement
algorithm. It decides where to place an application and its con-
tainer best, based on available resources, topology information,
block location and running applications. The component uses
existing REST interface to all master components. The logic
of our placement algorithms is described in Section IV in more
detail

Fig. 2: Architecture Overview

Figure 3 shows an sequence diagram to illustrate the flow
between all system components to find a good container
placement. First, an application is submitted to YARN’s
ResourceManager. The submission contains the amount of
needed containers and their computation specification as well
as the path of the input data. The ResourceManager deploys
an ApplicationMaster on the available slave nodes. The AM is
responsible for allocating containers from the ResourceMan-
ager. Therefore, it first asks our placement component where to
place containers. The placement component receives an appli-
cation request specified with a resource profile, which contains
the amount of needed containers and its virtual cores and mem-
ory demand per container as well as distributed file input path.
Afterwards, the placement component calculates application
container (i. e. placement hints) based on information provided
by the ResourceManager, Network Controller and NameNode
including available resources, running application containers,
distributed file system path and network topology. The result
are placement hints that are send back to Application Master,
which afterwards sends container requests for these hints to the
ResourceManager. Finally, the ResourceManager will allocate
the containers and the execution of the application can begin.



Fig. 3: Sequence diagramm

IV. NETWORK-AWARE CONTAINER PLACEMENT

The goal of our network-aware container placement is to
improve the execution time of workloads in clusters shared
by multiple data analytics frameworks. This is achieved by
incorporating the following two objectives into the placement:

1) Container togetherness: Placing containers of applica-
tions close together with a minimal number of network
hops in between them to reduce network traffic on links
in the core network.

2) Data locality: Placing containers close to their appli-
cation’s input data to allow more local reads from the
underlying distributed file system as remote reads cause
network traffic.

Finding good placements for containers in large clusters
is an optimization problem with a potentially huge search
space [28]. For this reason, we use simulated annealing [24],
a probabilistic method to find an approximation of the global
optimum of the given function in a fixed amount of time. The
cost function we propose consists of two main components,
reflecting the two objectives of network-aware placement we
identified: container togetherness and data locality. A third
minor component is derived from the fact that containers share
the resources of the nodes they are placed on. Consequentely,
the container load should be balanced over available resources.
All three components are normalized and assigned weights,
depending on their importance and the cluster infrastructure.

A. Placing Containers Close Together

Different container placements result in different communi-
cation paths in hierarchical networks. For instance, placing an
application and its containers on a single rack involves only
the single top-of-rack switch, so all traffic is kept on rack
level and network congestions on the core network can be
avoided. Reducing the communication over the network links
on the core layer is critical because the available bandwidth
between nodes within a rack is typically significantly higher
than the bandwidth between nodes across racks [11]. Thus,
it is preferable to place an application and its containers
close to each other with a small number of links on the core
network involved. In the best case, a single rack with sufficient
resources is available for the application request. If this is not
the case, our approach places containers over multiple racks
but minimizes the necessary hops on the core level.

For the first component of the cost function we sum up the
involved hops on the core layer of the network. Therefore,
we determine the shortest paths between all container pairs
and sum up all shortest paths greater than two hops, thereby
excluding paths between containers connected to the same
switch. This excludes the links between hosts and switches
to focus the cost function on links in the core layer, in which
traffic aggregates much more significantly as more nodes share
these links.

Figure 4 shows an example in which eight nodes are
connected using six switches that form a hierarchical multi-
path network. Each node can host up to four containers. A
placement of twelve containers results in eight containers on
Rack 1 and four in Rack 2. The network cost–being the sum
of the shortest paths among all container pairs–in this example
is given by 32 hops for this placement.

Fig. 4: A container placement with low network costs.



B. Placing Containers Close to Inputs

Most frameworks try to archieve data locality by placing
source tasks on top of input data when possible. This can re-
duce network traffic and improve job execution time. Reading
files or blocks locally is only constrained by the disk read
speed, not additionally by the network throughput. Therefore,
our goal is to place containers in a way that we can allow
data locality for the applications running within the containers.
Optimally, each container placement covers all of the blocks of
the application’s input data. Furthermore, as blocks are usually
replicated to provide fault-tolerance, placements can cover
multiple replicas per block. Covering more than one replica
introduces degrees-of-freedom for the framework’s scheduling
that often has to satisfy other constraints. For this reason, our
cost function considers both how many blocks and how many
block replicas are covered by a placement. Covering all blocks
is more important than covering many replicas. Therefore, the
ratio of blocks covered is given more weight than the amount
of replicas covered in this cost function component.

Fig. 5: A container placement with high data locality.

Figure 5 shows an example of a cluster consisting of eight
nodes. Each node can host up to four containers and store up
to four distributed file system blocks. The containers of the
application running in the cluster are placed with considerable
fractions of their input locally available.

C. Placing Containers Close To Inputs, Close Together and
Balanced Over Available Resources

The containers provided by resource management systems
typically only provide weak isolation between containers.
Subsequentely, tasks executed in containers compete for the
resources of nodes. These resources include the computing
capabilites of nodes, particularly the cores and memory, as
well the I/O capabilites, particularly disk and network I/O.
This requires to distribute containers evenly over available
resources.

At the same time, different tasks utilize the different re-
sources to different amounts. Sorting operations, for example,
often require lots of memory whereas map tasks can, for
instance, be mainly CPU-bound. Since systems for large scale
data analysis are often based on data parallelism [1], [2],
[29], tasks of the same application tend to stretch the same
resources at the same time. For this reason, resources are
ideally shared by containers of different applications. In other
words, containers of a single application should be placed on
as many nodes as possible. Optimizing this third objective is
sometimes naturally in conflict with optimizing the two main
components of our cost function. Yet, as all three components
of the cost function are weighted and the third component
getting only little weight, it only functions as a tipping point
towards balanced solutions among placements with roughly
equal network and data input costs.

Assigning sensible weights to the two main components of
our cost functions depends on the cluster configuration. In
particular, appropriate weights depend on the disk read speed
of the nodes and the throughput of network links in the cluster
network.

Figure 6 shows an example in which eight nodes are
connected using six switches that form a hierarchical multi-
path network. Each node can host up to four containers and
store up to four distributed file system blocks. The containers
of the application running in the cluster are placed such
that network costs are minimal, data locality is high and the
involved resources are utilized evenly.

Fig. 6: A container placement with balanced available re-
source.



V. EVALUATION

This section describes the evaluation of our container place-
ment approach on a 8x8 core cluster organized in four racks
using a fat tree topology. First, we provide more details about
our experimental setup. Afterwards, we present results of four
experiments. The experiments we present use two iterative
algorithms, K-means clustering and Connected Components,
and submit a number of concurrent Flink jobs, reflecting a
high and mid cluster utilization.

A. Experimental Setup

We evaluated our scheduling approach on an eight node
cluster, in which each node is equipped with eight cores, 32
GB of RAM, a single SATA disk and a 1 Gbps Ethernet
network interface. We used an additional node as the master
node for the cluster. The eight worker nodes are organized
in four racks, so each rack consists of two nodes. The nodes
are connected through a fat tree topology with two switching
elements on the core and four on the edge layer. All switches
(HP ProCurve Switch 1800-24G) are SDN capable and support
OpenFlow 1.1.

The single master node manages the data storage and com-
puting functionalities. Therefore, it runs YARN’s Resource-
Manager, HDFS’s NameNode and OpenDaylight as a SDN
network controller. In addition, our component to calculate
a good container placement is hosted here. The remaining
eight slave nodes are responsible for storing the data and
running the workloads within containers. Therefore, each node
runs YARN’s NodeManager and HDFS DataNode. In our
experiments all workloads run within containers with 1 vcore
and 3 GB memory. Thus, we were able to run 64 containers
at the same time.

In terms of software all nodes run Ubuntu 14, Apache
Hadoop 2.7 and Apache Flink 0.9. We modified the implemen-
tation of Flink’s application master so it requested placement
hints from our placement component before allocating con-
tainers. The modification contains only a few lines of code.
In particular, the application master makes a request to our
placement component and afterwards sends the received host
preferences to YARN’s ResourceManager.

Since our test bed has only a few nodes, yet our approach
targets hierarchical networks with hundreds or thousands of
nodes of which network traffic aggregates on the core network,
we decided to shape the network interfaces of the core network
to simulate our target environment. Assuming 48 port switches
available on the rack level with 1 Gbps available per port, we
chose a blocking factor of 1:5 [18], and thus have 8 ports
with collectively 8 Gbps uplink bandwidth available between
the core switches. The remaining 40 ports of the top-of-rack
switches are available for hosts. Because we actually have only
two nodes per rack, not 40, we shape the link between the
top-of-rack switches and core switches to 400 Mbps (8 Gbps
divided by 20 as we only a twentieth of nodes). Therefore, in
our fat tree topology, each top-of-rack switch has an uplink
with 200 Mbps to each of the two core switches.

Cluster Utilization Workload Improvements

High (60 of 64 cores) K-Means 39%
Connected Components 67%

Mid (36 of 64 cores) K-Means 40%
Connected Components 45%

TABLE I: Overview of experiments with four different Flink
workloads.

B. Preliminary Results

In this section we show the effects of our placement on
workloads consisting of two iterative algorithms, namely K-
means and Connected Components.

KMeans Clustering [30] is a compute intensive data
processing algorithm, which is used in the area of Machine
Learning. It is an iterative algorithm that groups a large set of
multi-dimensional data points into k distinct clusters without
supervision. For our evaluation, we used five random fixed
centers and 600 million points, resulting in around 8 GB input
data.

Connected Componenents [31] is an iterative graph algo-
rithm that identifies the maximum cardinality sets of vertices
that can reach each other in an undirected graph. For our
evaluation, we used a Twitter dataset with around 25 GB input
data [32].

High cluster utilization. For the first experiments, we used
60 of 64 available cores. We submitted five applications,
each using 12 containers, in which one was used for the
application master and eleven for Flink tasks. Each containers
allocated 3 GB of RAM and 1 vcore. We run two different
workloads under this utilization. One was using the K-means
clustering job, the other the Connected Components job. In
both workloads, we submitted the five applications with a
delay of 10 seconds in-between. For each job we generated
a separate dataset to have a different locations for the input
data blocks of different applications. Figure 7 shows the
results, where each block represents the execution time of
an application, stacked to sum the execution time of all five
applications. The speedup for the k-means clustering workload
was 39% and for the connected components 67%.

Mid cluster utilization. For the second experiments, we
used 36 of 64 available cores. In this experiment we submitted
three applications, each using 12 containers. Each container
allocated 3 GB of RAM and 1 vcore. We run two different
workloads under mid utilization. One conisted of K-means
clustering jobs and the other of Connected Component jobs.
In both workloads, we submitted the applications with a delay
of 10 seconds. For each job we generated a separate dataset
to have a different locations for the input data blocks of
different applications. Figure 8 shows the results, shows the
results, where each block represents the execution time of an
application, stacked to sum the execution time of all three ap-
plications. The speedup for the K-means clustering workload
was 40% and for the Connected Components workload 45%.



0

200

400

600

800

1000

1200

Kmeans
Clustering

Connected
Components

Jo
b

ex
ec

ut
io

n
tim

e
in

m
in

ut
es

default placement
network-aware placement

Fig. 7: Workloads consisting of five K-means jobs improved
by 39% for k-means clustering, while workloads of five
Connected Components jobs improved by 67%.

0

20

40

60

80

100

120

140

Kmeans
Clustering

Connected
Components

Jo
b

ex
ec

ut
io

n
tim

e
in

m
in

ut
es

default placement
network-aware placement

Fig. 8: Workloads consisting of three K-means jobs improved
by 40% for k-means clustering, while workloads of three
Connected Components jobs improved by 45%.

VI. RELATED WORK

Our approach to container placement draws from a range
of existing works. Yet, to the best of our knowledge, no
resource management system provides container placement for
scalable data analytics frameworks with a focus on hierarchical
datacenter networks.

A. Cluster Scheduling for Data-Analytics Frameworks

Cluster scheduling for Data-Analytic Frameworks has been
an area of active research over the last years. Recent work
has been proposed techniques on addressing fairness across
multiple tenants [33]–[36], time-predictable resource alloca-
tion [10], and improving data locality [11]–[16]. Work on data
locality is similar to our solution, as data locality is also part

of our cost function. In most of these works, however, data
locality stops at rack level and does not take the underlying
network topology into account. In addition, most of these
works focus on MapReduce and do not support a broader
range of data analytics frameworks. Our approach targets
the resource management level and container placement in
particular. Thus, a number of frameworks benefits from the
improvements. Alkaff et. al. [28] present a scheduler that
asigns tasks and allocates network paths topology-aware by
using Software-Defined Networking. However, they focus on
streaming frameworks like Storm [6] and ignore data locality.

B. Resource Management Systems

Different resource management system with a focus on
big data like YARN [7], Omega [37], or Mesos [8] have
been developed. In Mesos or YARN, network bandwidth
is not explicitly modeled. In contrast, Oktopus [18] and
Orchestra [38] explicitly consider network resources. However,
these systems do not primarlily target scalable data analytics.

Mesos helps frameworks to achieve data locality without
knowing which nodes store input data for the application.
This is realized by offering resources to frameworks and
allowing frameworks to reject offers. Thus, a framework can
reject offers that do not satisfy data locality thresholds and
accept the ones that do. In combination with delay schedul-
ing [11], in which frameworks wait for a limited time to
acquire nodes storing the input data, Mesos can archieve good
data locality. However, this leaves finding placements with
good data locality to the framework. Moreover, to the best
of our knowledge, there is no resource management system
or scheduling approach available that takes both hierarchical
network and data locality into account.

VII. CONCLUSION AND FUTURE WORK

There is a strong need to share cluster resources among
users and frameworks, since workloads consist of different
applications, implemented in different frameworks analyzing
different datasets. Typically, many of these applications are
network intensive and, thus, container placement for these
applications must take network topologies and the locations of
input data into account. For this reason, this paper presents an
approach and an architecture for effective container allocation
for scalable data analysis in shared clusters with hierarchical
networks. We implemented our approach on top of YARN
and evaluated it with workloads consisting of Flink jobs. Our
evaluation showed a reduction of job runtimes of up to 67 %.

In the future, it would be interesting to configure underlying
cost function, which is optimized in the process of finding
good container placements for applications, automatically de-
pending on factors such as the cluster setup but also frame-
works, applications, and datasets. Another option would be
to further reduce network congestions in hierarchical multi-
path networks with SDN-based load balancing for these data
analysis frameworks.

Even without these further improvements, we believe this
work is already an important step towards making cluster



resource management systems more aware of the underlying
datacenter network, which becomes more and more important
for big data applications as the size of clusters grows.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on
Large Clusters,” in Proceedings of the 6th Conference on Symposium on
Operating Systems Design & Implementation, ser. OSDI’04. Berkeley,
CA, USA: USENIX Association, 2004, pp. 10–10.

[2] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
Distributed Data-parallel Programs from Sequential Building Blocks,”
in ACM SIGOPS Operating Systems Review, vol. 41, no. 3. ACM,
2007, pp. 59–72.

[3] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster Computing with Working Sets,” in Proceedings of the
2Nd USENIX Conference on Hot Topics in Cloud Computing, ser.
HotCloud’10. Berkeley, CA, USA: USENIX Association, 2010, pp.
10–10.

[4] A. Alexandrov, R. Bergmann, S. Ewen, J.-C. Freytag, F. Hueske,
A. Heise, O. Kao, M. Leich, U. Leser, V. Markl et al., “The Stratosphere
platform for big data analytics,” The VLDB JournalThe International
Journal on Very Large Data Bases, vol. 23, no. 6, pp. 939–964, 2014.

[5] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and
M. Abadi, “Naiad: a timely dataflow system,” in Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles.
ACM, 2013, pp. 439–455.

[6] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulka-
rni, J. Jackson, K. Gade, M. Fu, J. Donham, N. Bhagat, S. Mittal, and
D. Ryaboy, “Storm@twitter,” in Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’14.
New York, NY, USA: ACM, 2014, pp. 147–156.

[7] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth et al., “Apache Hadoop
YARN: yet another resource negotiator,” in Proceedings of the 4th
annual Symposium on Cloud Computing. ACM, 2013, p. 5.

[8] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H.
Katz, S. Shenker, and I. Stoica, “Mesos: A Platform for Fine-Grained
Resource Sharing in the Data Center,” in NSDI, vol. 11, 2011, pp. 22–22.

[9] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in Mass Storage Systems and Technologies
(MSST), 2010 IEEE 26th Symposium on, May 2010, pp. 1–10.

[10] C. Curino, D. E. Difallah, C. Douglas, S. Krishnan, R. Ramakrishnan,
and S. Rao, “Reservation-based Scheduling: If You’re Late Don’t Blame
Us!” in Proceedings of the ACM Symposium on Cloud Computing.
ACM, 2014, pp. 1–14.

[11] M. Zaharia, D. Borthakur, J. Sen Satodorma, K. Elmeleegy, S. Shenker,
and I. Stoica, “Delay scheduling: A simple technique for achieving
locality and fairness in cluster scheduling,” in Proceedings of the 5th
European Conference on Computer Systems, ser. EuroSys ’10. New
York, NY, USA: ACM, 2010, pp. 265–278.

[12] S. Venkataraman, A. Panda, G. Ananthanarayanan, M. J. Franklin, and
I. Stoica, “The power of choice in data-aware cluster scheduling,” in 11th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 14). Broomfield, CO: USENIX Association, Oct. 2014, pp.
301–316.

[13] G. Ananthanarayanan, S. Agarwal, S. Kandula, A. Greenberg, I. Stoica,
D. Harlan, and E. Harris, “Scarlett: coping with skewed content popu-
larity in mapreduce clusters,” in Proceedings of the sixth conference on
Computer systems. ACM, 2011, pp. 287–300.

[14] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Gold-
berg, “Quincy: fair scheduling for distributed computing clusters,” in
Proceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles. ACM, 2009, pp. 261–276.

[15] X. Bu, J. Rao, and C.-z. Xu, “Interference and locality-aware task
scheduling for mapreduce applications in virtual clusters,” in Proceed-
ings of the 22Nd International Symposium on High-performance Parallel
and Distributed Computing, ser. HPDC ’13. New York, NY, USA:
ACM, 2013, pp. 227–238.

[16] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica, “Job scheduling for multi-user mapreduce clusters,” EECS
Department, University of California, Berkeley, Tech. Rep. UCB/EECS-
2009-55, 2009.

[17] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks.” in NSDI,
vol. 10, 2010, pp. 19–19.

[18] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards
predictable datacenter networks,” in ACM SIGCOMM Computer Com-
munication Review, vol. 41, no. 4. ACM, 2011, pp. 242–253.

[19] M. Veiga Neves, C. De Rose, K. Katrinis, and H. Franke, “Pythia: Faster
big data in motion through predictive software-defined network opti-
mization at runtime,” in Parallel and Distributed Processing Symposium,
2014 IEEE 28th International, May 2014, pp. 82–90.

[20] C. Fuerst, S. Schmid, L. Suresh, and P. Costa, “Kraken: Towards elastic
performance guarantees in multi-tenant data centers,” in Proceedings of
the 2015 ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems. ACM, 2015, pp. 433–434.

[21] C. E. Leiserson, “Fat-trees: Universal networks for hardware-efficient
supercomputing,” IEEE Trans. Comput., vol. 34, no. 10, pp. 892–901,
Oct. 1985.

[22] A. Das, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and C. Yu,
“Transparent and flexible network management for big data processing
in the cloud,” in Presented as part of the 5th USENIX Workshop on Hot
Topics in Cloud Computing, 2013.

[23] Apache, “Hadoop,” http://hadoop.apache.org (accessed September
2015).

[24] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.

[25] S. Ewen, K. Tzoumas, M. Kaufmann, and V. Markl, “Spinning fast
iterative data flows,” Proceedings of the VLDB Endowment, vol. 5,
no. 11, pp. 1268–1279, 2012.

[26] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, B.-G. Chun, and
V. ICSI, “Making sense of performance in data analytics frameworks,”
in Proceedings of the 12th USENIX Symposium on Networked Systems
Design and Implementation (NSDI)(Oakland, CA, 2015, pp. 293–307.

[27] K. Kirkpatrick, “Software-defined networking,” Commun. ACM, vol. 56,
no. 9, pp. 16–19, Sep. 2013.

[28] H. Alkaff, I. Gupta, and L. Leslie, “Cross-layer scheduling in cloud
systems,” in Cloud Engineering (IC2E), 2015 IEEE International Con-
ference on, March 2015, pp. 236–245.

[29] D. Battré, S. Ewen, F. Hueske, O. Kao, V. Markl, and D. Warneke,
“Nephele/pacts: A programming model and execution framework for
web-scale analytical processing,” in Proceedings of the 1st ACM Sym-
posium on Cloud Computing, ser. SoCC ’10. New York, NY, USA:
ACM, 2010, pp. 119–130.

[30] J. MacQueen, “Some methods for classification and analysis of multi-
variate observations,” in Proceedings of the Fifth Berkeley Symposium on
Mathematical Statistics and Probability, Volume 1: Statistics. Berkeley,
Calif.: University of California Press, 1967, pp. 281–297.

[31] J. Hopcroft and R. Tarjan, “Algorithm 447: Efficient algorithms for graph
manipulation,” Commun. ACM, vol. 16, no. 6, pp. 372–378, Jun. 1973.

[32] H. Kwak, C. Lee, H. Park, and S. Moon, “What is Twitter, a social
network or a news media?” in WWW ’10: Proceedings of the 19th
international conference on World wide web. New York, NY, USA:
ACM, 2010, pp. 591–600.

[33] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica, “Dominant resource fairness: Fair allocation of multiple
resource types.” in NSDI, vol. 11, 2011, pp. 24–24.

[34] C. Joe-Wong, S. Sen, T. Lan, and M. Chiang, “Multiresource allocation:
Fairness–efficiency tradeoffs in a unifying framework,” Networking,
IEEE/ACM Transactions on, vol. 21, no. 6, pp. 1785–1798, 2013.

[35] A. A. Bhattacharya, D. Culler, E. Friedman, A. Ghodsi, S. Shenker, and
I. Stoica, “Hierarchical scheduling for diverse datacenter workloads,” in
Proceedings of the 4th annual Symposium on Cloud Computing. ACM,
2013, p. 4.

[36] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian, M. Wu, and
L. Zhou, “Apollo: scalable and coordinated scheduling for cloud-scale
computing,” in Proc. USENIX Symp. on Operating Systems Design and
Implementation (OSDI), 2014.

[37] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes,
“Omega: Flexible, Scalable Schedulers for Large Compute Clusters,”
in Proceedings of the 8th ACM European Conference on Computer
Systems, ser. EuroSys ’13. New York, NY, USA: ACM, 2013, pp.
351–364.

[38] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica,
“Managing data transfers in computer clusters with orchestra,” in ACM
SIGCOMM Computer Communication Review, vol. 41, no. 4. ACM,
2011, pp. 98–109.


