
WOW: Workflow-Aware Data Movement and Task
Scheduling for Dynamic Scientific Workflows

Fabian Lehmann ∗, Jonathan Bader †, Friedrich Tschirpke ∗,
Ninon De Mecquenem ∗, Ansgar Lößer ‡, Soeren Becker †,

Katarzyna Ewa Lewińska ∗§, Lauritz Thamsen ¶, and Ulf Leser ∗
∗Humboldt-Universität zu Berlin, Germany, †Technische Universität Berlin, Germany,

‡Technische Universität Darmstadt, Germany, §University of Wisconsin–Madison, USA, ¶University of Glasgow, UK
{fabian.lehmann, tschirpf, mecquenn, leser}@informatik.hu-berlin.de, jonathan.bader@tu-berlin.de,

ansgar.loesser@kom.tu-darmstadt.de, soeren.becker@tu-berlin.de, lewinska@hu-berlin.de, lauritz.thamsen@glasgow.ac.uk

Abstract—Scientific workflows process extensive data sets over
clusters of independent nodes, which requires a complex stack
of infrastructure components, especially a resource manager
(RM) for task-to-node assignment, a distributed file system (DFS)
for data exchange between tasks, and a workflow engine to
control task dependencies. To enable a decoupled development
and installation of these components, current architectures place
intermediate data files during workflow execution independently of
the future workload. In data-intensive applications, this separation
results in suboptimal schedules, as tasks are often assigned to
nodes lacking input data, causing network traffic and bottlenecks.

This paper presents WOW, a new scheduling approach for
dynamic scientific workflow systems that steers both data move-
ment and task scheduling to reduce network congestion and
overall runtime. For this, WOW creates speculative copies of
intermediate files to prepare the execution of subsequently
scheduled tasks. WOW supports modern workflow systems that
gain flexibility through the dynamic construction of execution
plans. We prototypically implemented WOW for the popular
workflow engine Nextflow using Kubernetes as a resource manager.
In experiments with 16 synthetic and real workflows, WOW
reduced makespan in all cases, with improvement of up to 94.5%
for workflow patterns and up to 53.2% for real workflows, at
a moderate increase of temporary storage space. It also has
favorable effects on CPU allocation and scales well with increasing
cluster size.

Index Terms—Scientific Workflows, Cluster Computing, Data
Placement, Task Scheduling, Resource Allocation, Data Locality

I. INTRODUCTION

Many scientific disciplines recently faced a steep increase in
the size and amount of collected experimental data. Such data is
typically analyzed using a scientific workflow, which is a set of
independently developed analysis programs (called tasks) con-
nected through input/output relationships (called dependencies)
managed by a scientific workflow engine. For processing large
data sets, these engines execute workflows on a distributed
cluster by leveraging further infrastructure components [1].
The most important components are resource managers (RMs)
to assign tasks whose input is available to nodes with free
capacity and fitting resources, and distributed file systems
(DFSs) to offer transparent access to data throughout the cluster
(see Figure 1). Nextflow, Parsl, and Pegasus are examples of
popular workflow engines. Kubernetes and Slurm are widely
used RMs. HDFS, Ceph, and NFS are relevant DFSs.

Scheduler

 DFS

...
Node 1
LFS

Node 2
LFS

Node i
LFS

status requests and task assignments

Scientific
Workflow

Engine

Intermediate data
Input data

Trace
Scripts

RM Task 5 Task 6

Task 7

Task 3 Task 4Task 2
Task 1

Fig. 1: Overview of a cluster setup with a scientific workflow
management system running on a resource manager. Nodes have
a local file system (LFS) and access a distributed file system (DFS)
to exchange data.

Current architectures decouple the functionality of these three
components to achieve a clear separation of concerns, with the
known benefits for system development and maintenance [1, 2].
However, this decoupling also yields significant disadvantages.
The disadvantage we focus on in this work is that the placement
of intermediate data files created during workflow execution
is determined independently of future workflow tasks. The
reason for this is that the different components pursue different
optimization goals. A DFS determines file locations with the
goals of a balanced storage load across nodes and improved
fault tolerance. In contrast, a typical RM prioritizes the optimal
distribution of the computational load of all ready tasks in the
cluster. Therein, the DFS is oblivious to future workloads,
and the RM is oblivious to file locations. Consequently,
tasks read their input data from the DFS upon start-up and
write their output to the DFS when finished. This is not
critical when clusters are equipped with high-speed, low-latency
networks, such as InfiniBand, or if a workflow’s runtime is
heavily dominated by compute times. However, it leads to
suboptimal schedules in data-intensive workflows executed
over commodity networks, where data movement determines
runtimes and, therefore, should be minimized as much as
possible [2, 3, 4, 5, 6, 7].

Consider a sequence of n tasks where t1 initiates the
workflow by reading its input and tasks t2 to tn each read output
from their preceding tasks. Typically, with a decentralized file
system (DFS) independently managing data, all tasks fetch
their inputs from the DFS and store their outputs in the DFS.

1For the purpose of open access, we have applied a Creative Commons Attribution (CC BY) license to this version of our paper.

https://orcid.org/0000-0003-0520-0792
https://orcid.org/0000-0003-0391-728X
https://orcid.org/0000-0002-9376-2068
https://orcid.org/0000-0003-3052-6129
https://orcid.org/0000-0002-7627-9664
https://orcid.org/0000-0001-6487-1268
https://orcid.org/0000-0001-6560-1235
https://orcid.org/0000-0003-3755-1503
https://orcid.org/0000-0003-2166-9582

This often results in unnecessary data transfers. For example,
colocating t2 with t1 could retain t1’s output on the same node,
eliminating the need for data movement. To achieve this, a
central component must be able to steer both data placement
and task scheduling in an intertwined manner, which is absent
in current workflow systems.

Traditional workflow scheduling algorithms can jointly
optimize data movement and task-node assignments but require
that the entire workflow, task runtimes, and intermediate file
sizes are known upfront [3, 4, 8, 9]. However, modern dynamic
workflow engines create the workflow tasks dynamically based
on the results of predecessor tasks. Moreover, the systems treat
tasks as black boxes with unpredictable resource requirements
and output sizes.

In this paper, we propose WOW, a novel workflow-aware
approach for dynamic, data-intensive scientific workflows on
commodity clusters that efficiently intertwines data and task
placement. WOW features a three-step scheduler that connects
decisions on data movement and task assignment such that (a)
tasks are always assigned to nodes where all their input data is
locally available (possibly after moving them there proactively
using a speculative approach) and (b) data movement and task
execution are performed in parallel (meaning that data possibly
is moved before it is required). To this end, the scheduler
interacts with a dedicated data placement service (DPS),
controlling all data movements during workflow execution to
avoid network bottlenecks. We implemented WOW for the
popular combination of Nextflow workflows on Kubernetes
clusters and evaluated it using 16 real-life workflows of
varying complexity and from different scientific domains
over two different DFSs, different commodity cluster sizes,
and different network bandwidths. Our experiments show
that WOW achieves makespan improvements of up to 53.2%
for real-world workflows and 94.5% for common workflow
patterns. WOW can thus significantly speed up the processing
of data-intensive scientific workflows on commodity networks.

II. BACKGROUND

In this section, we examine how resource managers,
distributed file systems, and workflow engines interact in
current systems, leading to unnecessary network bottlenecks
and longer execution times.

A. Scientific Workflow Engine

A scientific workflow engine comprises a workflow language
and an execution engine [1, 10, 11]. Workflow languages
define tasks and dependencies, where tasks are custom program
binaries or scripts for data analysis, and dependencies represent
input-output relationships. The execution engine interprets the
workflow iteratively, identifying ready tasks whose inputs are
available and handing them to the RM’s job queue for cluster
execution. The RM continuously signals back all tasks whose
execution has finished successfully, which starts a new iteration
within the workflow engine. Execution stops when no more
tasks are found to execute. Together with the task, the engine
must also inform the RM about the specific requirements of

the task, especially the required main memory, CPU cores,
and possibly access to special hardware like GPUs. These
requirements typically have to be provided by the user. They
are often inaccurate by large margins, making it impossible
to use scheduling methods that rely on accurate knowledge
of resource requirements [12]. We denote the set of workflow
tasks as T = {t1, t2, . . . , ti}.

There are two types of workflow engines: Static and dynamic.
Workflow engines for static workflows, such as Pegasus and
Snakemake, know all physical tasks before the workflow
execution starts. In contrast, dynamic workflow engines such
as Nextflow and Parsl support data-dependent language con-
structs [1, 11]. This implies that the physical workflow tasks are
only determined during execution and that they depend on the
concrete workflow input. Dynamic workflows make scheduling
considerably more difficult because classical optimization
approaches are not applicable.

B. Resource Manager (RM)

An RM manages a cluster of nodes and provides clients
with access to its computing capacities. In this work, the most
important component of an RM is its job queue, a queue of
tasks submitted by a client (the workflow engine) for execution
in the cluster. The RM continually monitors the cluster’s node
status. When it detects a successfully finished task on a node,
indicating available capacity, the RM schedules tasks from its
queue to maximize cluster utilization while meeting individual
resource requirements. We denote the set of nodes in the cluster
as N = {n1, n2, . . . , nj}, where nl is a tuple (nm

l , nc
l), repre-

senting free memory (nm
l) and the number of free cores (nc

l).

C. Distributed File System (DFS)

Workflow engines typically utilize a distributed file system
(DFS) for data exchange between tasks, offering transparent
file access across all cluster nodes (see Section VII for other
approaches). Clients read from and write to the DFS without
knowing which node the accessed files actually reside in [2].
The DFS determines a file’s physical location and typically aims
to achieve a fair share of storage and high fault tolerance by
maintaining multiple (partial) file copies. Workflow engines use
a DFS by redirecting all file access from the tasks to it. In this
way, tasks read their input from the DFS and write their output
to it. This architecture is easy to use, highly portable across
infrastructures, and provides DFS’s fault tolerance capabilities
to the workflow’s intermediate results. However, it implies
that most task executions incur network traffic upon start-up
and termination. Often, multiple tasks on different or even
the same node read and write data to and from the DFS
simultaneously. This creates an accumulating load on the DFS
and, thus, on the network. In I/O-heavy workflows, where
runtime is dominated by file reads/writes, this behavior quickly
causes network bottlenecks and workflow slowdowns [3, 6, 7].

III. OUR APPROACH

This section describes WOW, a novel approach to workflow-
aware data placement and scheduling for scientific workflows.

2

Node i

Scheduler

Node 1

LFS
COP

LCS

Node 2

LFS
COP

LCS

Task 3
Task 4

status requests and task assignments

RM

Scientific
Workflow

Engine

Task 5 Task 6

Task 7

DPS

Task 2

request cost
copy data

manage

Task 1

DFS

...

Input dataTrace
Scripts

LFS
COP

LCS

Fig. 2: Overview of the cluster setup with our extensions highlighted
in dark blue. The data placement service (DPS) keeps track of
local files, calculates costs to start a task on a node, and manages
data transfers. It uses local copy services (LCSs) to perform copy
operations (COPs) that transfer intermediate data directly between
nodes, bypassing the DFS.

A. Overview

The general aim of WOW is to achieve a close integration
of data placement and task scheduling by exploiting the
information on the ready tasks provided by the workflow
engine. In a conventional setup, the RM places tasks on nodes
based on their resource requirements. The tasks then copy
their required input from the DFS before they perform their
computation or read data on demand during task execution
and subsequently write their output to the DFS. This is a
viable strategy for compute-heavy workflows like those that
run on supercomputers but suboptimal for I/O-heavy scientific
workflows analyzing large experimental data sets [11]. To
support data-intensive workflows, WOW places files and tasks
so that tasks are always assigned to nodes where the required
input data is already locally available (assuming that local
storage is considerably faster than network access). To this end,
WOW primarily optimizes where to replicate files (once they
were generated), followed by task assignment, rather than first
placing tasks (once they are ready), followed by file movement.
File placement is controlled by a dedicated data placement
service (DPS), which decides where and when to move task out-
puts. Conceptually, this placement is performed through explicit
copy operations (COPs) working in parallel to the execution
of tasks, which allows for controlled and balanced network
sharing. WOW’s high-level architecture is shown in Figure 2.

Note that WOW focuses on supporting the execution of
workflows and thus only manages intermediate data, leaving
the (precious) input data files in the DFS. This intermediate
data is only temporarily required as the output of one task and
the input of at least one other task. When all tasks needing
an intermediate file have been completed, such a file could
be deleted. However, for fault tolerance, a minimal number of
replicas could also be kept.

In the following, we describe two of WOW’s three central
components in more detail: the scheduler, which decides where
to prepare and start task execution, and the DPS, which
determines the placement of data files and their replicas in
the cluster. The third component is a local copy service (LCS)
implemented by a daemon running on each node to perform
the actual COPs when notified by the DPS.

B. Scheduling Strategy

WOW implements a scheduling strategy that considers the
co-location of tasks and data as the most important decision
for reducing network I/O as much as possible. A node nl with
all data for a task tk is called prepared for tk. The general idea
of the scheduler is to try (a) moving data only when necessary
and (b) placing data such that ready tasks can be started as
soon as possible on a prepared node. Following (a), WOW
generally leaves all data produced by a task on the node where
it was executed. This data, however, is under the control of the
DPS and copied to other nodes when the scheduler decides.
To implement (b), the scheduler assigns priorities to all ready
tasks and follows an iterative process that continuously repeats
three steps (details are given below):
1) In the first step, ready tasks are assigned to a prepared node

that is not at full capacity. This step will frequently place a
task tk+1 that is exclusively dependent on a task tk to the
same node as tk because this node will have all the required
input data. When this happens, no data is transferred over
the network. Note that this step can only start tasks on
a node prepared for this task; other tasks remain in the
waiting queue.

2) In the second step, unassigned ready tasks are strategically
prepared on nodes that have enough available capacity to
start the task as soon as all data is available.

3) In contrast, the third step focuses on preparing high-priority
tasks and creates COPs to speculatively prepare these tasks
on nodes that do not yet have enough available resources.

Once all three steps are processed, WOW waits until either a
task finishes, a COP finishes, or a new task is submitted to
the job queue. Then, a new scheduling iteration starts. Before
describing the three steps in detail, we highlight a few features
and possible pitfalls of our scheduling strategy.

First, our scheduler clearly is heuristic as global optimization
is impossible in dynamic workflows, where the set of future
tasks and the exact task runtimes and outputs are unknown at
the time when scheduling decisions must be made.

Second, our strategy could, in principle, create a replica for
each file on each node and start an arbitrary number of COPs
from/to each node. This would create network bottlenecks and
excessive storage requirements. We prevent both situations with
two additional parameters. First, we limit the number of parallel
COPs for each node by a threshold cnode. A higher value for
cnode allows more parallel network operations, but each COP
can only copy with 1

cnode of the maximum speed, leading to a
later availability of all cnode tasks which wastes CPU resources.
This was also shown in [13]. Second, we do not allow more
than ctask parallel COPs to prepare nodes for each task. Here,
a higher value of ctask results in more nodes that could start
a given task, increasing the chance that a task is started earlier.
However, higher values of ctask create more replicas and, thus,
again, more network traffic. Having a larger number of replicas
also increases storage requirements. However, these intermedi-
ate outputs only need to be stored temporarily. When all tasks
requiring the data as input are finished, replicas can be deleted.

3

Third, our strategy logically connects data placement to
task execution but effectively decouples these steps in time.
Effectively, even when the first step fully exhausts the node’s
resources reserved for task executions at a given time, the third
step will, in parallel, already prepare nodes for the next tasks by
initiating a constrained number of COPs. This is different from
previous approaches with independent placement decisions but
task execution tightly coupled to the fetching of data. That is,
these approaches do not dissociate the steps in time, meaning
that when a task is assigned to a node, it immediately starts
downloading data to execute the task.

Task prioritization: The scheduler bases some of its
decisions on a priority tpk ∈ R>0 of each task tk that is
calculated as soon as the task is submitted to the job queue.
Due to limited information on task runtime and successors,
WOW uses a heuristic based on two metrics. First, we consider
a task’s rank, which is the length of the path from the task to
the sink in the abstract workflow graph. The intuition is that
we want to execute tasks with a higher rank early on because
many other tasks depend on them. As the second metric, we
use the total size of the task’s inputs; recall that tasks only
become ready when all their inputs have been computed,
meaning that these sizes are known. The intuition here is that
we want to schedule tasks earlier that require large inputs, as
they usually need more time to finish (and thus increase the
risk of being a straggler). The final prioritization is done first
by rank and second, in case of a tie, by input size.

Step 1 “Start ready tasks on prepared nodes”: The first step
in WOW’s scheduling strategy is to assign tasks to a prepared
node for direct execution. As there are often more ready tasks
than resources, we select the tasks to run by solving a linear
integer optimization problem over the set T run ⊆ T of all
tasks where the task is prepared on at least one node and the
set N of all nodes with free resources. A task tk is modeled
as a quadruple (tmk , tck, N

prep
k , tpk), where tmk is the amount of

required memory and tck is the number of CPU cores requested.
Nprep

k ⊆ N are all nodes with all input data for tk and tpk is the
task’s priority as described above. We create a binary matrix
of task-node assignments Ak,l, where ak,l = 0 if nl /∈ Nprep

k

or if the task tk is not going to be executed on nl; otherwise
ak,l = 1. The resulting optimization problem has the following
constraints:

j∑
l=0

ak,l ≤ 1 , k = 1, . . . , i Execute task once

i∑
k=0

ak,l ∗ tmk ≤ nm
l , l = 1, . . . , j Memory constraint

i∑
k=0

ak,l ∗ tck ≤ nc
l , l = 1, . . . , j CPU constraint

We maximize the system for:
j∑

l=0

i∑
k=0

ak,l ∗ tpk; the sum of

the tasks’ priorities assigned to nodes for execution. The RM
immediately starts these tasks on the respective nodes.

Step 2 “Prepare ready tasks to fill available compute
resources”: After step one, some nodes may still have free
resources because there are no more ready tasks prepared for
them. In the second step, we, therefore, consider unassigned
yet ready tasks and aim to prepare them on nodes with free
compute capacities for the next scheduling iteration. To this end,
we sort all ready tasks in ascending order according to |Nprep

k |,
i.e. we first select the tasks that are prepared on fewer nodes
in the cluster. Ties are resolved by the number of currently
running COPs that prepare nodes for the task. Going down
this list of tasks, the scheduler communicates with the DPS
to decide which task could start the earliest on a node with
remaining compute resources; see Section III-C for details. In
its decision, the scheduler also ensures that cnode and ctask

are not exceeded.
Step 3 “Prepare high-priority tasks to use network capacity”:

After step two, there can still be nodes with fewer COPs than
cnode because they work at full compute capacity and thus do
not qualify for the COPs initiated in the second step. In the third
step, we leverage the free network capacity to start preparing
further nodes for high-priority tasks. First, we disregard tasks
for which the maximum number ctask of active COPs is already
reached. Then, we sort all the remaining tasks by priority.
Finally, the scheduler decides on which node to initiate COPs
to prepare a task for future execution. For this, it requests the
cost of preparing a task on a node from the DPS and creates
COPs for the task-node combination with the lowest cost.

C. Data Placement Service (DPS)

The DPS keeps track of all files generated by a task and all
file replicas. Replicas are created only through explicit COPs.
COPs are the only operations that affect the network during
workflow execution after we have consumed the workflow’s
input data from a DFS1. The DPS thus centrally controls
network traffic and the usage of network links to all nodes.
For each file, the DPS also stores its size and the task that
created the file.

Several facts complicate the work of the DPS: First, tasks
may require multiple input files. COPs that are initiated by
the scheduler have a defined target node, but the DPS decides
from which node to copy the replica to the target node. Second,
COPs (for large files) may take substantial time and may thus
be active over multiple scheduling iterations. The DPS’s job
is to deal with these complexities while ensuring that none of
the network links to nodes in the cluster becomes overloaded
and thus becomes a bottleneck.

The DPS achieves its goals by greedily solving an optimiza-
tion problem at the request of the scheduler. Recall that in
steps two and three, the scheduler approaches the DPS with
requests to evaluate the costs of task-node pairs, where the
task is always the same, and the nodes stem from a set that

1We assume that tasks do not communicate to each other during execution,
which is common in CPU-heavy simulation codes implemented with MPI, but
very rare in the data-intensive applications we consider. Furthermore, the DPS
cannot control network operations resulting from activities in the cluster that
are not related to the current workflow execution. However, these are minimal
in any sensible cluster setup.

4

is pre-selected by the scheduler according to the specific step.
For each request, the DPS returns an abstract price capturing
the costs to prepare a task on a particular node. The price
should capture two components. First, it should reflect the total
amount of data transfer in the network, which will be lower
for target nodes that already hold some of the task’s inputs.
Second, the price should consider the maximal network load on
each individual node, which will decrease when the required
data movements are distributed over multiple source nodes.
Both measures should be minimized but contradict each other;
we give equal weight to both aspects.

We use a greedy heuristic to determine the best configuration
and its price. The DPS first sorts all files missing on the target
node by their size. For each of these, it identifies all the source
nodes that hold a replica of this file and chooses the one that
has the lowest load already assigned for this COP. For the
first element of the list of files, this only leads to ties, as no
load has been assigned yet; these are resolved randomly. But
further down the list, the number of ties will decrease and the
assignments will become more directed. Once all assignments
are made, their total price is computed as the weighted sum
of the total network traffic incurred and the maximal load of a
participating node.

Clearly, this strategy implies that decisions on COPs are
taken individually for each task, which does not guarantee the
achievement of an optimal solution. However, to get closer to
an optimum, it would be necessary to collect COPs over some
period of time and then decide on them all at once. This, in turn,
would mean that the scheduler needs to postpone its decisions
for some time, leading to idle networks and idle nodes.

IV. PROTOTYPE

To demonstrate the benefits of our workflow-aware data
placement approach for real workflow executions, we im-
plemented a prototype for the combination of Nextflow (as
workflow engine) and Kubernetes (as resource manager).
Here, we describe how we built on an existing workflow-
scheduler API, adapted Nextflow, realized our scheduler and
data placement service, and implemented the data transfers.
We publish all source code on GitHub for reproducibility2.

A. Common Workflow Scheduler

To have workflow information available for placing tasks
within Kubernetes, we implemented WOW based on the
Common Workflow Scheduler (CWS) [14]. CWS is a general
interface between workflow engines and resource managers,
with a prototype integrating Nextflow and Kubernetes. The
CWS allows the abstract DAG to be passed to WOW, which
enables us to prioritize specific tasks rather than performing
a first-in-first-out (FIFO) scheduling. In addition, the CWS
provides information about the files a task requires, which is
essential for our approach.

For our prototype, we integrate the DPS capabilities directly
into the Common Workflow Scheduler, ensuring seamless
interaction between the scheduler and the DPS.

2 https://github.com/WOW-WorkflowScheduler/

B. Implementation with Nextflow

In a Nextflow-Kubernetes setup, Nextflow operates in a
Kubernetes pod, using a DFS for data exchange between tasks.
Each task runs in its own pod, accessing the same file system.

Nextflow creates a working folder within the DFS, with a
subfolder for each task that contains a specific task script and a
wrapper script that creates a temporary folder on the executing
machine’s local file system (LFS). The input data is linked
to this folder, and the task script is executed within it. After
task execution, the wrapper script copies all outputs to the task
folder on the DFS, where task statistics and traces are also
written. Once a task pod is completed, Nextflow scans all new
files in the task folder and determines which tasks now have
all their required inputs and are ready to run.

We made two major changes to Nextflow to implement
WOW. To allow tasks to read and write data locally on the
node, we mount a local path and modify the wrapper script
to read and write input and output files from the local path
instead of the DFS. Also, to track a task’s output, we extend
Nextflow’s wrapper script to write a list of output files to the
DFS. In this list, we store the full path for each file, and if it
is a symlink, we also store the target path. After the task is
finished, Nextflow scans the list of output files instead of the
DFS to determine the ready tasks. We catch any file access to
the output and, therefore, patch Nextflow methods and classes
to implement the following:
• When metadata is requested for a file, we provide the

information from our file list in the DFS.
• When the file’s content is accessed, we request the location

of one file’s replica from the scheduler and then read it from
the Local Copy Service (see Section IV-D).

• When a file is manipulated, we copy it to the Nextflow pod’s
node and then modify it locally. After a file is manipulated,
we notify the scheduler. The scheduler then sets the only
valid file location to the node where the Nextflow pod is
running and invalidates all other locations.

C. Scheduler with Data Placement Service

In the scheduler, we have implemented our three-step
scheduling strategy described in Section III. The linear integer
problem of the first step is solved using Google’s OR Tools3.
We terminate the optimizer after ten seconds if no optimum is
found and use the best solution found so far. In our experiments,
this threshold did not apply at all, as WOW always found the
optimum in less than two seconds, with a median optimization
time of 11 ms and the 99th percentile at 112 ms. For the
second step, we approximate the transfer time before a task
can start by the sum of the bytes to copy.

The scheduler communicates with the LCS to start COPs.
Therefore, we keep track of which LCS is on which node.
We extend the CWS to expose this information to Nextflow.
The scheduler also tracks file locations, replicas, ongoing and
planned copies. COPs are atomic units that always consider
the full set of file replicas needed for task preparation, not

3https://developers.google.com/optimization

5

https://github.com/WOW-WorkflowScheduler/
https://developers.google.com/optimization

TABLE I: Evaluation workflows, including real-world workflows,
synthetic workflows, and workflow patterns. The “Inputs in GB” is the
sum of the data set used for the particular workflow. The “Generated
GB” is the sum of all data generated by the workflow, either as
temporary, intermediate or output data. The “Factor” is the factor
between the input data and the generated data. Abstract tasks are the
logical steps of a workflow, while physical tasks are the concrete
instances.

Workflow
Inputs

in
GB

Generated
GB

Fac-
tor

Abstract
tasks

Physical
tasks

R
ea

l-
W

or
ld RNA-Seq 139.1 598.3 4.3 53 1,269

Sarek 205.9 918.8 4.5 49 8,656
Chip-Seq 141.2 787.2 5.6 48 3,537
Rangeland 303.2 274.0 0.9 8 3,184

Sy
nt

he
tic

Syn. BLAST 21.9 151.0 6.9 4 198
Syn. BWA 19.4 152.8 7.9 5 198
Syn. Cycles 20.4 157.9 7.7 7 198
Syn. Genome 21.9 154.7 7.1 5 198
Syn. Montage 19.8 168.8 8.5 8 198
Syn. Seismology 20.7 150.7 7.3 2 198
Syn. Soykb 22.3 160.0 7.2 14 196

Pa
tte

rn

All in One 0.0 180.3 - 2 101
Chain 0.0 180.3 - 2 200
Fork 0.0 99.4 - 2 101
Group 0.0 180.3 - 2 134
Group Multiple 0.0 270.5 - 3 160

individual files. When a COP finishes, all its created file replicas
are added to the record; none are added upon COP failure.

D. Local Copy Service (LCS)

We use FTP as the data transmission protocol for the LCS
and start a small LCS daemon that exposes the local storage
via FTP and runs the COPs on all nodes. We reuse the LCS
to run COPs, as starting a new service for every COP would
introduce considerable overhead. This is especially true for
workflow tasks that run only for a few seconds, as the LCS
startup time could otherwise double their execution time.

We keep the workflow input data in the DFS, as this allows us
to change only how the workflow is executed, not how the input
data is provided, thus increasing portability. That is, we only
use the LCS to manage intermediate data, not initial input data.

V. EVALUATION SETUP

This section describes the 16 workflows, the execution
environment, and the experimental design that we used to
evaluate WOW within our prototype.

A. Workflows and Workflow Patterns

We evaluate WOW using 16 different workflows, which
fall into three classes: real-world workflows (4), synthetic
workflows (7), and synthetic workflow patterns (5). The details
can be found in Table I. We consider the real-life workflows
to be our main result, while the synthetic workflows are used
to complement the breadth of evaluation, and the patterns
serve to showcase specific workflow topologies and how
WOW handles them.

A1 A2 A100

B1

(a) All in One

A1 A2 A100

B1 B2 B100

(b) Chain

A1

B1 B2 B100

(c) Fork

A4 A5 A99A2 A3A1

B1 B2 B34

A100

(d) Group

A4 A5 A99A2 A3A1

B1 B2 B34

A100

C1 C2 C26C25

(e) Group Multiple

Fig. 3: Five evaluated workflow patterns consisting of the Tasks A, B,
and C. Task A always writes a random file ranging from 0.8 to 1 GB.
Task B and Task C read all inputs and merge them into a single file.

Real-world workflows

The nf-core project [15] is a community-curated collection
of reusable workflows for Nextflow. For our experiments, we
use the three workflows with the most GitHub stars, all from
the bioinformatics domain:

1) RNA-Seq is a workflow that analyses gene expression. We
use data from a bladder cancer cells study [16].

2) Sarek is a workflow for variant calling, a genomic analysis
identifying genetic variations. We use data from a breast
cancer study using CRISPR-Cas9 technology [17].

3) Chip-Seq is a workflow that allows us to study protein-
DNA interactions and to understand different cellular pro-
cesses. We use data from an article that studies prostate
cancers [18].

As fourth real-life workflow outside Bioinformatics, we
use Rangeland [19] from the remote sensing domain. The
Rangeland workflow analyses the 1984-2006 time series of
Landsat satellite images to evaluate rangeland degradation in
the Mediterranean region. We run Rangeland on 304 GB of
input data to study rangeland degradation for Crete, Greece.

Synthetic workflows

WfCommons is a set of workflow tools, including
WfChef [20], which automatically generates realistic synthetic
workflows synthesized from real traces, and WfBench [21],
which generates actual benchmark workflows for specific
workflow engines.

We complemented our real-world workflows with synthetic
workflow instances from WfChef to show our approach works
well across different realistic workflow topologies. Using
synthetic workflows allows us to freely specify important
workflow properties, like the number of tasks, task runtimes,
input file sizes, and output file sizes. We set the number of
tasks to a limit of 200, adjusted the input to approximately
20 GB, and the output to approximately 150 GB. Further, we
set the CPU load such that the workflow is I/O bound. Out
of nine workflows provided by WfChef, we used only seven
because two workflows use iterations in their DAG, which
Nextflow does not support. The remaining seven recipes include
four recipes for bioinformatics workflow applications (i.e.,
1000Genome, BLAST, BWA, and SoyKB), one from the agroe-

6

TABLE II: Results for workflow execution using Ceph and NFS with eight nodes and 1 Gbit network speed. The original median makespan
of Nextflow’s original scheduling (“Orig”) is given in minutes, and the median change in makespan for the CWS and our WOW approach
is compared to the original in percent. The median allocated CPU hours for the original execution are measured as the sum of tasks’ runtimes
multiplied by the number of allocated CPUs over all tasks. As with makespan, we report the relative change for CWS and WOW over
the original. Finally, we show the median of how many of the tasks ran without needing any COPs because all required data was local
(“none”) and the median of how many of the COPs transferred data that was used by tasks (“used”). A greener background indicates better
values and a redder background indicates worse values.

Ceph NFS
Workflow Makespan [min] CPU allocated [h] WOW COPs Makespan [min] CPU allocated [h] WOW COPs

Orig CWS WOW Orig CWS WOW none used Orig CWS WOW Orig CWS WOW none used

R
ea

l-
W

or
ld RNA-Seq 181.1 -6.1% -18.3% 474.4 7.9% -13.6% 90.1% 28.8% 413.0 -2.6% -53.2% 1,354.6 12.4% -60.8% 89.1% 22.9%

Sarek 305.0 -7.0% -4.2% 997.9 1.2% -4.1% 86.0% 40.4% 557.5 -1.3% -42.6% 1,806.1 -0.4% -40.4% 85.8% 39.1%
Chip-Seq 221.1 4.9% -15.4% 710.3 7.1% -6.0% 79.6% 18.6% 375.0 9.6% -44.8% 1,293.8 15.7% -42.3% 78.9% 17.7%
Rangeland 166.0 -1.9% -4.3% 468.3 0.1% -2.1% 88.7% 60.7% 181.2 -0.7% -13.4% 476.2 0.7% -2.8% 88.7% 64.3%

Sy
nt

he
tic

Syn. BLAST 35.0 0.5% -41.6% 1.5 -12.9% -51.3% 99.0% 18.2% 55.6 0.7% -60.8% 3.9 -6.2% -62.6% 99.0% 18.2%
Syn. BWA 37.7 -1.0% -61.1% 12.0 -0.6% -78.8% 100.0% 0.0% 81.7 1.2% -82.7% 65.7 -0.9% -96.0% 100.0% 0.0%
Syn. Cycles 20.0 3.6% -47.9% 9.2 -4.2% -78.4% 89.9% 51.1% 55.6 -2.8% -81.3% 30.9 -6.9% -91.3% 89.4% 48.8%
Syn. Genome 28.6 -4.7% -62.0% 22.8 0.5% -88.7% 92.9% 53.8% 92.9 0.7% -86.3% 100.2 3.3% -95.0% 92.9% 47.8%
Syn. Montage 31.4 -2.8% -44.6% 7.4 13.2% -88.8% 61.6% 74.0% 85.8 -2.0% -78.7% 27.2 6.8% -93.0% 61.1% 72.6%
Syn. Seismology 31.4 0.8% -20.9% 1.5 -15.9% -42.6% 99.5% 50.0% 45.5 0.5% -47.4% 2.4 -1.6% -35.5% 99.5% 50.0%
Syn. Soykb 31.6 -4.0% -56.9% 7.9 13.2% -74.8% 91.8% 58.5% 65.7 -1.4% -72.9% 29.3 -3.3% -92.6% 87.8% 53.3%

Pa
tte

rn

All in One 32.5 -2.8% -49.3% 2.5 -5.2% -69.1% 99.0% 50.0% 40.6 0.1% -60.1% 2.7 2.5% -71.4% 99.0% 50.0%
Chain 16.2 2.8% -86.4% 40.3 -13.4% -96.0% 98.5% 5.1% 38.5 5.0% -94.5% 112.5 -35.4% -98.6% 99.0% 5.3%
Fork 9.6 -18.5% -76.6% 14.7 -70.2% -89.6% 99.0% 14.3% 18.2 -1.6% -88.4% 30.2 -8.3% -95.0% 99.0% 14.3%
Group 14.2 -3.9% -78.3% 14.2 4.6% -96.8% 76.1% 86.8% 34.5 -3.3% -90.4% 51.0 -2.8% -99.1% 75.4% 80.5%
Group Multiple 21.3 -0.9% -80.1% 35.6 -5.6% -98.2% 71.2% 92.6% 49.7 0.3% -90.7% 98.6 2.8% -99.4% 68.1% 86.2%

cosystem domain (i.e., Cycles), one used in astronomy (i.e.,
Montage), and one specific to Seismology (i.e., Seismology).

Workflow patterns

We generated five workflows that follow the main patterns
occurring in workflows identified by Bharathi et al. [22], which
are presented in Figure 3.

a) The “All in One” workflow comprises 100 tasks that write
a file, and a subsequent task reads all the generated data.

b) The “Chain” workflow involves 100 tasks followed each
by another task reading the produced data.

c) In the “Fork” workflow, one task has 100 successor tasks.
d) The “Group” workflow has 100 tasks Ai, with i =

1, . . . , 100. These tasks are grouped by dividing their
index i by 3, rounding down, and assigning them to the
corresponding group: Groupfloor(i/3).

e) Finally, the “Group Multiple” extends the “Group”
workflow with a second grouping according to the rule:
Groupfloor(i/4).

B. Execution Environment

Our prototype is based on Nextflow in version 23.07.0-edge.
For our experiments, we set up a Kubernetes cluster with
kubelet version 1.27.5 consisting of eight nodes. Each node is
equipped with an AMD EPYC 7282 16-core processor, 128 GB
DDR4 memory, and two SATA III SSDs with 960 GB with
approximately 537 MB/s read and 402 MB/s write in sequential
mode. From the two disks, every node contributes one SSD to
a Ceph file system with a replica factor of two. In addition, we
provide a ninth node that exposes a 4TB PCIe 4.0 NVMe SSD
via an NFS server. The nodes are physically connected via a
10 Gbit network, which we limit in our experiments to 1 Gbit

or 2 Gbit using tcconfig to emulate a commodity cluster, in
which network I/O is slower than storage access.

C. Experimental Design

We performed all experiments using the following design.
Median makespan measurements: For all runs in all experi-

ments, we performed three repetitions and report the run with
the median makespan - the time from the start of the first task
to the end of the last task.

Baselines and WOW configuration: We compare three
scheduling strategies: the Nextflow original scheduling (Orig),
the Common Workflow Scheduler (CWS), and our approach
(WOW). Orig prioritizes tasks in a FIFO manner and assigns
them in a RoundRobin fashion. CWS prioritizes tasks by their
rank and input size. Both disregard data locations. For the
experiments, we set the COP constraints of our approach,
cnode and ctask, to one and two, respectively.

Experiments: We conduct three different experiments.

1) Execution behavior: All 16 workflows were run with all
three schedulers and two DFS configurations (Ceph and
NFS) over a 1 Gbit network.

2) Network dependence: The execution behavior experiment
was repeated with 2 Gbit bandwidth to assess network
dependence. This experiment used one real workflow (”Chip-
Seq”) and five patterns.

3) Scalability efficiency: Scalability was tested by reducing
the number of nodes for workflows on a 1 Gbit network,
comparing WOW to CWS.

VI. EVALUATION RESULTS

This section presents the results from the three experiments
we conducted. All tables and plots can also be found in our
GitHub repository2.

7

A. Execution Behavior

Table II shows the results of running workflows with WOW,
CWS, and the original Nextflow approach on eight nodes and
a 1 Gbit network using either Ceph or NFS as the underlying
storage system.

Taking the original Nextflow approach as a baseline, we see
that the Common Workflow Scheduler improved the makespan
for 11 out of 16 workflows. In comparison, our WOW approach
performs better than both competitors for all 16 workflows.

For real-world workflows, WOW was, for example, able to
reduce the makespan by 18.3% for “RNA-Seq” using Ceph as
the storage platform and 53.3% using NFS for data storage.
For the “Rangeland” workflow, the makespan reduction was
4.3% with Ceph and 13.4% with an NFS.

In the “Chain” pattern workflow, which is the optimal pattern
for our approach, the makespan was reduced by 86.4% when
using Ceph as DFS and by 94.5% when using NFS. For the
“All in One” pattern workflow, the makespan decreased by
49.3% for Ceph and 60.1% for NFS.

Also, in Table II, we compare the allocated CPU hours,
calculated as the sum of all tasks’ runtimes multiplied by their
respective allocation of CPUs, regardless of their actual usage.
In this comparison, our WOW approach shows a reduction
of up to 99.4% for both synthetic workflows and workflow
patterns and up to 60.8% for real-world workflows.

Copy operations: For all workflows, at least 61.1% of the
tasks had all input data available already on the node on which
the tasks are executed, so no files were copied, see Table II.
The numbers are almost identical for Ceph and NFS. For 16.0%
of all workflow tasks, COPs were created, but the tasks were
started on a node where no COP for these tasks was needed.
This is always possible because multiple tasks can require the
same data. Hence, COPs for other tasks might already transfer
the required data for a task to a node. Similarly, sufficient
resources can become available on the node where the data
was generated after a COP was started. For 85.5% of the tasks,
two or fewer COPs were required.

Data overhead: We measure the data overhead WOW
introduces and present it in Figure 4. For WOW, the data
overhead translates to the amount of data copied through COPs,
regardless of whether the copied files are used. WOW’s data
overhead can be compared to the data overhead of Nextflow’s
original scheduling using NFS or Ceph: Using NFS as the file
system means that the data is stored centrally and not replicated,
so there is no overhead, while with Ceph, with a replication
factor of two, as used in our experiments, the overhead is 100%.
WOW’s data overhead, in contrast, is variable and depends on
the speculative copies performed. We report the total overhead
of data generated and, therefore, did not delete any replicas
during our experiments. However, these speculative temporary
copies could be deleted as soon as the tasks requiring this data
are finished. For four out of seven synthetic workflows and all
workflow patterns, the data overhead is smaller than for Ceph.
For real-world workflows, we see a larger overhead. This is
because tasks in these workflows perform more computations,

RN
A-

Se
q

Sa
re

k
Ch

ip
-S

eq
Ra

ng
el

an
d

Sy
n.

 B
LA

ST
Sy

n.
 B

W
A

Sy
n.

 C
yc

le
s

Sy
n.

 G
en

om
e

Sy
n.

 M
on

ta
ge

Sy
n.

 S
ei

sm
ol

og
y

Sy
n.

 S
oy

kb
Al

l i
n

On
e

Ch
ai

n
Fo

rk
Gr

ou
p

Gr
ou

p
M

ul
tip

le

Workflow

0%

50%

100%

150%

200%

250%

300%

350%

400%

Fa
ct

or
 d

at
a

ge
ne

ra
tio

n
ov

er
he

ad

Ceph Backend
1Gbit/s 8 nodes
1Gbit/s 2 nodes
1Gbit/s 4 nodes

NFS Backend
1Gbit/s 6 nodes
2Gbit/s 8 nodes
Ceph overhead

Fig. 4: Data overhead of our approach. It is measured as the size
of additional data replicas compared to the size of unique files. Red
is the overhead when using Ceph as the backend for our approach,
blue is the overhead when using NFS. The Ceph overhead is at 100%
since we use a replication level of two. NFS has no overhead as it
introduces no replicas.

and WOW uses the available time to perform speculative COPs.
It is also noteworthy that using NFS as the backend for WOW
results in a larger overhead than using Ceph. We assume this
is because the first tasks read data from the DFS. NFS is a
single-point DFS, unlike Ceph, and the link to the NFS server
is quickly overloaded. Accordingly, task execution takes longer,
giving the scheduler more time to prepare subsequent tasks.

Load distribution: We analyze the load distribution of our
scheduling approach using the Gini coefficient, measuring
equality in local storage usage and allocated CPU time across
nodes. For real-world workflows, low Gini coefficients indicate
balanced distributions: e.g., “Rangeland” (0.07) and “Chip-Seq”
(0.01) for storage usage and “Chip-Seq” (0.00) for CPU time.
The highest inequality is observed for “Synthetic BWA”, where
all tasks are executed on a single node since data transfer is
longer than task execution. Overall, we exhibit good balance,
avoiding data and task hotspots.

B. Network Dependence

In our second experiment, we double the network bandwidth
from 1 Gbit to 2 Gbit and show how this impacts makespan
in Table III. The idea is that methods that substantially reduce
network traffic depend less on the available bandwidth and,
therefore, see a lower decrease in makespan.

Execution behavior: The makespan improvements with
increasing network bandwidth in the original Nextflow and
CWS approaches are comparable, indicating that the network
is a bottleneck for both approaches. The “All in One” pattern
has the highest reduction in makespan, with about 46.0% for
both competitors. For the real workflow, “Chip-Seq”, however,
makespan is reduced by only 10%.

8

TABLE III: Relative change of the makespan of Chip-Seq workflow
and workflow patterns when the network bandwidth is changed from
1Gbit to 2Gbit, for the three scheduling methods and two storage
systems. The highest makespan reduction for every method is marked
in blue, and the lowest in red.

Ceph NFS
Workflow Orig CWS WOW Orig CWS WOW
All in One -46.0% -46.2% -34.1% -49.5% -49.6% -33.1%
Chain -27.5% -27.4% -2.0% -50.9% -49.4% 1.1%
Chip-Seq -7.9% -10.5% 0.0% -31.5% -34.0% -9.6%
Fork -27.7% -28.7% -22.4% -47.5% -46.9% -16.8%
Group -34.9% -33.5% -23.0% -50.1% -47.1% -28.2%
Group Multiple -33.7% -37.0% -27.1% -48.8% -48.6% -32.7%

For WOW, the makespan reduction is lower than for the
competitors when the cluster network is changed from 1 Gbit
to 2 Gbit. This shows that WOW is less network-dependent
and effectively reduces network bottlenecks, compared to the
baselines. For “Chip-Seq”, makespan is not affected at all
when using Ceph as the storage backend, indicating that we
are transferring data before resources become available for tasks.
Thus no further improvement can be achieved. For workflow
patterns, this is different, as subsequent tasks often cannot
start until all previous tasks have finished. We do not see a
comparable improvement for the “Chain” pattern, as all data
is kept locally for this workflow.

The relative reduction in allocated CPU is similar to the
relative decrease in makespan for the competitor strategies,
showing that these workflows are predominantly I/O-bound. In
contrast, the change in network bandwidth does not impact the
allocated CPU time for our approach, which is expected for
patterns because the tasks read all data locally, and the local
access speed remains the same across setups. Furthermore, for
“Chip-Seq”, the allocated CPU time did not reduce even when
we read the workflow input data from Ceph or NFS.

Copy operations: With the faster network, we see that more
speculative COPs are executed. Compared to 1 Gbit, we start
a COP for 10% more tasks, but the task ends up on a node
where the required data is already in place.

Data overhead: From our results, we see that the data
overhead of our approach increases as the network gets faster.
This is expected as it is less expensive to do speculative copies
when more bandwidth is available, and WOW will hence be
able to prepare high-priority tasks on more nodes. The overhead
increase is nearly identical for Ceph and NFS. For the “Chain”
pattern, we observe that about 82% more data is copied. In
contrast, “Fork” and “All in One” do not have larger overheads,
which, again, is expected since:

• “Fork” copies the same file to all nodes and executes tasks
everywhere.

• “All in One” makes two copies in parallel, starting as soon as
the first one finishes; no third copy is instantiated, regardless
of network speed.

Load distribution: As the network speed increases, the Gini
coefficient for data distribution through WOW COPs becomes
smaller. In the “Fork” pattern, the Gini coefficient decreased by

1 2 3 4 5 6 7 8
Nodes

0h 0m

4h 10m

8h 20m

12h 30m

16h 40m

20h 50m

25h 0m

29h 10m

M
ak

es
pa

n

(a) Chip-Seq Ceph

1 2 3 4 5 6 7 8
Nodes

0%

20%

40%

60%

80%

100%

Ef
fic

ie
nc

y

(b) Chip-Seq NFS

1 2 3 4 5 6 7 8
Nodes

0h 0m

0h 10m

0h 20m

0h 30m

0h 40m

0h 50m

M
ak

es
pa

n

(c) Chain Ceph

1 2 3 4 5 6 7 8
Nodes

0%

20%

40%

60%

80%

100%

Ef
fic

ie
nc

y

(d) Chain NFS

1 2 3 4 5 6 7 8
Nodes

0h 0m

0h 10m

0h 20m

0h 30m

0h 40m

0h 50m

M
ak

es
pa

n

(e) All Into One Ceph

1 2 3 4 5 6 7 8
Nodes

0%

20%

40%

60%

80%

100%

Ef
fic

ie
nc

y

(f) All In One NFS

WOW makespan
Median WOW

CWS makespan
Median CWS

WOW efficiency
CWS efficiency
Ideal efficiency

Fig. 5: Makespan and efficiency when scaling the number of nodes.
An efficiency of 100% indicates the single-node makespan divides
exactly by the number of nodes used. WOW is presented in red and
CWS scheduling in blue.

0.08. Equality is also better for “Grouping” and “Grouping Mul-
tiple”. The tasks-on-node-distribution remains similar as well.

Again, in the “Fork” pattern, the Gini coefficient decreases
by 0.09. For the allocated CPU hours per node, the change is
also highest for the “Fork” pattern.

C. Scalability Efficiency

We ran all the patterns and the “Chip-Seq” workflow on five
different setups - one, two, four, six, and eight nodes. Running
on a single node is our baseline for efficiency. For WOW,
there is no need to create a COP. For the competitor strategies
using the DFS for data exchange, the single node uses the
DFS exclusively. We expect increased overhead and reduced
efficiency as we add more nodes. To measure this, we define the

efficiency for n nodes as: efficiency(n) =
makespan(1)

makespan(n) ∗ n
.

Accordingly, 100% efficiency refers to an n times reduction

9

in makespan when running on n nodes.
Execution behavior: Figure 5 shows the makespan and

efficiency for the real-world workflow “Chip-Seq”, the optimal
pattern for WOW: “Chain”, and the most challenging pattern:
“All in One”. For “Chip-Seq” and “Chain”, we see a high
efficiency with WOW as we scale out, but efficiency decreases
slightly for “Chip-Seq” and NFS because the input data is
still read from NFS. Using WOW instead of CWS, the scaling
efficiency increases from 85.6% to 96.2% for “Chip-Seq” with
Ceph and from 48.11% to 85.7% for NFS. Again, increased
efficiency while scaling out in a cluster is expected for
NFS since it is single-point DFS, while Ceph is distributed
across all nodes. For “Chain”, WOW remains at 90.3% with
Ceph and 88.3% with NFS, while CWS drops to 32.0% and
14.4%, respectively. Notably, the makespan does not decrease
with CWS using NFS, showing that the connection to the
NFS-server is at its maximum.

In contrast, for “All in One”, the efficiency is 6.8% for Ceph
and 7.0% for NFS when using WOW. The CWS approach
reaches 13.2% and 13.3%, respectively.

For all other workflow patterns, WOW consistently outper-
forms CWS with better efficiency and shorter makespan.

Copy operations: When we add more nodes, we see that
a higher number of COPs are created, and a higher absolute
number remains unused, as the tasks end up running on nodes
where either other COPs copied all required data or where all
required data is already present. In comparison, the share of
tasks that do not use any COP decreases from 21.6% with two
nodes to 16.0% with eight nodes.

Data overhead: Especially for “Chip-Seq”, a decrease in
data overhead is visible as we use fewer nodes. The workflow
patterns also show a tendency toward less overhead with fewer
nodes. This is expected because tasks are less likely to need data
from tasks running on another node, and if they do, the fraction
of missing data becomes smaller. Moreover, the number of pos-
sible replicas is limited by the number of nodes. For example,
with two nodes, we can never have more than 100% overhead.

Load distribution: The fewer nodes we use, the better the
Gini coefficient becomes for data distribution. The performance
of “Chain” and “Chip-Seq” did not improve because they
already had a very low Gini coefficient. The Gini coefficient
for “Fork” is reduced from 0.14 for eight nodes to 0.02 for
two nodes. The distribution of tasks across nodes also becomes
more equal as the number of tasks decreases, as does the
distribution of CPU hours. Again, the changes are particularly
large for “Fork” and “All in One”, which are the patterns where
the workflow is inherently unbalanced, with one task in one
stage and 100 tasks in another stage.

VII. RELATED WORK

While ample work has been done on workload-aware
data placement, both from a file system and a middleware
perspective, the specific combination of scientific workflow
systems, resource managers, and distributed file systems offers
unique challenges that, to the best of our knowledge, were
not addressed comprehensively before. In this section, we first

describe other works targeting data placement in workflow
systems, as these are most related to our work. We then briefly
discuss some other, less closely related topics and highlight
the differences to our proposal. We omit works presupposing
a static scheduling, such as [4, 9, 23], as these are generally
not applicable to our dynamic setting.

A. Data Placement for Dynamic Scientific Workflows

Several approaches targeting dynamic workflows assume all
data to be stored in a central storage, from which they are
fetched to local nodes prior to execution. Local nodes only
work as cache for these data. For instance, [24] proposes to
schedule tasks to the node with the earliest expected finish
time, also taking the necessary transfer time into account.
[25] describes a cloud-based data mining system that proceeds
in a similar manner but makes scheduling decisions based
on the proportion of locally available input data instead of
modeling transfer times. Such cache-based approaches face the
problem that all intermediate results must first be written to
the DFS, irrespective of which tasks require them next, and
that placement decisions only take the next task into account.
Furthermore, as tasks are scheduled before the data is actually
available, they can only start once the transfer is complete,
causing unnecessary idle times.

Wang et al. propose a task stealing scheduling approach
to bring tasks to the node with the largest input share [26].
However, the approach does not consider file transfer times.

Confuga is a batch execution and POSIX-compatible file
system that also manages task dependencies and can thus be
viewed as a workflow engine [13]. Similarly, TaskVine proposes
an approach that focuses on task startup times [7]. Similar to
WOW, both allow for parallel task scheduling and placement
using asynchronous data transfer but rely on a simple FIFO
scheduling queue and are implemented as a monolithic system,
incompatible with real-life setups on existing file systems and
resource managers.

Costa et al. adapt parameters of the MosaStore for specific
workflow patterns to test the opportunities of a workflow-
aware file system [2]. While this can only be optimized for one
workflow pattern at a time, our prototype works with workflows
combining several dataflow patterns.

ODDS [27] is a data-aware scheduler for scientific appli-
cations built upon the HDFS file system. It monitors all data
chunks in a system and schedules tasks so data movement is
minimal. However, ODDS only performs data-aware scheduling
and does not optimize data placement itself.

The AMFS Shell [28] is a scripting approach to define the
data dependencies between tasks in Bash scripts explicitly.
Therefore, it supports four movement strategies: multicast,
gather, allgather, and scatter. The AMFS system then copies
the data to nodes using FTP, as we do. AMFS is made for MPI
applications and requires all data to fit into the memory. In
contrast, we do not store data in memory and thus do not require
the data to fit. Comparable to AMFS, Duro et al. extend the
Swift scripting language for location-aware task scheduling [29].
Meanwhile, our approach does not need an explicit definition

10

of data flow and works with dynamic workflows where tasks
are submitted one after another.

FusionFS [30] is a file system for workflows on HPC.
While it enables data-aware task scheduling, files are read
remotely, when unavailable on a node. While this works
well for pipelines where files are read and written once, it is
suboptimal for scientific workflows where files are accessed
by different tasks. Moreover, it again introduces the problem
of unmanaged data transfer.

B. Data Placement in Distributed Data Processing Systems

Distributed data processing systems, such as Apache Hadoop,
Apache Spark, or Apache Flink, enable parallel processing of
large amounts of data on distributed cluster infrastructures.
These systems offer predefined APIs that enable the structured
definition of jobs within a framework of available operations,
enhancing transparency and control over job execution in
comparison to the more flexible but black-box nature of
workflow systems. Several works explored the interplay of
data placement and operation scheduling in such systems. For
instance, CoHadoop [31] is an extension for Hadoop [32] that
allows applications to control file storage locations, but does
not perform placement decisions itself. AdaptDB [33] is an
adaptive storage manager for Spark that partitions datasets
and refines data partitions during the execution. This, however,
requires the data to be structured in a known format, which is
not the case for scientific workflows.

VIII. CONCLUSION

Keeping intermediate data locally on cluster nodes when
executing scientific workflows can significantly reduce network
bottlenecks. Similarly, it is often more efficient to transfer
required inputs directly to specific nodes than to exchange
such data via networked storage. Based on these observations,
we developed the WOW approach, where task scheduling and
data placement go hand in hand, task input data is copied
speculatively in preparation for the actual task execution, and
the overall network traffic is considerably reduced.

The results of our empirical evaluation of a WOW prototype
implementation for Nextflow and Kubernetes are promising
and show a runtime reduction between 49.3% and 94.5% for
frequently used workflow patterns. Meanwhile, for real-world
workflows, WOW reduced the runtime by up to 53.2%. Also,
by separating copy operations and task executions in time,
WOW reduces the allocated CPU time by up to 99.4% for
frequently used workflow patterns and up to 60.8% for real-
world workflows.

Our evaluation results further indicate that WOW distributes
both data and computation fairly across clusters, with Gini
coefficients for load distributions close to zero on average over
all workflows evaluated. Moreover, we show that our approach
can exhibit significantly better scaling behavior than strategies
that keep data in a DFS. In addition, our WOW approach is
less dependent on the available network bandwidth and the
available DFS, which often cannot be configured by individual
users in multi-tenant clusters.

WOW is currently limited to homogeneous clusters where all
nodes execute tasks at similar speeds. While we focus on single
clusters in this paper, applying our approach to workflows
running across multiple clusters is an idea for future work.
Moreover, we plan to improve fault tolerance by strategically
placing additional replicas of all intermediate files. Nevertheless,
our experimental results show that WOW already significantly
reduces the makespan, CPU usage, and network bottlenecks
of a variety of real-world and synthetic workflows in a single
cluster, for two relevant storage systems and compared to
state-of-the-art baselines.

ACKNOWLEDGMENT

This work was funded by the German Research Council
(DFG) as part of the CRC 1404: “FONDA: Foundations of
Workflows for Large-Scale Scientific Data Analysis.”

REFERENCES

[1] R. Singh, J. A. Graves, V. Anantharaj, and S. R. Sukumar,
“Evaluating Scientific Workflow Engines for Data and
Compute Intensive Discoveries,” in 2019 IEEE Big Data,
2019.

[2] L. B. Costa, H. Yang, E. Vairavanathan, A. Barros,
K. Maheshwari, G. Fedak, D. Katz, M. Wilde, M. Ripeanu,
and S. Al-Kiswany, “The Case for Workflow-Aware Stor-
age:An Opportunity Study,” Journal of Grid Computing,
vol. 13, no. 1, 2015.

[3] T. N’Takpé, J. Edgard Gnimassoun, S. Oumtanaga, and
F. Suter, “Data-aware and simulation-driven planning of
scientific workflows on IaaS clouds,” Concurrency and
Computation: Practice and Experience, vol. 34, no. 14,
2022.

[4] O. Sukhoroslov, “Toward efficient execution of data-
intensive workflows,” The Journal of Supercomputing,
vol. 77, no. 8, 2021.

[5] P. Subedi, P. Davis, S. Duan, S. Klasky, H. Kolla, and
M. Parashar, “Stacker: An Autonomic Data Movement
Engine for Extreme-Scale Data Staging-Based In-Situ
Workflows,” in SC18: Int. Conf. for High Performance
Computing, Networking, Storage and Analysis, 2018.

[6] V. Cima, S. Böhm, J. Martinovič, J. Dvorský, K. Janurová,
T. V. Aa, T. J. Ashby, and V. Chupakhin, “HyperLoom: A
Platform for Defining and Executing Scientific Pipelines
in Distributed Environments,” in Proc. of the 9th Workshop
and 7th Workshop on Parallel Programming and RunTime
Management Techniques for Manycore Architectures and
Design Tools and Architectures for Multicore Embedded
Computing Platforms, 2018.

[7] B. Sly-Delgado, T. S. Phung, C. Thomas, D. Simonetti,
A. Hennessee, B. Tovar, and D. Thain, “TaskVine:
Managing In-Cluster Storage for High-Throughput Data
Intensive Workflows,” in Proc. of the SC ’23 Workshops of
The Int. Conf. on High Performance Computing, Network,
Storage, and Analysis, 2023.

[8] H. Topcuoglu, S. Hariri, and Min-You Wu, “Performance-

11

effective and low-complexity task scheduling for hetero-
geneous computing,” IEEE TPDS, vol. 13, no. 3, 2002.

[9] I. Pietri and R. Sakellariou, “Scheduling data-intensive
scientific workflows with reduced communication,” in
Proc. of the 30th Int. Conf. on Scientific and Statistical
Database Management, 2018.

[10] J. Liu, S. Lu, and D. Che, “A Survey of Modern Scientific
Workflow Scheduling Algorithms and Systems in the Era
of Big Data,” in 2020 IEEE SCC, 2020.

[11] J. Liu, E. Pacitti, P. Valduriez, and M. Mattoso, “A Sur-
vey of Data-Intensive Scientific Workflow Management,”
Journal of Grid Computing, vol. 13, no. 4, 2015.

[12] C. Witt, J. Van Santen, and U. Leser, “Learning Low-
Wastage Memory Allocations for Scientific Workflows
at IceCube,” in 2019 Int. Conf. on High Performance
Computing & Simulation (HPCS), 2019.

[13] P. Donnelly, N. Hazekamp, and D. Thain, “Confuga: Scal-
able Data Intensive Computing for POSIX Workflows,”
in Proc. CCGrid 2015, 2015.

[14] F. Lehmann, J. Bader, F. Tschirpke, L. Thamsen, and
U. Leser, “How Workflow Engines Should Talk to
Resource Managers: A Proposal for a Common Workflow
Scheduling Interface,” in Proc. CCGrid 2023, 2023.

[15] P. A. Ewels, A. Peltzer, S. Fillinger, H. Patel, J. Alneberg,
A. Wilm, M. U. Garcia, P. Di Tommaso, and S. Nahnsen,
“The nf-core framework for community-curated bioinfor-
matics pipelines,” Nature Biotechnology, vol. 38, no. 3,
2020.

[16] J. L. Green, R. E. Osterhout, A. L. Klova, C. Merkwirth,
S. R. McDonnell, R. B. Zavareh, B. C. Fuchs, A. Ka-
mal, and J. S. Jakobsen, “Molecular characterization of
type I IFN-induced cytotoxicity in bladder cancer cells
reveals biomarkers of resistance,” Molecular Therapy -
Oncolytics, vol. 23, 2021.

[17] A. Harrod, C.-F. Lai, I. Goldsbrough, G. M. Simmons,
N. Oppermans, D. B. Santos, B. Győrffy, R. C. Allsopp,
B. J. Toghill, K. Balachandran, M. Lawson, C. J. Morrow,
M. Surakala, L. S. Carnevalli, P. Zhang, D. S. Guttery,
J. A. Shaw, R. C. Coombes, L. Buluwela, and S. Ali,
“Genome engineering for estrogen receptor mutations
reveals differential responses to anti-estrogens and new
prognostic gene signatures for breast cancer,” Oncogene,
vol. 41, no. 44, 2022.

[18] S. J. Baumgart, E. Nevedomskaya, R. Lesche, R. Newman,
D. Mumberg, and B. Haendler, “Darolutamide antagonizes
androgen signaling by blocking enhancer and super-
enhancer activation,” Molecular Oncology, vol. 14, no. 9,
2020.

[19] F. Lehmann, D. Frantz, S. Becker, U. Leser, and P. Hostert,
“FORCE on Nextflow: Scalable Analysis of Earth Observa-
tion data on Commodity Clusters,” in Proc. of the CIKM
2021 Workshops, ser. CEUR Workshop Proc., vol. 3052,
2021.

[20] T. Coleman, H. Casanova, and R. F. Da Silva, “WfChef:
Automated Generation of Accurate Scientific Workflow
Generators,” in 2021 IEEE 17th Int. Conf. on eScience

(eScience), 2021.
[21] T. Coleman, H. Casanova, K. Maheshwari, L. Pottier,

S. R. Wilkinson, J. Wozniak, F. Suter, M. Shankar, and
R. F. Da Silva, “WfBench: Automated Generation of
Scientific Workflow Benchmarks,” in 2022 IEEE/ACM
Int. Workshop on Performance Modeling, Benchmarking
and Simulation of High Performance Computer Systems
(PMBS), 2022.

[22] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-H.
Su, and K. Vahi, “Characterization of scientific workflows,”
in 2008 Third Workshop on Workflows in Support of Large-
Scale Science, 2008.

[23] S. Giampa, L. Belcastro, F. Marozzo, D. Talia, and P. Trun-
fio, “A Data-Aware Scheduling Strategy for Executing
Large-Scale Distributed Workflows,” IEEE Access, vol. 9,
2021.

[24] P. Bryk, M. Malawski, G. Juve, and E. Deelman, “Storage-
aware Algorithms for Scheduling of Workflow Ensembles
in Clouds,” Journal of Grid Computing, vol. 14, no. 2,
2016.

[25] F. Marozzo, F. Rodrigo Duro, J. Garcia Blas, J. Carretero,
D. Talia, and P. Trunfio, “A data-aware scheduling strategy
for workflow execution in clouds,” Concurrency and
Computation: Practice and Experience, vol. 29, no. 24,
2017.

[26] K. Wang, X. Zhou, T. Li, D. Zhao, M. Lang, and I. Raicu,
“Optimizing load balancing and data-locality with data-
aware scheduling,” in 2014 IEEE Big Data, 2014.

[27] J. Wang, D. Han, J. Yin, X. Zhou, and C. Jiang, “ODDS:
Optimizing Data-Locality Access for Scientific Data
Analysis,” IEEE Transactions on Cloud Computing, vol. 8,
no. 1, 2020.

[28] Z. Zhang, D. S. Katz, T. G. Armstrong, J. M. Wozniak,
and I. Foster, “Parallelizing the execution of sequential
scripts,” in Proc. of the Int. Conf. on High Performance
Computing, Networking, Storage and Analysis, 2013.

[29] F. R. Duro, J. G. Blas, F. Isaila, J. M. Wozniak, J. Car-
retero, and R. Ross, “Flexible Data-Aware Scheduling
for Workflows over an In-memory Object Store,” in Proc.
CCGrid 2016, 2016.

[30] D. Zhao, Z. Zhang, X. Zhou, T. Li, K. Wang, D. Kimpe,
P. Carns, R. Ross, and I. Raicu, “FusionFS: Toward sup-
porting data-intensive scientific applications on extreme-
scale high-performance computing systems,” in 2014
IEEE Big Data, 2014.

[31] M. Y. Eltabakh, Y. Tian, F. Özcan, R. Gemulla, A. Krettek,
and J. McPherson, “CoHadoop: Flexible data placement
and its exploitation in Hadoop,” Proc. of the VLDB
Endowment, vol. 4, no. 9, 2011.

[32] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The
Hadoop Distributed File System,” in 2010 IEEE 26th
Symposium on Mass Storage Systems and Technologies
(MSST), 2010.

[33] Y. Lu, A. Shanbhag, A. Jindal, and S. Madden, “AdaptDB:
Adaptive partitioning for distributed joins,” Proc. of the
VLDB Endowment, vol. 10, no. 5, 2017.

12

APPENDIX

A. Abstract

In this artifact, we describe how to build the WOW Scheduler
for Kubernetes, which is based on the Common Workflow
Scheduler [1], and how to build and use the adapted Nextflow[2]
version, both of which are proposed in the paper: “WOW:
Workflow-Aware Data Movement and Task Scheduling for
Dynamic Scientific Workflows”. Moreover, we describe the
experimental setup and how to prepare and get the input data
of the 16 presented workflows and run them with the Original,
CWS, and WOW strategies.

B. Description

1) Check-List (Artifact Meta Information)

• Algorithm: The WOW strategy is implemented into the Common
Workflow Scheduler for Kubernetes.

• Program: WOW for Kubernetes [3] and Nextflow with CWS and
WOW extension for Kubernetes [4].

• Compilation: Nextflow with CWS and WOW extension for
Kubernetes and our Scheduler for Kubernetes as Docker image.

• Data set: Scripts to download the input data and execute the
experiments [5]. Traces and logs of all 648 workflow executions [6].

• Run-time environment: Kubernetes cluster in version 1.27.5.
• Hardware: All nodes were x86-64 machines.
• Runtime state: The cluster was exclusively used for the experi-

ments.
• Execution: Bash scripts to manage the experiment, YAML files to

set up Kubernetes, Dockerfiles, and scripts to build Nextflow and
the Scheduler.

• Output: Workflow traces and logs of all 648 workflow executions
that are processed to generate the tables and plots in the paper.

• Experiment workflow: Download the inputs and run the execution
file.

• Experiment customization: The experiments can be executed
with different workflows, other data sets, or other shared storage.

• Publicly available?: Yes, all code and experimental results are
hosted by us. Input data is obtained from public sources.

2) How Software Can Be Obtained

We created two major software artifacts: the scheduler and
our adapted Nextflow.

The Scheduler for the Kubernetes implementation
can be cloned from GitHub https://github.com/WOW-
WorkflowScheduler/nextflow. Moreover, we provide an
already-built Docker image (commonworkflowscheduler/ku-
bernetesscheduler:v1.0) starting the Kubenetes Scheduler
service.

The adapted Nextflow version can be cloned from
GitHub https://github.com/WOW-WorkflowScheduler/nextflow.
Again, a prebuilt Docker image is available on DockerHub
(commonworkflowscheduler/nextflow-wow:v1.0).

3) Hardware Dependencies

All artifacts are tested and prebuilt with x86-64 machines
running Ubuntu 22.04 LTS.

4) Software Dependencies

Building the software requires installing Docker and Java
OpenJDK 19. The Scheduler is based on CWS and uses Maven

as a build system. Maven only needs to be installed if CWS is
not built using Docker. Nextflow uses Gradle as a build system
and make - Gradle does not need to be installed, but the JDK
needs to be in a matching version. Moreover, a Kubernetes
Cluster with enough local storage on each node and a shared
file system is required. The required amount of local storage
depends on the number of nodes and the amount of generated
intermediate data. For our experiments, we used Ceph and NFS
as shared filesystems. However, any read-write-many filesystem
supported by Kubernetes and Nextflow will work but will
change the results. We need kubectl installed to communicate
with the cluster and launch the experiment.

5) Datasets

We use the public datasets for real-world workflows, and for
synthetic workflows, we generate synthetic data. The input data
is always prefetched to avoid affecting experiment runtimes
with download times. The download is performed by executing
the setup-inputs.sh file as described in https://github.com/WOW-
WorkflowScheduler/Experiments. Moreover, we provide a con-
figuration file for each workflow.

C. Installation

1) Build Nextflow

Run the following instructions to build and publish the
Nextflow with CWS and WOW Docker image.

Set JAVA HOME to version 19
$ cd <nextflow root directory>
$ make compile
$ make pack
$ make install
$ make dockerPack
login to Docker
$ docker tag nextflow/nextflow:23.07.0−edge <your docker

↪→ account>/nextflow:<version>

2) Build Common Workflow Scheduler with WOW

To build the CWS with WOW, run the following commands.

$ cd <Kubernetes Scheduler root directory>
$ docker build −t wow−scheduler .
$ docker tag wow−scheduler <your docker account>/wow−

↪→ scheduler:<version>

3) Prepare the Cluster

To prepare the cluster, clone the following project:
https://github.com/WOW-WorkflowScheduler/Experiments.

To prepare the execution of the experiments: First, set your
NFS server’s IP and username in experiment/nfsConnection.txt
and create a file experiment/nfsPassword.txt and insert your
NFS password; this will be used to adjust the network speed
of the server. Then, also set the NFS server’s IP in experimen-
t/nfs.yaml. Next, change the Kubernetes namespace in exper-
iment/namespace.txt and in experiment/accounts.yaml, exper-
iment/nfsClaim.yaml, setup/dowload-pod.yaml, maybe adjust

13

https://github.com/WOW-WorkflowScheduler/KubernetesScheduler
https://github.com/WOW-WorkflowScheduler/KubernetesScheduler
https://github.com/WOW-WorkflowScheduler/nextflow
https://github.com/WOW-WorkflowScheduler/Experiments
https://github.com/WOW-WorkflowScheduler/Experiments
https://github.com/WOW-WorkflowScheduler/Experiments

your storage classes. Further, label your Kubernetes nodes and
adjust experiment/nextflow usedby.config and setup/download-
pod.yaml accordingly. To label the nodes, run the following:

Nodes executing tasks
kubectl label nodes <Node 1> <Node 2> usedby=<your

↪→ name>
Node to run the scheduler and Nextflow
kubectl label nodes <Node 0> management=true

Configure the NFS Server for Kubernetes by applying the
following commands:

$ kubectl apply −f experiment/nfs.yaml
$ kubectl apply −f experiment/nfsClaim.yaml

In the setup directory, you find the download-pod. Make
sure an NFS server or another PVC exists where the data
will be stored. The PVC should match the claimName in the
download-pod specification. Next, start the download pod:

$ kubectl create −f download−pod.yaml

To download the data, run the setup-input script.

$ bash setup−inputs.sh <workflow−name>

4) Running the Experiments

To execute the experiments, use the runExperimentFromRe-
mote script in the experiment directory. Launch experiments
with:

$ bash runExperimentFromRemote.sh <strategy> <network
↪→ speed>

where strategy is nfs, ceph, orig-nfs, or orig-ceph. The
network speed is an integer. The script will do the following:
1) Adjust the network connection between all nodes
2) Run all workflows and do for all:
3) Load all required images into Kubernetes’ cache on all

nodes
4) Run the workflow for the provided strategy
5) Collect all results

D. Evaluation and Expected Result

All our measurements can be found in the result folder of
the results and evaluation GitHub: https://github.com/WOW-
WorkflowScheduler/ResultsAndEvaluation. For each run, we
collected the DAG, the amount of data stored at the node and at
the PVC, Nextflow’s logs, the config used, the report generated
by Nextflow, the scheduler’s log, a timeline.html, Nextflow’s
trace, and for runs with WOW the copy tasks created.

Besides the measurements, we provide the Jupyter script
(Evaluation.ipynb) that generated the plots and tables in the
paper.

E. Experiment Customization

The datasets can be changed, or other workflows can be
included. Therefore, the data needs to be downloaded, and the
workflow needs to be added in the runExperiments.sh.

F. Future Development

We merged the WOW strategy into the Common Workflow
Scheduler and extended the nf-cws4 Plugin to replace our
separate Nextflow fork. Future developments will be based on
these two projects.

REFERENCES

[1] F. Lehmann, J. Bader, F. Tschirpke, L. Thamsen, and
U. Leser, “How Workflow Engines Should Talk to Resource
Managers: A Proposal for a Common Workflow Scheduling
Interface,” in Proc. CCGrid 2023, 2023.

[2] P. Di Tommaso, M. Chatzou, E. W. Floden, P. P. Barja,
E. Palumbo, and C. Notredame, “Nextflow enables repro-
ducible computational workflows,” Nature Biotechnology,
vol. 35, no. 4, 2017.

[3] F. Lehmann, “Common Workflow Scheduler with
WOW strategy,” Feb. 2025. [Online]. Available: https:
//doi.org/10.5281/zenodo.14894652

[4] ——, “Nextflow with the Common Workflow Scheduler
Interface for Kubernetes extended with WOW ,” Feb.
2025. [Online]. Available: https://doi.org/10.5281/zenodo.
14894638

[5] F. Lehmann and F. Tschirpke, “Experiment Setup for
WOW Experiments,” Feb. 2025. [Online]. Available:
https://doi.org/10.5281/zenodo.14894632

[6] F. Lehmann, “WOW with Nextflow and Kubernetes -
Traces and Evaluation ,” Feb. 2025. [Online]. Available:
https://doi.org/10.5281/zenodo.14894648

4https://github.com/CommonWorkflowScheduler/nf-cws

14

https://github.com/WOW-WorkflowScheduler/ResultsAndEvaluation
https://github.com/WOW-WorkflowScheduler/ResultsAndEvaluation
https://doi.org/10.5281/zenodo.14894652
https://doi.org/10.5281/zenodo.14894652
https://doi.org/10.5281/zenodo.14894638
https://doi.org/10.5281/zenodo.14894638
https://doi.org/10.5281/zenodo.14894632
https://doi.org/10.5281/zenodo.14894648
https://github.com/CommonWorkflowScheduler/nf-cws

	Introduction
	Background
	Scientific Workflow Engine
	Resource Manager (RM)
	Distributed File System (DFS)

	Our Approach
	Overview
	Scheduling Strategy
	Data Placement Service (DPS)

	Prototype
	Common Workflow Scheduler
	Implementation with Nextflow
	Scheduler with Data Placement Service
	Local Copy Service (LCS)

	Evaluation Setup
	Workflows and Workflow Patterns
	Execution Environment
	Experimental Design

	Evaluation Results
	Execution Behavior
	Network Dependence
	Scalability Efficiency

	Related Work
	Data Placement for Dynamic Scientific Workflows
	Data Placement in Distributed Data Processing Systems

	Conclusion
	Appendix
	Abstract
	Description
	Check-List (Artifact Meta Information)
	How Software Can Be Obtained
	Hardware Dependencies
	Software Dependencies
	Datasets

	Installation
	Build Nextflow
	Build Common Workflow Scheduler with WOW
	Prepare the Cluster
	Running the Experiments

	Evaluation and Expected Result
	Experiment Customization
	Future Development

