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Abstract—With weather becoming more extreme both in terms
of longer dry periods and more severe rain events, municipal wa-
ter networks are increasingly under pressure. The effects include
damages to the pipes, flash floods on the streets and combined
sewer overflows. Retrofitting underground infrastructure is very
expensive, thus water infrastructure operators are increasingly
looking to deploy IoT solutions that promise to alleviate the
problems at a fraction of the cost.

In this paper, we report on preliminary results from an ongoing
joint research project, specifically on the design and evaluation
of its data analytics platform. The overall system consists of
energy-efficient sensor nodes that send their observations to
a stream processing engine, which analyzes and enriches the
data and transmits the results to a GIS-based frontend. As
the proposed solution is designed to monitor large and critical
infrastructures of cities, several non-functional requirements such
as scalability, responsiveness and dependability are factored into
the system architecture. We present a scalable stream processing
platform and its integration with the other components, as well
as the algorithms used for data processing. We discuss significant
challenges and design decisions, introduce an efficient data
enrichment procedure and present empirical results to validate
the compliance with the target requirements. The entire code for
deploying our platform and running the data enrichment jobs is
made publicly available with this paper.

Index Terms—Water Networks, Internet of Things, Critical
Infrastructures, Predictive Maintenance, Cloud Computing

I. INTRODUCTION

Municipalities around the world use water networks to dis-
tribute fresh water and remove sewage from private households
and industrial facilities. Their history reaches back into the
dawn of civilization and they are generally understood as
an essential constituent of our increasingly urbanized society.
Today, water networks are unanimously considered to be
critical infrastructure, because the lives and livelihood of
urban populations directly depend on their functioning. Due to
the very high cost of directly accessing the infrastructure for
upgrades and repair, pipes have been aging under the ground
since they were first put into place decades or even centuries
ago. Meanwhile, the pressures excerted on the systems from
extreme weather events such as prolonged dry periods and
flash floods present an increasing threat to their seamless
operation [1]. For example, storm drains in the streets can
clog, causing the streets to be flooded as seen during the
heavy rain events in Berlin in 2017 and Washington DC

in 2019. Furthermore, pipes can crack and the water leak
out into the ground, which can cause significant harm to
the surrounding infrastructures as well as economic damage
due to the loss of fresh water. Finally, in the case of a
storm event, the load on the network can exceed its capacity
and spill untreated into nearby waterways. Such problems
could likely be alleviated through large scale real-time mea-
surements of key observables such as pressures, flow rates,
temperatures [2]. This information can help to determine the
areas of greatest concern, schedule predictive maintenance,
and ultimately control the various pumps and reservoirs more
optimally. Wireless Sensor Networks (WSNs) as powered by
Internet of Things (IoT) technology present a promising tool
for this purpose, because they can be deployed in parts of the
network that are inaccessible to humans, stay operational over
long periods without external power supply and transmit their
sensor readings wirelessly to the cloud for further analysis. In
this paper, we report on WaterGridSense4.0 (WGS4.0), a joint
project involving academic, industrial and municipal partners,
that aims to develop an integrated solution based on power-
and cost-efficient sensor devices as well as a scalable and fault
tolerant data analytics platform. The main contributions of our
work can be summarized as follows:

1) We discuss how the integration of the architecture
components is subject to a tradeoff between protocol
compliance and scalability.

2) We propose an efficient scheme for enriching the stream
of sensor measurments with values from a changing set
of attributes and evaluate its throughput and latency for
different cluster sizes and number of attributes.

3) We report a series of key insights from working on the
algorithms addressing three of the many use cases in the
WaterGridSense4.0 project.

4) We provide all code required for deploying our platform
in kubernetes with configurable cluster size, so our
solution can be rolled out for arbitrarily large water
networks around the world.

The rest of this paper is structured as follows. In the
following section, we review previous efforts to leverage
IoT technology for smart water grid monitoring. Section III,
describes our system architecture. The subsequent Section IV



reports on measurements with respect to several non-functional
requirements. Finally, we discuss uses cases and relevant
algorithms in Section V and conclude our work in Section VI.

II. RELATED WORK

With the recent proliferation of small, inexpensive wireless
sensor devices with long battery life, a wide range of
research projects have been initiated on the potential of IoT
technologies for various tasks in urban environments [3].
Many focus specifically on monitoring and control of water
grids [4], a direction in the literature often referred to as
smart water grid. We take a look at the state of the art in
this field throughout the remainder of this chapter. It should
be noted that we only consider recent approaches based on
WSNs technology to keep the discussion within the scope of
our own work.

Among the seminal works on this subject is the PipeNet
system by Stoianov et al. [5]. They discuss an end-to-end
architecture for WSN-based pipe monitoring and leakage
detection based on the Intel Mote platform. The end device
with multiple sensors is installed in a manhole and transmits
the readings to the nearest gateway via Bluetooth which in
turn relays them to an analytics backend via GPRS. Despite
their results being very relevant for our work, their research is
a bit dated and uses a completely different technology stack
from what is available today. Similar approaches that rely
on stationary sensors installed inside or around pipes include
WaterWiSe@SG [6], MISE-PIPE [7], and SWATS [8]. With
the exception of MISE-PIPE, they all rely on some form of
wireless transmission and focus on the development of the
end device with the aim of detecting leaks and blockages.
Other publications focus more on the analysis of the data
acquired from various meters installed across the district to
detect anomalous behavior inside the local grid [9], [10].

Another corpus of works considers mobile sensor nodes
that move either actively or float passively through the pipes.
Among the earliest systems developed in this context is the
modular MAKRO robot for pipe inspection developed by
Scholl et al. [11]. It moves actively through the network
and stores the recorded data locally to be retrieved via cable
transfer after the robot has been extracted. Similar principles
are applied by the KANTARO probe [12] that combines data
from multiple sensors to obtain an even more detailed picture
of the pipe condition. Examples of passively floating probes
include the SewerSnort system for gas monitoring [13] and
the damage-detection probe SPAMMS [14]. All store their
recorded observations locally (no wireless transmission) but
differ in their approaches to in-pipe localization, a topic that
we touch upon in Section V-C in our paper. A more advanced
scheme is presented in [15], where the authors propose
TriopusNet, a swarm-like WSN consisting of multiple probes
that autonomously (re-)position inside the pipe network. They
are mainly concerned with the problems of node placement
and data routing.
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Fig. 1: WaterGridSense4.0 system architecture. Solid lines rep-
resent data streams, dashed lines indicate batch data queries.

The plethora of successful deployments of WSN for water
network monitoring shows that the approach holds great
potential for improved monitoring and control of water grids.
However, they all use just a few nodes while a real deploy-
ment in a large city would need to integrate the data from
thousands of nodes to provide a complete understanding of
the network state. Yet, real applications of WSN in critical
infrastructures such as water grids are subject to stringent
system requirements and introduce practical challenges such
as data enrichment and protocol compliance. Exactly these
considerations are at the core of our research.

III. SYSTEM ARCHITECTURE

The central problem addressed in the WGS4.0 project
is the continuous monitoring and analysis of large scale
water infrastructures. To that end, we develop a scalable and
dependable cloud-based analytics platform that processes
sensor measurements in real time. The overall system
architecture of WGS4.0 is displayed in Figure 1 and is
composed of three main parts:

The Sensor Platforms control the sensor nodes that are
placed in various locations across the water grid. Their main
tasks include power management, recording measurements,
and sending them wirelessly to the Analytics Platform. The
sensor device developed within the WGS4.0 project are modu-
lar, water-proof and can be deployed both as stationary sensors
in key locations and as mobile devices floating through the
pipes.

The Analytics Platform is the central data processing com-
ponent that is at the core of our research. It receives a stream of
measurements from the Sensor Platforms, processes the data
and forwards the results to the GIS Plattform.

The GIS Platform represents the point of interaction for
the grid operators. It receives the streams of processed sensor
events and visualizes them on a map of the water network.
Additionally, the operators use the interface to send updates
for the enrichment attributes to the Analytics Platform and
query archived measurement series.

A. The Analytics Platform

The Analytics Platform is the central data processing
component within the WGS4.0 architecture. It is composed
of a set of interconnected services that are deployed using
parametrized helm charts, so the system can be rolled out at
arbitrary scale. We made the code used for deployment of
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our plattform available online as open source1.

A complete schematic of the Analytics Platform is
given in Figure 2 and can be summarized as follows: The
sensor measurements arrive at the platform through its data
stream interface and are picked up by the distributed stream
processing engine Apache Flink2. Flink then processes the data
by subjecting it to the pipelines discussed in Sections III-B
and V. The results of the analysis are again streamed
to the GIS Platform for live visual display. Additionally,
all data is archived in the scalable distributed database
Apache Cassandra3. The choice and configuration of the
individual services is driven by two essential specifications:
Requirements and protocols.

a) Requirements: The requirements that our Analytics
Platform must meet are defined by the water network
operators which in turn must comply with municipal or
federal regulations. First and foremost, the system must be
dependable, i.e. allow continuous operations and produce
reliable results even in the presence of partial system
failures. We address this issue by introducing service
redundancy and using technologies that provide exactly-
once semantics. Through increasing redundancy, one can
achieve almost arbitrary degrees of availability because it is
increasingly unlikely that enough workers fail simultaneously
to interrupt the service. The second requirement concerns the
responsiveness of our system, i.e. its end-to-end latency: There
should be a low delay between a measurement arriving at the
data stream interface and the result of its analysis being sent
to the GIS Plattform. Obviously, this delay depends on the
data processing jobs, as evaluated in Section IV. Furthermore,
in order to apply the WGS4.0 architecture to water networks
of different sizes and with varying measurement frequencies,
the Analytics Platform must provide scalability. To meet this
requirement, the deployed services must support increasing

1https://github.com/dos-group/water-analytics-cluster
2https://flink.apache.org/
3https://cassandra.apache.org/

the number of worker nodes and the algorithms used in the
data processing pipelines must make use of the additional
parallelism. Finally, since we want our system to be freely
available for municipalities around the world, the developed
system must only consist of Free and Open Source Software
(FOSS).

b) Integration: Unexpectedly, integration turns out to be
a major challenge for the implementation of our Analytics
Platform. That is, the data stream interface connecting the
three platforms must be at the same time fast, scalable,
and compliant with the protocols used by the transmission
infrastructure. Within WGS4.0, LoRa has been determined
as the most readily available wireless technology among the
partnering cities. As is typical in the IoT domain, the various
LoRa implementations used by the infrastructure providers
in the WGS4.0 project use the Message Queuing Telemetry
Transport (MQTT) protocol for passing data upstream. Among
the most popular message broker implementations with MQTT
support is RabbitMQ4, which has been shown to achieve up to
40.000 packets per second throughput with a single node [16].
Its scalability is heavily limited by the fact that it does not
allow the streams to be partitioned for parallel processing
within Apache Flink. On the other hand, Apache Kafka5 is
the fastest event streaming system available today with up to
420.000 packets per second [17] across partitioned streams but
it does not natively support MQTT.

Compromises in this tradeoff include using the MQTT
connector together with an external broker, relying on the
MQTT proxy plugin shipped with the enterprise version of
the confluent platform, or, as of recently, using waterstream6,
which merges the two technologies. Unfortunately, the latter
two options are not openly available and the first approach
introduces a bottleneck, since the MQTT broker has a signifi-
cantly lower bound on its throughput, as stated above. Within
the project, we decided to use Kafka where supported by the
local LoRa stack and additionally deploy RabbitMQ to provide
MQTT compatibility. Throughout the remainder of this paper,
we restrict our evaluation to Apache Kafka since it comes with
scalable partitioning of the data streams.

B. Data Enrichment

An important processing step that applies to all considered
use cases is data enrichment, i.e. the augmentation of the
received sensor data with additional information. For example,
such information includes geolocations, device type informa-
tion and measurement units which are not transmitted by
the sensors in order to reduce energy consumption. Attribute
values are announced and updated via a separate Kafka data
stream and stored within the Analytics Platform for use in the
enrichment procedure.

Apache Flink supports stateful stream operations with
RocksDB as a persistent key/value store, thus enabling fault

4https://www.rabbitmq.com/
5https://kafka.apache.org/
6https://waterstream.io/
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Fig. 3: The complete data enrichment procedure.

tolerant exactly-once semantics. Since values stored in Flink
managed state can reside on disk instead of memory, we keep
them in Java local memory but also store them in Redis7 and
Cassandra. In case of a taskmanager unexpectedly dies, it will
load the last checkpoint, replay the data stream and initialize
its local state by obtaining the current value for each attribute
from Redis.

Due to the high volume of the stream and the lossy nature
of LoRa networks, sensor data can arrive delayed and out-of-
order. Changes to the enrichment attributes on the other hand
are comparatively rare and use reliable transmission which
can cause the timestamps of the messages in the sensor data
stream to lag behind those of the (already processed) attribute
updates. In such cases, the enrichment procedure requires
access to previously commissioned attributes to guarantee
enrichment with information that was valid at the time when
the measurement was taken. At times of high load, this can
happen for many measurements, which is why we also store
the previous value for each attribute in local memory to
avoid costly access to remote storage. In case an out-of-order
measurement arrives that is older than both the current and
the previous value of a corresponding parameter, we retrieve
the correct historical value from a distributed database. The
entire sequence of steps performed during data enrichment is
presented in Figure 3. The complete source code is available
in our git repository8.

7https://redis.io/
8https://github.com/dos-group/water-analytics-enrichment

IV. PERFORMANCE MEASUREMENTS

Our experimental setup consists of a 30-node Kubernetes
cluster co-located with a HDFS cluster of the same size. All
nodes run on Intel Xeon E3-1230 V2 CPUs @ 3.30GHz with
16 GB RAM and 1 TB RAID0 HDD (linux sofware raid)
and are connected via gigabit ethernet. Each Flink job cluster
consists of a single master in high-availability mode and three
different cluster sizes taken from {4, 8, 12}. All Flink workers
are created with one task slot and 2 GB of memory. A total
of 3 runs of 30 minutes each were conducted for each job
configuration.
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Fig. 4: System throughput in mean number of messages per
second for different cluster sizes and number of attributes.

The number of messages processed per second with our
pipeline and system configurations are presented in Figure 4.
The results show that the data enrichment job achieves stable
maximum throughput rates of roughtly 150.000 measurements
per 4 taskmanagers and scales linearly with the size of the clus-
ter. The influence that the number of enrichment attributes has
on performance seems to become larger with increasing cluster
size, which we explain by the non-deterministic partitioning
between flink taskmanagers and the redis cluster. Furthermore,
the performance difference between enrichment with 1 and 2
attributes is smaller than the residual variance among different
measurement runs. Across all configurations, the time it took
the operator to “warm up”, i.e. fill its local memory with
attribute values, was around 45 seconds.

Concerning the requirement of responsiveness, mean op-
erator latencies slightly increase with cluster size, from a
median of 151ms (cluster size 4) to 159ms (cluster size 8)
and finally 168ms (cluster size 12). While this should be
further investigated when considering even larger clusters,
we consider these results to be in the range of acceptable
values. Overall, our results give conclusive evidence that our
implementation is scalable with respect to the rate of incoming
sensor data as well as the number of enrichment attributes. In
practice, one should configure the system to be at around 50%
load during normal operations to use resource efficiently but
also give some room for load peaks. For example, a system
with cluster size 4 is appropriate for a network with 75.000
sensors that each send one measurement per second.



V. DATA ANALYTICS

The flexible design of the sensor nodes developed within
WGS4.0 allows deployments across a wide range of locations
inside the water infrastructure: It can be attached inside
street inlets and manholes but also used as a floating probe
for in-pipe inspection tasks. From the many use cases thus
enabled, we use this section to present three particularly
important ones, report on our investigation into suitable
algorithms and discuss some open issues to be addressed
during the remainder of the project.

A. Detecting Clogged Storm Drains

Storm drains periodically clog due to leaves and litter
that are washed in with the rain, which necessitates periodic
cleaning of the internal collection container. Since some are
more affected than others, the cost of this maintenance could
be significantly reduced if one could remotely estimate the
degree of clogging without sending a team for local inspection.
The WGS4.0 sensor nodes are intended to be installed within
the street inlets to measure the water and dirt levels inside
the inlets sludge containment and to estimate the urgency of
cleaning them. The cause and impact of clogging on drainage
performance has been explored thoroughly [18], [19] and
spatiotemporal correlations among nearby street inlets have
been shown to exist [20]. Among the proposed solutions
is a passive system for estimating water levels in runoffs
using RFID tags [21] and a zigbee-based WSN using acoustic
sensors [22].

B. Predicting Combined Sewer Overflows

In a combined sewer system, stormwater runoff runs through
a single pipe together with wastewater from homes, businesses,
and industry. During periods with heavy rainfall, the amount
of stormwater can become greater than the network capacity
and cause a Combined Sewer Overflow (CSO). This problem
could be alleviated by monitoringing the water network in
order to predict imminent load spikes and initiate counter-
measures, such as preemtive clearing of rainwater tanks and
basins. Previous research on CSO detection covers the use
of neural networks and control limit theory to detect CSO
events from flow measurement time series [23]. In this work,
the authors also propose a method to incorporate data from
multiple geospatial locations to improve detection. Sonnenberg
et al. [24] compare multiple approaches to CSO detection
based on water level measurements, rainmeter data and even
a simulation model of the water grid.

C. Detecting Leakages and Inflows

Presumably, the use case with the most existing works in
the literature concerns the remote detection of leakages and
inflow of rainwater or groundwater into wastewater pipes.
Many sensor-based solutions have been proposed for this
problem, as discussed in Section II. To cover this use case
within WGS4.0, sensor nodes are designed to be capable
of floating through the pipes while continuously recording

key observables, such as temperature and conductivity of the
surrounding water. Once they come within range of a gateway,
they transmit their measurements to the Analytics Plattform for
further inspection. The main difficulty encountered in this use
case comes from the fact that radionavigation systems such
as GPS don’t work deep in the ground and that therefore, the
location of each measurement has to be estimated by some
other means. Recent solutions to this problem include acoustic
localization [25], [26], using gyroscope data [15], [27], and
RSSI-based localization with respect to anchor points, e.g. the
above mentioned gateways [13], [28].

D. Open Issues

Thorough analysis of the previously proposed solutions
for the three use cases reveals a set of required algorithmic
features. They include

• the integration of weather data through a separate data
stream,

• the support for geospatial queries, and finally
• a scalable solution for detecting anomalous values based

on spatial correlations with neighboring sensors
The feasibility of including weather data depends on the
products offered by the respective national weather service.
In the case of the German DWD, open weather data is made
available in the form of daily reports and forecasts that have
to be crawled and turned into a data stream to be used
within our platform. The second issue concerns the use of
geospatial information, e.g. to process readings of physically
co-located sensors together. Redis supports geospatial queries
by means of the GEOHASH and related primitives, but the
frequent transmission of query results would likely degrade
performance significantly as opposed to performing such com-
putations locally. To fill this gap, the GeoBeam and GeoFlink
frameworks have been introduced. They extend the Flink API
to enable geospatial queries [29], [30].

Finally, a scalable time series anomaly detection method
is needed for all considered use cases, which should pro-
vide a means to incorporate information about the geospatial
placement of the sensors. There are promising recent results
describing a scalable AutoRegressive Integrated Moving Aver-
age (ARIMA) implementation in Flink for detecting anomalies
in hydrologic time series [31]. Previously, the use of Local
Indicators of Spatial Association (LISA) was proposed for
anomaly detection in water networks [32]. We are currently
working on a pipeline that combines weather- and sensor data
from across a certain area and applies spatio-temporal anomaly
detection to identify use case-specific target events.

VI. CONCLUSION

Intelligent monitoring of large scale water infrastructures is
an open problem addressed by the WGS4.0 project. As part
of its system architecture, we introduce an openly available
data analytics platform that runs in the cloud. In this paper,
we reported on key insights gained during the development
process including component integration, platform design and
data analysis. Our platform is shown to meet important critical



infrastructure requirements, specifically dependability, respon-
siveness and scalability. We further described a complete data
enrichment procedure optimized to fit the characteristics of the
application domain. In a series of experiments, we demonstrate
scalability, quantify responsiveness and provide a point of
reference for choosing the right cluster size in any given
deployment scenario. Throughout the remainder of the project,
we plan to implement and evaluate the outlined analysis
algorithms for which certain open issues need to be addressed.
These include the integration of weather data, the support for
geospatial queries and the use of a scalable anomaly detection
method in the stream processor.
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the sewer system in bogotá (colombia),” Water Science and Technology,
vol. 79, no. 9, pp. 1727–1738, 2019.

[21] A. Atojoko, N. Jan, F. Elmgri, R. A. Abd-Alhameed, C. H. See, and
J. M. Noras, “Energy efficient gully pot monitoring system using radio
frequency identification (rfid),” in 2013 Loughborough Antennas &
Propagation Conference (LAPC). IEEE, 2013, pp. 333–336.

[22] C. H. See, K. V. Horoshenkov, R. A. Abd-Alhameed, Y. F. Hu, and S. J.
Tait, “A low power wireless sensor network for gully pot monitoring in
urban catchments,” IEEE Sensors Journal, vol. 12, no. 5, pp. 1545–1553,
2011.

[23] D. Sumer, J. Gonzalez, and K. Lansey, “Real-time detection of sanitary
sewer overflows using neural networks and time series analysis,” Journal
of environmental engineering, vol. 133, no. 4, pp. 353–363, 2007.

[24] H. Sonnenberg, E. Pawlowsky-Reusing, M. Riechel, N. Caradot, E. Toth,
A. Matzinger, and P. Rouault, “Different methods of cso identification in
sewer systems and receiving waters,” in 12th International Conference
on Urban Drainage, 2011.

[25] D. W. Kurtz, “Developments in a free-swimming acoustic leak detection
system for water transmission pipelines,” in Pipelines 2006: Service to
the Owner, 2006, pp. 1–8.

[26] D. Kumar, D. Tu, N. Zhu, R. A. Shah, D. Hou, and H. Zhang, “The free-
swimming device leakage detection in plastic water-filled pipes through
tuning the wavelet transform to the underwater acoustic signals,” Water,
vol. 9, no. 10, p. 731, 2017.

[27] J. Zheng, S. Wang, A. Hazim, and S. Dubljevic, “Pipeline leak detection
swimming robot design and deployment,” in 2018 Annual American
Control Conference (ACC). IEEE, 2018, pp. 1166–1171.

[28] W. Gong, M. A. Suresh, L. Smith, A. Ostfeld, R. Stoleru, A. Rasekh, and
M. K. Banks, “Mobile sensor networks for optimal leak and backflow
detection and localization in municipal water networks,” Environmental
modelling & software, vol. 80, pp. 306–321, 2016.

[29] Z. He, G. Liu, X. Ma, and Q. Chen, “Geobeam: A distributed computing
framework for spatial data,” Computers & Geosciences, vol. 131, pp.
15–22, 2019.

[30] S. A. Shaikh, K. Mariam, H. Kitagawa, and K.-S. Kim, “Geoflink:
A framework for the real-time processing of spatial streams,” arXiv
preprint arXiv:2004.03352, 2020.

[31] F. Ye, Z. Liu, Q. Liu, and Z. Wang, “Hydrologic time series anomaly
detection based on flink,” Mathematical Problems in Engineering, vol.
2020, 2020.

[32] D. E. Difallah, P. Cudre-Mauroux, and S. A. McKenna, “Scalable
anomaly detection for smart city infrastructure networks,” IEEE Internet
Computing, vol. 17, no. 6, pp. 39–47, 2013.


