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ABSTRACT
Distributed Stream Processing (DSP) focuses on the near real-time
processing of large streams of unbounded data. To increase process-
ing capacities, DSP systems are able to dynamically scale across
a cluster of commodity nodes, ensuring a good Quality of Service
despite variable workloads. However, selecting scaleout configu-
rations which maximize resource utilization remains a challenge.
This is especially true in environments where workloads change
over time and node failures are all but inevitable. Furthermore,
configuration parameters such as memory allocation and check-
pointing intervals impact performance and resource usage as well.
Sub-optimal configurations easily lead to high operational costs,
poor performance, or unacceptable loss of service.

In this paper, we present Demeter, a method for dynamically
optimizing key DSP system configuration parameters for resource
efficiency. Demeter uses Time Series Forecasting to predict future
workloads andMulti-Objective BayesianOptimization tomodel run-
time behaviors in relation to parameter settings and workload rates.
Together, these techniques allow us to determine whether or not
enough is known about the predicted workload rate to proactively
initiate short-lived parallel profiling runs for data gathering. Once
trained, the models guide the adjustment of multiple, potentially
dependent system configuration parameters ensuring optimized
performance and resource usage in response to changing workload
rates. Our experiments on a commodity cluster using Apache Flink
demonstrate that Demeter significantly improves the operational
efficiency of long-running benchmark jobs.
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1 INTRODUCTION
Distributed Stream Processing (DSP) is a paradigm in the big data
domain that focuses on processing large streams of unbounded
data in near real-time. As streaming workloads are typically dy-
namic in nature, DSP systems such as Apache Flink [7], Spark
Streaming [37], and Storm [33] are designed to scale horizontally,
distributing the load across multiple nodes within a cluster. When
configured correctly, this enables high throughput, low latency, and
fault tolerance in cloud-based environments. This is essential in
areas such as real-time analytics, IoT data processing, click stream
analysis, network monitoring, and more, where data needs to be
analyzed on-the-fly continuously [18, 25, 26]. In these areas, ensur-
ing minimal latencies is vital as the value of results is often greatest
at the time of data arrival. Therefore, by maintaining the fastest
response times, the maximum value of these results is captured,
enabling timely decision-making. Likewise, in the event of failures,
the ability to both recover quickly and maintain the consistency of
results is important for preserving system reliability.

However, the manner in which these systems are configured
has a significant impact on the Quality of Service (QoS) they are
able to deliver as well as the resources they consume. Given the
dynamic nature of cluster environments and streaming workloads,
ensuring near-optimal configurations becomes inherently challeng-
ing. Relying on static configurations can lead to over-provisioning,
wasting energy and resources, or under-provisioning. The man-
ual fine-tuning of configuration parameters for individual stream-
ing jobs is likewise impractical, involving considerable trial and
error, and necessitates continuous adjustments to align with the
ever-changing workload. As a result, configurations would quickly
become outdated, leading to a diminished QoS and significantly
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higher operational costs. It is evident that adaptive configuration op-
timization strategies are essential, as they can dynamically respond
to changing workloads, ensuring both reliability and efficiency.

A number of methods have been proposed that optimize the
configuration of DSP jobs adaptively. The underlying principle is
to identify a configuration parameter that, when adjusted, can im-
prove the performance of the DSP job. For instance, some methods
focus on optimizing the scaleout [1, 2, 11–13, 17, 21, 27], while oth-
ers concentrate on adjusting the checkpoint interval [8, 9, 20, 36].
They can broadly be categorized as either reactive or proactive.
Reactive strategies [11, 12] typically rely on threshold monitor-
ing, adjusting the parameter when the established upper or lower
bounds are violated. However, these approaches are imprecise and
prone to initiating re-configurations in response to transient condi-
tions such as load spikes or failures. This can lead to unnecessary
changes that disrupt the service. Alternatively, proactive strate-
gies [1, 2, 13, 17, 21, 27] often employ modeling techniques, using
historical data to predict a near-optimal configuration setting for
the workload. Nonetheless, these methods are not without their
challenges, especially when historical data is limited, complicating
accurate predictions in dynamic environments.

Although these methods have shown improvements in certain
aspects of system performance, the focus on a single parameter
does not fully capture the complex interdependencies among vari-
ous key configuration parameters that are common in real-world
DSP systems. Take, for example, the concepts of scaleout and local
parallelism. In a DSP system, the scaleout for each job is reflected
by the total number of processing slots, and the ratio of processing
slots to each worker node determines the level of local parallelism.
Generally, previous methods have kept this ratio at one-to-one, re-
sulting in the total processing slots equalling the number of workers.
They do not explore how local parallelism might boost efficiency
beyond identifying the optimal scaleout for a particular workload
rate. Despite these interdependencies, the simultaneous optimiza-
tion of multiple configuration parameters for enhancing resource
efficiency in DSP systems remains largely unexplored.

In this paper, we introduce Demeter, a novel approach intended
for cloud-based environments that dynamically optimizes multiple
key configuration parameters for targeted DSP jobs. We focus on
the following critical parameters:

• No. of Workers: Workers are responsible for orchestrating
and supervising the execution of processing tasks. Their
configuration affects the overall capacity of the system to
handle parallel tasks and its resilience against failures.

• CPU Cores: These refer to the computational resources
assigned to each worker. Workers receive an equal share of
computation resources, ensuring homogeneous processing
potential throughout the system.

• Memory Allocation: Memory is important for buffering
incoming data streams, storing intermediate results, and
facilitating various in-memory operations. As with the CPU
cores, each worker is assigned an equal share of memory.

• Processing Slots:Aworker canmanagemultiple processing
slots, determining the number of concurrent processing tasks
it can oversee. These slots utilize CPU andmemory resources
from the collective resource pool assigned to each worker.

• Checkpoint Interval: This involves periodic snapshots of
the system’s current state as a part of its fault-tolerance
mechanism. The checkpoint frequency is important; while
more frequent snapshots can facilitate faster recovery from
failures, they also introduce overheads.

Demeter aims to find the best combination of settings for the
aforementioned parameters, ensuring both near-optimal perfor-
mance and resource efficiency in response to changing workloads.
To achieve this, Demeter makes use of two statistical modeling
techniques: Time Series Forecasting (TSF) for predicting workload
rates, and Multi-Objective Bayesian Optimization (MOBO) to model
runtime behaviors in relation to parameter settings and workload
rates. From a high-level perspective, Demeter operates through two
independent processes: profiling and optimization. Both processes
execute iteratively and begin with a prediction of the upcoming
workload rate. In profiling, when the MOBO models lack sufficient
data for confidently selecting a near-optimal configuration at the
predicted rate, Demeter initiates short-lived parallel profiling runs
to gather data to enhance the models. On the other hand, dur-
ing optimization, once the models are sufficiently informed about
the predicted workload rates, Demeter selects appropriate config-
urations. The objective is to minimize resource usage such that
processing latencies and recovery times remain within the bounds
of a runtime-derived latency constraint and a user-defined recovery
time constraint. With continued iterations, Demeter’s understand-
ing of how configuration impacts on performance at specific work-
load rates increases along with resource efficiency. Over time, as the
models become more accurate, the need for profiling decreases, fur-
ther decreasing overheads. We implement Demeter prototypically
with Apache Flink and conduct experiments on a commodity clus-
ter with established benchmark jobs to demonstrate its usefulness
in comparison to two state-of-the-art methods.

2 APPROACH
In this section, we provide a detailed description of Demeter, ex-
plaining the general idea and its processes.

2.1 General Idea
Demeter’s goal is the runtime optimization of a target DSP job,
ensuring near-optimal performance and resource efficiency across
dynamic workloads. We measure resource efficiency in terms of
resource usage (𝑈 ) and performance in terms of the average end-
to-end latency (𝐿𝑎𝑣𝑔) and recovery time (𝑅). The process is guided
by two constraints: an average end-to-end latency constraint (𝐿𝐶)
which is determined at runtime based on observed latencies; and a
user-defined recovery time constraint (𝑅𝐶). Therefore, the objective
is to minimize 𝑈 while ensuring 𝐿𝑎𝑣𝑔 and 𝑅 are always kept below
𝐿𝐶 and 𝑅𝐶 , respectively. The decision variables consist of a set
of key configuration parameters: number of workers, CPU cores,
memory allocation, processing slots, and checkpoint interval.

To achieve its goal, Demeter employs a proactive modeling strat-
egy, gathering performance data through short-lived parallel pro-
filing runs of identical jobs with varying configuration sets. This
strategy is enabled by using two fundamental statistical model-
ing techniques: Time Series Forecasting (TSF) to predict upcoming
workload rates and Multi-Objective Bayesian Optimization (MOBO)
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Figure 1: High-level representation of Demeter, illustrating the interplay between internal processes and external systems.

to model runtime behaviors in relation to parameter settings and
workload rates. TSF grants insight into upcoming workloads, facili-
tating informed decision-making. This is important for preventing
performance from degrading beyond a critical point before mitigat-
ing actions can be taken and ensures the longevity of configuration
changes, thereby reducing the frequency of restarts. When working
with exactly-once processing guarantees, restarts are expensive and
introduce interruptions to the service. MOBO complements this
by not only providing a means of simultaneously modeling multi-
ple possibly competing criteria, but also a mechanism for guiding
the exploration of the configuration search space. Together, TSF
and MOBO establish a comprehensive approach for well-informed
multi-configuration optimization under dynamic workloads.

Demeter is designed as a standalone client, interfacing with
systems within a cloud-based environment. Our methodology is
built on three foundational processes: Modeling, Profiling, and Op-
timizing. Next, we present an overview of Demeter’s approach,
accompanied by a graphical representation in Fig. 1. For any target
job, a maximum configuration (𝐶max) is defined, where parameters
are set to allocate a large amount of resources, thereby guarantee-
ing consistent high performance in terms of 𝐿avg and 𝑅 across any
reasonable workload1. After initiating the target job with𝐶max, two
iterative processes begin executing asynchronously. The first pro-
cess focuses on profiling. Based on the predicted workload rate, the
need for profiling is evaluated through a series of MOBO models,
with each model dedicated to a particular configuration parameter.
When required, they suggest configurations that maximize infor-
mation gain, which are then applied in parallel profiling runs. This
approach enables efficient exploration of the large configuration
space. After these runs, data is collected to update the models. If

1Here, ’reasonable’ refers to workloads within an upper bound determined by
expert knowledge.

profiling is deemed unnecessary, it is skipped. The second process
focuses on optimization. It uses the TSF prediction and the MOBO
models to check whether sufficient information is available for job
optimization at that workload rate. If a more efficient configuration
is found, a reconfiguration is initiated. If no better configuration is
available according to our models but the existing setup canmanage
the upcoming workload, it remains unchanged. In situations where
the current configuration is inadequate, or if there is insufficient
information, such as encountering a new workload rate, the system
reverts to the 𝐶max configuration, unless it is already in use.

2.2 Modeling
In this section, we provide a description of the modeling techniques
used in our approach. As previously stated, Demeter follows a proac-
tive strategy, using predictions of future workload rates to inform
and guide the profiling and optimization processes. To achieve this,
we firstly use a multistep-ahead TSF model, trained on historical
data. This model not only provides insights into the expected work-
load rate at a specific time horizon but also reveals the behavior
of the rate over time leading up to this point. Understanding both
the expected future workload rate and its behavior over time is
important for our method’s effectiveness. Whenever a forecast is
generated, it is partitioned into separate averaging bins and the
bin with the highest average value is calculated and selected. The
value of this bin will be used for all subsequent profiling and op-
timization processes. This ensures that if an increase in workload
is anticipated, the system will select the furthest bin for analysis,
guiding the profiling and optimization efforts to address higher
workload rates expected in the future, rather than focusing on the
current point in time. Conversely, if the workload is anticipated to
decrease, the model selects the nearest bin, focusing the profiling
and optimization efforts on lower workload rates that are expected
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Figure 2: Model generation and selection based on observed
workload rates, categorized by specific workload segments.

to occur closer to the current point in time. This is done to ensure
that reconfigurations are valid at least up until the forecast hori-
zon, thereby increasing their longevity. For our method, we use an
online ARIMA model for workload predictions.

Addressing the challenge of optimizing multiple parameters, our
approach shifts focus towards exploring a discrete search space,
represented as x. This space consists of the Cartesian product of all
relevant parameters, each with its discrete set of potential values.
Initially, we have no prior knowledge of this space. In anticipation
of future streaming workloads, our primary goal is to identify an
optimal configuration within x. Such a configuration should not
only comply with predefined constraints, including 𝐿𝐶 and 𝑅𝐶 , but
also demonstrate resource efficiency, in terms of CPU and memory
utilization. To address this challenge, we adopt MOBO, where each
objective and constraint is represented using an individual Gauss-
ian process. The optimization procedure aims to maximize the sum
of their marginal log likelihoods. In this context, we weight the
expected improvement of one or more objectives by the probability
of feasibility, considering all the modeled constraints. Ultimately,
the MOBO model is proficient in identifying near-optimal con-
figurations for scenarios characterized by low workload variance.
However, its performance diminishes when dealing with streaming
workloads that present a wider range of variance, highlighting the
need for a more adaptable optimization strategy.

To manage workload variability, we apply the concept of Rank-
Weighted Gaussian Process Ensembles (RGPE), a method proven
effective in similar scenarios [28, 38]. All collected observations,
comprising various configurations and their corresponding perfor-
mance metrics, are organized into 𝐾 segments based on workload
rate, denoted as𝑊𝑆 = {𝑤𝑠𝑖 }𝐾𝑖=0. The size of each workload segment
is defined by the segment size (𝑆𝑆) hyper-parameter, and segments
are added dynamically as they are detected. We train a set of MOBO
models𝑚𝑖 for each segment𝑤𝑠𝑖 using the included observations𝐷𝑖 .
Referring to Fig. 2, we present an example of a variable workload
over time. As Demeter identifies new workload segments𝑤𝑠0,𝑤𝑠1,
𝑤𝑠2, and𝑤𝑠3 at time instances 𝑡0, 𝑡1, 𝑡2, and 𝑡5, it correspondingly
creates MOBO models𝑚0,𝑚1,𝑚2, and𝑚3 to model the configu-
ration parameters for these segments. Following this, whenever
the workload prediction falls within a segment’s range, the sys-
tem utilizes the associated MOBO models for both profiling and
optimization purposes. These models then contribute to approxi-
mating the target MOBO model𝑚𝑡𝑎𝑟 for the anticipated streaming

workload in an ensemble manner:

𝑚𝑡𝑎𝑟 (x|𝐷𝑡𝑎𝑟 ) ∼ 𝒩
( ∑︁
𝑤𝑠𝑖 ∈𝑊𝑆

𝑎𝑖`𝑖 (x),
∑︁

𝑤𝑠𝑖 ∈𝑊𝑆

𝑎2𝑖 𝜎
2
𝑖 (x)

)
In this formulation, `𝑖 and 𝜎2𝑖 are the mean and variance parameters
of the BO model𝑚𝑖 , tailored for segment𝑤𝑠𝑖 , while 𝑎𝑖 represents
the correspondingweight within the ensemble, defined by a ranking
loss specific to RGPE. This approach offers several benefits, includ-
ing the ability to leverage previously trained models, effectively
addressing the cold-start issue by utilizing existing knowledge, even
if partial, of the configuration search space. Concurrently, these
support models play a crucial role in pinpointing the optimum of
the desired function. Consequently, we expedite the identification
of promising configurations by utilizing previously profiled config-
urations across varied workload rates. So, our outlined approach,
combined with RGPE, allows us to leverage existing knowledge for
more informed configuration recommendations. For simplicity, in
this paper, the RGPE ensemble model, target MOBO models, and
base MOBO models for a specific segment are collectively referred
to as the MOBO models for that segment.

2.3 Profiling
The profiling process evaluates the need for profiling, selects fit-
ting configurations, and supervises execution. Operating within a
time-delay loop, the profiling algorithm begins each iteration by
consulting the TSF model for a workload prediction. This predic-
tion then guides the selection of configurations by referencing the
MOBO models corresponding to the specific workload segment.
For generating profiles, the method focuses on configurations with
the highest expected hyper-volume improvement, essentially those
with the best knowledge acquisition value. The number of configu-
rations chosen for profiling aligns with the resources assigned for
this task within the cluster. Within each workload segments, an
annealing factor adjusts this number, leading to a reduced extent of
exploration as more knowledge about that segment is accumulated.

Additionally, the system uses domain knowledge from past con-
figurations to make strategic profiling decisions. For example, if
during a previous re-configuration, a selection was found to be
unsuitable for a workload rate similar to the prediction, and the
system had reverted back to the𝐶max, it would then give preference
to profiling configurations that have greater resources than the pre-
viously unsuitable one. On the other hand, should historical data
show an earlier decision to downscale, the system will prioritize
configurations that use fewer resources for the projected workload.
This approach allows the system to streamline its selection process,
capitalizing on historical data and specialized expertise.

Upon determining suitable profiles for the predicted workload,
jobs are deployed in parallel with their own unique configurations.
A graphical representation of the profiling process can be seen
in Fig. 3. Each profile is set to read from the same data source
as the target job, yet directs its output to a separate temporary
sink. Once deployed, a stabilization phase is allowed for metrics to
achieve equilibrium. After stabilization, a fixed duration of standard
execution is observed, after which the 𝐿avg are computed. Next,
timeout failures are injected into the profiling jobs to measure how
long each job takes to recover. Demeter will then continuously
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Figure 3: Profiling lifecycle from deployment to recovery to
recovery time measurement.

re-evaluate the status of the jobs, ensuring they either attain a full
recovery or exceed a designated maximum timeout constraint. In
order to measure the recovery time, Demeter monitors specific
metrics related to the recovery process:

• Input Throughput: This metric indicates the total number
of events consumed by the source operators of the DSP job
every second. It provides a measure of the system’s capacity
to handle incoming data.

• Average Consumer Lag: This metric represents the accu-
mulated events in the messaging queue, still awaiting con-
sumption by the source operators of the DSP job. It gives an
indication of any potential backlog.

These metrics are used to train an anomaly detection algorithm
on positive executions, i.e. let the function 𝑠 : 𝑋 → 𝑋 perfectly
represent the metrics data stream such that for any given data point
𝑥 ∈ 𝑋 the prediction is always 𝑠 (𝑥) = 𝑥 . Given that the majority of
data collected within the standard execution period is expected to
be normal, this approach allows the algorithm to recognize devia-
tions from the norm. Should these deviations surpass a predefined
threshold, derived from past errors, the system is deemed to be in
an anomalous state. The length of time spent in this anomalous
state therefore is equivalent to the recovery time. To implement
this, we utilize an online ARIMA method as proposed in [30].

Importantly, in this context the recovery time encompasses more
than just the period during which the system is in an inconsistent
state before processing resumes. For systems using checkpoint and
rollback recovery strategies, processing restarts from a previously
saved offset. It then works to catch up to the latest offset, even as
new events keep arriving. We aim to measure the entire duration –
from the moment the failure begins until processing has once again
caught up to processing events at the latest offset. This provides a
more accurate measure of system availability for steam processing.

Upon the completion of profiling, the associated jobs are termi-
nated, and metrics relating to workload, throughput, and latency
are subsequently used to update the model.

2.4 Optimizing
The optimization process is tasked with tuning the configuration
parameters of the target job in relation to changing workloads.
Central to this process is the optimization algorithm,which operates
within a time-delayed loop to periodically assess the state of the
target job. Intervals between evaluations are essential, particularly
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Figure 4: Flow chart depicting the optimization algorithm of
the Optimizer component.

following events like re-configurations or failures that both require
restarts. They ensure that metrics stabilize between evaluations
and increase the longevity of changes. A simplified overview of this
algorithm can be seen in Figure 4. After each interval, metrics from
the target job are collected and the current 𝐿avg is evaluated. Unlike
our other constraints and objectives, determining whether the 𝐿avg
aligns with typical expectations presents a challenge, primarily
because ’normal’ latencies vary significantly, changing from one job
and environment to another. To address this, we utilize the MOBO
models, which are trained on the specific current workload rate
segment, in combination with a clustering technique to establish a
benchmark for near-optimal latencies.

Firstly, we need to identify two clusters among the latencies ob-
served so far: those considered normal and those considered abnor-
mal, and hence invalid. If a configuration resulted in the job being
able to keep up with the current workload, its latencies would stabi-
lize around the shortest possible lengths. Thus, the cluster with the
smallest centroid represents configurations that yield near-optimal
latencies. In order to do this, we start by normalizing the values
according to the first percentile. Then, we apply a transformation to
the values so that they fall within the [0, 1] interval. Values smaller
than 0.5 are considered normal, while those equal to or greater than
0.5 are considered abnormal. This technique allows us to define the
latency constraint 𝐿𝐶 . If the current 𝐿avg falls outside the range
of 𝐿𝐶 , the job is assumed to be unstable and reverts to the 𝐶max
configuration, ensuring a rapid return to near-optimal operation.

Alternatively, if 𝐿avg falls within acceptable limits, there exists
an opportunity to further improve resource efficiency. In both cases,
we transform all latency values according to the observed clusters,
establishing a notion of normal and invalid latencies. The next
step involves retrieving a workload prediction from the TSF model.
We now aim to identify the near-optimal configuration that aligns
most closely with the predicted workload. Using this workload
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prediction, the algorithm references the MOBO models for the
corresponding workload rate segment. We then use the models to
retrieve predictions 𝐿avg and 𝑅 for a list of possible configurations.

We first filter out configurations with invalid 𝐿avg as well as those
where the 𝑅 is greater than the 𝑅𝐶 , ensuring we retain only valid
configurations that do not violate either constraint. Next, we sort
the list of valid configurations based on their resource usage, where
the smallest is predicted to result in the highest operation efficiency.
At this point, we introduce a safety buffer (𝑆𝐵) hyper-parameter.
Instead of directly selecting the most efficient configuration, 𝑆𝐵 is
applied to scale our selection, effectively moving us up the sorted
list by a certain percentile. For instance, if 𝑆𝐵 is set to 30%, we
would skip the bottom 30% of configurations and choose the one at
the 30th percentile mark, or with at least a 30% increase in resource
usage. This provides a margin of safety, ensuring that our selected
configuration is not too close to the lower bound of the system’s
requirements. Furthermore, this buffer approach allows us to ac-
count for and negate intermittent fluctuations in the cluster, which
could otherwise trigger unwarranted re-configurations, optimizing
for both efficiency and system stability.

Following our selection process informed by 𝑆𝐵, the need for
re-configuration is evaluated against the efficiency threshold (𝐸𝑇 )
hyper-parameter. Reconfiguration is triggered only if the expected
improvement in resource efficiency exceeds 𝐸𝑇 . For example, set-
ting 𝐸𝑇 at 5%means reconfiguration is only done when the resource
saving is equal to or greater than 5%. Therefore, if the proposed
configuration fails to meet this threshold, the current configura-
tion remains unchanged, and the current iteration concludes. Con-
versely, if the threshold is exceeded, signifying a potential reduction
in resource usage, reconfiguration is initiated. In instances where a
predicted configuration is not available, potentially due to a lack
of sufficient observations for modeling, a re-configuration to the
𝐶max configuration is prompted, provided it is not already in place.

3 EVALUATION
In this section, we assess the effectiveness of Demeter. We detail
our experimental cluster setup, outline the methods evaluated, and
specify how they were configured. Two distinct experiments are
presented, followed by a comparative analysis. All materials related
to our prototype, datasets, and tools are available in our repository2

3.1 Experimental Setup
Our experimental setup was based on a co-located 5-node Kuber-
netes [35] and HDFS [31] cluster with all servers interconnected
by a single switch. We developed and implemented a prototype to
work with Apache Flink. Additionally, we use the Flink Kubernetes
Operator3 to automate deployments and upgrades of streaming
jobs. We configured an Apache Kafka [22] cluster, serving as both
the sources and sinks for the streaming jobs, with 24 partitions
and a replication factor of 3. All sources and sinks of the experi-
mental processing pipelines were configured to use exactly-once
processing thereby guaranteeing the consistency of results 4. For

2https://github.com/dos-group/demeter
3https://nightlies.apache.org/flink/flink-kubernetes-operator-docs-release-1.6,

Accessed: March 2024
4https://flink.apache.org/2018/02/28/an-overview-of-end-to-end-exactly-once-

processing-in-apache-flink-with-apache-kafka-too/, Accessed: March 2024

all experiments and methods, a maximum parallelism of 24 was
set, meaning that the number of processing slots, or task managers,
could not exceed 24 at any given time. Additionally, we set a 20s
timeout interval for Flink task managers. For end-to-end latencies,
measurements were taken over a 1-minute averaging window, with
a focus on the 95th percentile to minimize the impact of outliers
during periods of stable operation. Each experiment was conducted
three times with the median result being selected for further anal-
ysis and discussion. Chaos Mesh5 was used for injecting failures
into the Kubernetes pods. During each experiment, Chaos Mesh
injected 23 timeout failures at regular 45-minute intervals ensuring
a uniform distribution of failures across a broad range of workload
rates. Prometheus6 was used for metrics collection. Cluster node
specifications and software versions are summarized in Table 1.

Table 1: Cluster Node Specifications

Resource Details

OS Ubuntu 20.04.1
CPU AMD EPYC 7282 16-Core Processor, 32

cores, 2.8 GHz
Memory 128 GB RAM
Storage 2TB RAID0 (2x1TB SSD, software RAID)

Network 10 GBit Ethernet NIC
Software Java v11, Flink v1.17, Flink Operator v1.6,

Kafka v3.4, Docker v19.3, Kubernetes v1.26,
HDFS v2.8, Redis v5.0, Prometheus v2.25,
Chaos Mesh v2.1, pmdarima v2.0.4, BoTorch
v0.6.0

3.2 Demeter Setup
In configuringDemeter, the𝐶max configurationwas allocated amax-
imum scaleout of 24, dedicating a full CPU core and 4096 megabytes
of memory to each taskmanager, as well as a single processing slot.
The segment size (𝑆𝑆), safety buffer (𝑆𝐵), and efficiency threshold (𝐸𝑇 )
hyper-parameters were set to 10.000, 30%, and 5%, respectively. The
configuration space for profiling was defined by setting lower and
upper bounds on each parameter, yielding 2592 distinct parameter
combinations for each workload segment, as shown in Table 2. We
utilize BoTorch [5] for MOBO modeling as part of our prototype.

Table 2: Configuration Parameter Search Space

Parameter Min Max Step

Workers 4 24 4
CPU Cores 1 3 1
Memory Allocation (mb) 1024 4096 1024
Processing Slots 1 4 1
Checkpoint Interval (s) 10 90 10

Profiling runs incorporated a 2-minute stabilization period and
a 1-minute latency measurement window. We found that the best

5https://chaos-mesh.org, Accessed: March 2024
6https://prometheus.io, Accessed: March 2024
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https://flink.apache.org/2018/02/28/an-overview-of-end-to-end-exactly-once-processing-in-apache-flink-with-apache-kafka-too/
https://chaos-mesh.org
https://prometheus.io
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possible recovery times with 𝐶max generally span between 90 and
120 seconds, even in scenarios of low workloads. This insight led
us to set the recovery time constraint (𝑅𝐶) at 180s for our experi-
ments, establishing the upper limit for acceptable recovery times.
To accommodate for potential deviations, we defined a maximum
timeout of 360s. For the optimization phase, the system was config-
ured to perform evaluations every 10 minutes, with a 10-minute
time horizon set for the TSF model. To predict future workloads,
we employ online ARIMA for our TSF model using the pmdarima7
python library. ARIMA was selected for its proven accuracy and
efficiency in forecasting streaming workloads, as detailed in our
previous research [16], and is favored due to its low computational
demand and minimal data requirements.

All of these default settings are designed to cover a wide range of
execution scenarios, providing good performance and should suffice
for the majority of users without requiring further adjustments.

3.3 Baselines Setup
For our comparative analysis, we included a static configuration
alongside two state-of-the-art baselines, both of which are inter-
operable with Apache Flink. As these methods do not focus on
optimizing CPU an memory allocations, we assign a full CPU core
and 4096 MB of memory to all taskmanagers. Moreover, all baseline
methods consistently used a 10s checkpoint interval.

3.3.1 Static Configuration. In our experiments, we employed a
static configuration with 24 worker nodes which aligns with Deme-
ter’s𝐶max configuration. This representing the maximum available
resources, guarantees the best latencies and recovery times due to
the highest resource allocation. This baseline serves as the standard
for comparing all other methods.

3.3.2 Flink Reactive. The first method we evaluated was Apache
Flink’s reactive mode scheduler [2]. This scheduler dynamically
optimizes cluster resources by adjusting to workload variations.
Monitoring each worker’s performance, any deviation from a spec-
ified utilization threshold prompts the scheduler to restart the DSP
job from its last successful checkpoint with an altered scaleout. Con-
figured to work with the Kubernetes Horizontal Pod Autoscaler
(HPA)8, our experiments set the HPA to target a CPU utilization of
35%, aligning with the recommended setup from the reactive mode
documentation. We experimented with several higher utilization
targets, but they consistently yielded inferior results.

3.3.3 DS2 Autoscaler. The second method we evaluated was the
DS2 Autoscaler [21], a solution designed for the dynamic scaling
of DSP jobs. It integrates historical data with real-time metrics,
employing forecasting techniques to proactively predict workload
variations. The system then makes informed scaling decisions, con-
sidering both current system state and anticipated workloads. This
is achieved by optimizing operator parallelism, which adjusts the
number of vertices in the execution graph to ensure efficient data
processing. For our evaluation, we used the implementation pro-
vided by the Flink Kubernetes Operator, configuring it in such a

7https://pypi.org/project/pmdarima/, Accessed: March 2024
8https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale, Ac-

cessed: March 2024

way as to align it with the other methods. The system used a sta-
bilization interval of 2 minute and metrics were aggregated over
1-minute windows. The target utilization was set at 35% and a
boundary of 15%. Following any scaling adjustments, a 1-minute
restart period was observed, and a 5-minute catch-up duration is
assumed to guarantee system equilibrium.

3.4 Experiments
For comparison, two experiments were conducted using established
benchmark jobs and real-world workload simulations.

3.4.1 Yahoo Streaming Benchmark (YSB) Experiment. For our first
experiment, we used the Yahoo Streaming Benchmark9. This bench-
mark simulates a streaming advertisement job, structured with
multiple advertising campaigns, each containing several individual
advertisements. Streaming sources retrieve events from a Kafka
topic, identify relevant events, and aggregate a windowed count of
these events, grouped by campaign. A key component of this setup
was the deployment of a Redis cluster10, which managed campaign
and advertisement data, streamlining event generation and data
aggregation processes. To align the benchmark with our objectives,
we enabled checkpointing and replaced the native windowing func-
tionality with the standard Flink implementation. We designed a
data generator, using a click-through rate dataset11, to emit events
characterized by attributes such as event_time, event_type, and ad_id.
From the initial 10-day dataset, we extracted a 3-day segment and
sub-sampled every 4th data point, resulting in a dataset that spans
18 hours. A graphical representation of the generated workload
is provided in Figure 6(a). This dataset is characterized by high
variability, covering a wide range of processing rates, and lacking a
discernible long-term trend.

3.4.2 Top Speed Windowing (TSW) Experiment. For our second
experiment we used a DSP job derived from the official Flink repos-
itory12. The primary focus of the job is on grouped stream win-
dowing, enabling the application of diverse eviction and trigger
policies. Each car-related event consists of attributes such as a
unique number plate, the current speed (km/h), the total elapsed
distance (meters), and an associated timestamp. The goal of the job
is to determine the top speed of each car over a span of 50 meters,
using only data from the immediate past 10 seconds. The job was
modified to enable it to consume events from and publish results
to separate Apache Kafka topics. To simulate workload variations,
represented by the changing number of vehicles over time, we used
the Sumo simulation tool to generate a 24-hour workload dataset,
specifically employing the TAPASCologne scenario13. Similar to the
YSB experiment, we reduced this to 18 hours by sub-sampling ev-
ery 4th data point and then repeating the resulting workload three
times. This resulted in a dataset characterized by a clear seasonal
pattern, with workload rates fluctuating within specific ranges, and
a weak upward trend over time. A graphical representation can be
seen in Figure 6(b). We created a generator program which would
produce events constrained by this dataset.

9https://github.com/yahoo/streaming-benchmarks/, Accessed: March 2024
10https://redis.io/, Accessed: March 2024
11https://www.kaggle.com/c/avazu-ctr-prediction, Accessed: March 2024
12https://github.com/apache/flink/; Accessed: March 2024
13https://sumo.dlr.de/docs/; Accessed: March 2024
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(a) YSB experiment: Workload rates & all configuration changes.
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(b) TSW experiment: Workload rates & all configuration changes.

Figure 5: Workloads, failure injections, & configuration changes for Demeter & state-of-the-art approaches.
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(a) YSB experiment: Average end-to-end latencies over time.
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(b) TSW experiment: Average end-to-end latencies over time.
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(c) YSB experiment: Total CPU & memory usage.
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(d) TSW experiment: Total CPU & memory usage.
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(e) YSB experiment: Resource usage for largest segment with regression.
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(f) TSW experiment: Resource usage for largest segment with regression.

Figure 6: Overview of performance comparison results for Demeter & state-of-the-art approaches.

3.5 Experimental Results
After completing the experiments, we analyzed the performance
metrics, with Figures 5(a) and 5(b) showing the workload rates over
time and scaleout decisions for all methods. The data shows that
Demeter tends to favor higher scale-out values, aligning with ex-
pectations as newly encountered workload rates trigger the use of
𝐶𝑚𝑎𝑥 , and the safety buffer hyper-parameter increases the optimal
amount of resources by 30%. Moreover, an increase in CPU usage
was consistently observed in the TSW experiment across all exe-
cutions, including static configurations. Further analysis identified
a statistically significant weak upward trend within this dataset,
likely explaining the observed increase in CPU usage.

3.5.1 Average End-to-End Latency Results: Our analysis first ex-
amines the 𝐿𝑎𝑣𝑔 of the static baseline, Demeter, and comparative
methods, shown in Figures 6(a) and 6(b) using an empirical cumu-
lative distribution function. The static configuration consistently
had latencies near 1000ms, a high proportion of optimal latencies.
Among the optimization methods, Demeter led with the most laten-
cies in the optimal range, followed by Flink Reactive and then DS2.

In the YSB experiment, Demeter and Flink Reactive achieved near-
optimal latencies in about 95% of cases, compared to DS2’s 80%.
In the TSW experiment, Demeter maintained over 95% in optimal
latencies, with Flink Reactive at about 85% and DS2 at 70%.

3.5.2 Recovery time Results: Recovery times were manually mea-
sured by analyzing consumer lag and throughput rate metrics (refer
to Section 2.3). The results, detailed in Table 3, use color highlights
to indicate performance: green for recovery times under the 180s
recovery time constraint, yellow for exceeding this constraint, and
red for surpassing the 6-minute maximum. The static configuration,
with maximum resources, set a benchmark with the fastest recov-
ery times, averaging 96s in the YSB experiment. Demeter showed
a minimal deviation in recovery times of 3.21% compared to this
benchmark, while Reactive and DS2 had deviations of 82.79% and
77.59%, respectively. In the TSW experiment, the static configura-
tion’s average recovery time was 107s, with Demeter at a 5.17%
deviation, maintaining consistent performance. Reactive and DS2
had higher deviations of 62.78% and 51.62%. These findings un-
derscore Demeter’s ability to closely match the optimal recovery
times of the static configuration, unlike the larger variances seen
with other methods. Additionally, Demeter was the method which
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Table 3: Recovery times & number of reconfigurations (Δ).

(a) YSB experiment results.

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 #17 #18 #19 #20 #21 #22 #23 Δ

Workload 30K 50K 80K 55K 25K 45K 30K 50K 35K 50K 40K 65K 45K 33K 25K 35K 45K 45K 50K 60K 65K 25K 27K –

Static 122s 95s 93s 94s 95s 92s 96s 96s 97s 96s 95s 95s 99s 94s 94s 95s 95s 96s 95s 94s 95s 96s 95s –

Demeter 123s 97s 97s 98s 90s 95s 90s 89s NR 120s 95s 96s 100s 96s NR 90s 87s NR 97s 96s 95s 96s 140s 33

Reactive 201s 200s 95s 145s 182s 255s 146s 252s 95s 165s 190s NR 143s 136s 193s 164s 185s 190s 266s 135s 152s NR 205s 87

DS2 187s 95s 125s 204s 330s 122s 6m+ 125s 6m+ 126s 95s 6m+ 125s 129s NR 95s 91s 120s 6m+ NR 155s 95s NR 77

(b) TSW experiment results.

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 #17 #18 #19 #20 #21 #22 #23 Δ

Workload 30K 50K 80K 55K 25K 45K 30K 50K 35K 50K 40K 65K 45K 33K 25K 35K 45K 45K 50K 60K 65K 25K 27K –

Static 95s 95s 95s 94s 96s 155s 98s 96s 100s 97s 96s 152s 127s 126s 95s 106s 96s 96s 98s 93s 97s 166s 95s –

Demeter 96s 95s 90s 90s 120s 127s 150s NR 90s 120s 100s 90s 116s 160s 95s NR 89s 95s 123s 120s 120s 160s 120s 30

Reactive 158s 210s 171s 175s 205s 200s 199s 170s 178s 95s 146s 198s 225s 150s 185s 220s 170s 192s 115s 170s 175s 146s 128s 49

DS2 125s 95s 95s 94s 125s 275s 6m+ 226s 95s 6m+ 127s 124s 125s 157s NR 135s NR 6m+ 95s 126s 95s 6m+ 97s 73

initiated the least number of reconfigurations (Δ). ’No Result’ (NR)
entries in our table reflect the dynamic nature of jobs; reconfigura-
tions for exactly-once processing sometimes overlap with failure
injections, leading to unsuccessful recovery attempts.

3.5.3 Resource Usage Results: Figures 6(c) and 6(d) display the cu-
mulative CPU and memory usage for both experiments, normalized
against the maximum resource usage benchmarked at 100%. For
Demeter, both the target job’s resource usage and the cost of profil-
ing are included. As expected, the static configuration consistently
showed the highest consumption. In the YSB experiment, Flink Re-
active achieved a 40% reduction in CPU and memory usage relative
to the static configuration. Demeter demonstrated a 19% reduction
in CPU usage and 37% in memory, while DS2 recorded a 14% im-
provement. Including Demeter’s profiling costs, the net resource
savings were 7% in CPU and 32% in memory usage compared to
the static configuration. Flink reactive was the best performer for
this experiment. In the TSW experiment, Demeter achieved a 20%
reduction in CPU usage and 43% in memory compared to the static
configuration. Flink Reactive showed a 17% reduction, and DS2 had
a 10% improvement. After factoring in profiling costs, Demeter’s
overall efficiency was a 3% saving in CPU and 35% in memory. In
this case, Demeter had the most efficient memory usage, while Flink
Reactive was the most efficient in terms of CPU usage.

3.6 Experimental Discussion
In both experiments, Demeter maintained latencies and recovery
times close to those of the static configuration, while also enhanc-
ing resource efficiency. Flink Reactive showed good performance in
terms of latencies in the YSB experiment; however, it was not able to
achieve comparable results in the TSW experiment. Moreover, both
Flink Reactive and DS2 had variable recovery times, often substan-
tially longer than the static configuration, indicating inconsistent

performance. For methods aimed at enhancing resource efficiency
to be considered effective, maintaining a high Quality of Service is
fundamental. If the service is not reliably available, the resulting
benefits of resource savings are irrelevant. This is further evidenced
by Demeter initiating significantly fewer reconfigurations across
both experiments, thereby minimizing disruptions to the service.
In the experiments, the only two methods that consistently met
this requirement were the static configuration and Demeter.

While the initial analysis indicates Demeter’s modest CPU usage
improvement of 7% and 3%, and a substantial decrease in memory
usage by 32% and 35% compared to the static configuration, contin-
uing the experiment could reveal further enhancements. Extending
execution beyond 18 hours would enable more profiling and the
selection of increasingly optimized configurations, thus reducing
the time spent at𝐶𝑚𝑎𝑥 . Assuming similar workload rates, we antic-
ipate a further decrease in resource usage over time. This trend is
illustrated in Figures 6(e) and 6(f), which show CPU and memory
usage over time, concentrating on the workload segments with the
highest data points in each experiment. We included regression
lines to highlight the resource usage trends. The data shows a gen-
eral decrease in resource utilization, with CPU usage potentially
dropping by 20% to 30%, and memory usage by 50% to 70%.

Similarly, if the experiment were to be extended, the annealing
factor applied to profiling would lead to a reduction in profiling
executions as knowledge is accumulated. Consequently, the cost of
profiling is expected to progressively decrease, further enhancing
Demeter’s resource efficiency. Considering this, it is possible that
Demeter would not only maintain its high performance but also
improve upon the resource usage results from the other methods.
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4 RELATEDWORK
In this section, we explore the work related to our own, examining
the domain of automatic configuration optimization.

4.1 Batch Processing Optimization
In batch processing, configuring resources to meet runtime targets
is a key challenge. In exploring methods similar to our own, we ex-
amined Bayesian Optimization in CherryPick [4], which efficiently
identifies near-optimal configurations for batch jobs using ade-
quately precise performance models. Karasu [28] likewise makes
use of this, employing MOBO and RGPE modeling for resource
optimization and introducing a strategy for profiling with shared
user data to overcome the cold start problem. Other methods focus
on modeling batch job scaleout behaviors, using historical data for
resource allocation—similar to our data gathering through profiling
runs. Ernest [34] predicts cloud resource needs by running jobs
with subsets of inputs and different configurations. Bell [32] uses
existing workload data from recurring jobs for its predictions, elim-
inating isolated training runs. In our previous work, we presented
Enel [29] which adopts a context-aware, graph-based approach for
more detailed insights within batch jobs’ synchronization barriers
by incorporating runtime metrics. Taking inspiration from these
methods, Demeter applies this to the stream processing domain.

4.2 Stream Processing Optimization
In stream processing, optimization approaches primarily focus on
elastic scaling of resources to adapt to runtime conditions. A number
of these focus on threshold monitoring and re-configuring after a
predefined threshold has been violated. Gedik et al. in [12] introduce
a control algorithm for IBM Infosphere Streams [6] that reacts to
congestion, while Dhalion [11] applies policy-driven strategies for
Heron [23]. TWRES [17] uses TSF for predicting future workloads
and adjusts resources based on a latency constraint. Prompt [3] is
a data partitioning scheme specifically for micro-batch DSPs, fo-
cused onmaintaining latency guarantees through a threshold-based
elasticity technique that dynamically adjusts execution parallelism.
Apache Flink’s Reactive Mode [2] automates the scaling process, dy-
namically adjusting resources to workload variations. Elastic Spark
Streaming [1] also adopts a similar automated scaling approach,
enhancing resource management in Spark environments.

However, the reliability of threshold-based autoscalers can be
affected by the transient nature of shared computing environments
and DSP job behaviors, leading to unnecessary adjustments. As
a result, stream processing research has more recently adopted
data-driven approaches using performance modeling for scaling
decisions. Petrov et al.[27] detail a model that bases scaling actions
on latency measurements, and DS2[21] uses historical and real-
time data for workload forecasting to dynamically scale streaming
dataflows. In our previous work with Phoebe [13], initial profiling
was conducted to establish models that map scaleout and workload
rates to latency and recovery times. TSF was then employed to pre-
dict future workloads, allowing for dynamic rescaling of resources
aimed at maintaining stable latencies and achieving optimal recov-
ery times. However, these data-driven methods can be limited by
the availability of historical data, challenging their accuracy in dy-
namic environments. In contrast, Demeter concurrently addresses

multiple configuration parameters and incorporates an efficient
profiling method for data gathering, enabling more comprehensive
optimization in stream processing.

In the context of Bayesian Optimization, a number of methods
have been proposed for the optimization of configuration param-
eters in DSP systems. Fischer et al., in [10], suggest a technique
for tuning multiple parameters that, while effective for Apache
Storm—an older DSP system—is not widely applicable, hence not
offering a generalizable solution. In [19], Jamshidi et al. present a
method for tuning configuration parameters to reduce latency and
maintain throughput. Their results are positive, but the paper does
not discuss workload rates, leading to an implicit assumption that
their optimization is designed for static workloads. ContTune [24]
focuses on a single configuration parameter which employs Con-
servative Bayesian Optimization to fine-tune DSP job parallelism
while ensuring SLA adherence. However, these methods overlook
fault tolerance and SLA-specific recovery time considerations.

4.3 Checkpoint Optimization
Another area of related work is fault tolerance, particularly the
optimization of the checkpoint and rollback recovery mechanism
in DSP systems. Here the system’s state is periodically saved, al-
lowing for restarts from the latest checkpoint after a failure. Our
approach, which involves optimizing the checkpoint interval to
enhance system performance, is related to other methods that ad-
just this parameter. In high-performance computing, some methods
determine the mean time to failure of cluster nodes and modify the
checkpoint interval to reduce downtime from failures [8, 9, 36]. In
the specific context of stream processing, [20] explore the effects
of system failures and configurations on recovery, aiding in the
development of more efficient checkpoint scheduling strategies.
Our work differs from theirs in that while they do not seek optimal
configurations for DSP jobs at runtime, Demeter actively does. In
our previous work, we also investigated parameter auto-tuning
of DSP jobs to improve end-to-end latencies and recovery time,
yet focused on optimizing checkpoint intervals while assuming
scaleouts to be static [14, 15].

5 CONCLUSION
In this paper, we presented Demeter, a method designed to en-
hance the resource efficiency of DSP jobs running in dynamically
changing environments. By utilizing TSF to predict future work-
loads and MOBO to model runtime behaviors, Demeter effectively
decides itself when to initiate short-lived parallel profiling runs
and when to proceed with optimization. This approach guides the
adjustment of multiple configuration parameters, providing near-
optimal performance as workload rates vary. Our evaluation results
show that Demeter not only matches the high performance of over-
provisioned static configurations in terms of average end-to-end
latencies and recovery times but also significantly improves re-
source efficiency. Specifically, Demeter showed improvements of
7% and 3% in CPU usage, and more substantially, 32% and 35% in
memory usage. As the experiments show, with further execution,
resource efficiency would increase, leading to additional cost sav-
ings, which is particularly important in cloud environments where
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memory resources are more expensive than CPU resources. Fur-
thermore, Demeter is designed for scenarios requiring strict data
consistency and the need for exactly-once processing guarantees.
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