
HyProv: Hybrid Provenance Management for
Scientific Workflows

Vasilis Bountris
Department of Computer Science
Humboldt-Universität zu Berlin

Berlin, Germany

Lauritz Thamsen
School of Computing Science

University of Glasgow
Glasgow, United Kingdom

Ulf Leser
Department of Computer Science
Humboldt-Universität zu Berlin

Berlin, Germany

Abstract—Provenance plays a crucial role in scientific workflow
execution, for instance by providing data for failure analysis,
real-time monitoring, or statistics on resource utilization for right-
sizing allocations. The workflows themselves, however, become
increasingly complex in terms of involved components. Further-
more, they are executed on distributed cluster infrastructures,
which makes the real-time collection, integration, and analysis of
provenance data challenging. Existing provenance systems struggle
to balance scalability, real-time processing, online provenance
analytics, and integration across different components and
compute resources. Moreover, most provenance solutions are
not workflow-aware; by focusing on arbitrary workloads, they
miss opportunities for workflow systems where optimization and
analysis can exploit the availability of a workflow specification
that dictates, to some degree, task execution orders and provides
abstractions for physical tasks at a logical level.

In this paper, we present HyProv, a hybrid provenance
management system that combines centralized and federated
paradigms to offer scalable, online, and workflow-aware queries
over workflow provenance traces. HyProv uses a centralized
component for efficient management of the small and stable
workflow-specification-specific provenance, and complements this
with federated querying over different scalable monitoring and
provenance databases for the large-scale execution logs. This
enables low-latency access to current execution data. Furthermore,
the design supports complex provenance queries, which we
exemplify for the workflow system Airflow in combination with
the resource manager Kubernetes. Our experiments indicate that
HyProv scales to large workflows, answers provenance queries
with sub-second latencies, and adds only modest CPU and memory
overhead to the cluster.

Index Terms—Provenance, Workflow Engines, Cluster Resource
Management, Online Query Processing, Scalability

I. Introduction

Scientific Workflows have become a popular tool across
scientific domains for addressing complex and large-scale
data analysis problems [10]–[12]. As workflows grow in
complexity and data volumes increase—both in terms of input
and generated output—they provide techniques for enhancing
reproducibility, scalability, and fault tolerance [13]. These
capabilities are enabled and managed by Scientific Workflow
Management Systems (SWMSs), which handle tasks such as
scheduling, managing dependencies between tasks, interfacing
with the underlying infrastructure for execution, restarting failed
tasks, and collecting and presenting provenance of the workflow
engine. [9].

As workflows demand increasing computing and storage
resources, SWMSs simplify the use of clusters by integrating
with resource managers (RMs) such as Kubernetes1 or Slurm2.
In doing so, workflow engines deliberately abstract away
execution details to improve portability and usability for
developers. Such a design implies that each workflow execution
interacts with multiple underlying components, including RMs,
operating systems, container managers, distributed storage
systems, file systems, and task runtimes. Each of these
components generate provenance at different locations, volumes,
formats, and frequencies, making it difficult to obtain a unified
and consistent picture of workflow executions.

Provenance in the context of workflow systems encompasses
a wide variety of concepts, ranging from a particular SW’s task
history to the performance characteristics of a workflow run,
the utilization of cluster resources and the workflow versioning
itself [14]. Effective provenance capture and analysis can
support the development, debugging, testing, and execution of a
SW [15]. Provenance data is usually multimodal, encompassing
various types such as time-series data, logs, execution traces,
and configuration files. Some components also generate large
volumes of data, such as detailed task execution logs and
high-frequency time-series performance metrics, while others
produce only small amounts, like schedulers and workflow ex-
ecution engines. This variability presents significant challenges
for scalable and flexible provenance management.

An effective provenance management system should enable
researchers to perform complex, workflow-aware queries across
the combined provenance data of all components, providing a
unified and transparent view of workflow execution. By complex
we mean queries that span the abstraction layers of the workflow
and the infrastructure and are not trivially derivable by existing
workflow managers or monitoring systems of the cluster. This
capability must be available not only after the workflow has
been completed but also online (during execution), facilitating
immediate insights, debugging information, and adjustments.
As SW execution continues to expand in scale and complexity,
the system should accommodate this growth without sacrificing
scalability or introducing significant overhead.

To address these requirements, there are two primary

1https://kubernetes.io/
2https://slurm.schedmd.com/

For the purpose of open access, we have applied a Creative Commons Attribution (CC BY) license to this version of our paper.



approaches to provenance data management: centralized storage
or federated queries. Most systems aggregate provenance data
into a central data store, such as a provenance warehouse,
simplifying querying but introducing significant maintenance
overhead, data duplication, and scalability issues during the
capture process as workflows grow in size and complexity [16].
Furthermore, centralized systems struggle to always have the
most up-to-date information available, which hinders their usage
for online monitoring or debugging. In contrast, a federated
approach keeps provenance data distributed across the nodes
and systems of the cluster, integrating data only when necessary
to answer specific user requests. When properly designed, this
method reduces maintenance, is easier to extend, and scales
more effectively. However, it introduces challenges in online
data integration and efficient query execution, as integrating
data from diverse sources on demand is complex. Presumably
due to such concerns, federated provenance management has
not received much attention so far.

Another restriction of existing provenance systems is that
they are typically general-purpose, i.e., designed for arbitrary
workloads and thus workload-agnostic [9]. Accordingly, they
miss opportunities for query optimization and user support
when applied to workflow systems, where the relationships of
prominent execution objects to query, such as tasks, workflows,
and dependencies, are actually predefined by a workflow
specification. Workflow-aware provenance systems should be
able to exploit this information for easier and faster query
execution.

In this paper, we propose HyProv, a new hybrid system for
managing heterogeneous provenance data that combines the
strengths of the central and federated approaches to achieve
online, scalable, and workflow-aware provenance queries. Our
design is based on two key decisions. First, we focus on
integrating the workflow management system provenance and
the infrastructure provenance. This integration reconnects the
abstracted workflow information with the physical execution
objects by tracking the events emitted by these components.
Second, we propose a hybrid architecture consisting of a central
store for workflow-specific information and a federated com-
ponent that leverages the established ecosystem of monitoring
databases and tools. This allows steering query execution
efficiently from the central store while removing the need
to create new online functionality or scalable infrastructure
from scratch (see Figure 1). To this end, HyProv introduces a
lightweight intermediate layer that translates workflow-related
queries into a mixture of centralized specification queries and
decentralized infrastructure-level queries. This layer allows
scientists and workflow developers to express complex queries
in familiar terms, while the system handles the retrieval and
aggregation of provenance data from various distributed sources.
Specifically, our work makes the following contributions:

• We present a novel system design that integrates central-
ized workflow and decentralized infrastructure provenance
data in a hybrid manner.

• We implement HyProv for the workflow system Airflow
and the distributed systems Kubernetes, Prometheus, and

ElasticSearch.
• We evaluate HyProv’s workflow-awareness, online query-

ing, scalability, and overhead experimentally using our
prototype implementation, a commodity cluster, and
synthetic workflows.

The paper is organized as follows: Section II reviews
related work, and Section III summarizes key concepts in
provenance management. Section IV details our system’s design,
components, data model, and operation. Section V presents
the implemented prototype. Section VI presents selected
experiments that showcase the effectiveness of our approach.
Finally, Section VII concludes the paper with a summary of our
findings and discusses potential directions for future research.

II. Related Work
Work on provenance management followed a range of

approaches, from stand-alone provenance stores to systems
integrated within SWMSs. Several solutions have been specifi-
cally developed for High-Performance Computing (HPC).

One typical approach, exemplified in an end-to-end manner
for the HPC Workflow System Pegasus [3], [17], is to design
an architecture that aggregates performance statistics from
various sources, correlates provenance between different layers,
and publishes them all in a centralized store. A part of the
architecture above, Stampede [5], has been adapted for the
WFMS Triana [18], employs a 3-layered model (workflow-
infrastructure model, log aggregators and loaders, querying
interface) to store and make available the provenance as
normalized logs in an SQL archive. MIDA [1] uses an adapter-
based approach for monitoring multiple workflows concurrently
and stores everything in a DBMS. ProvLake [4] similarly
integrates provenance from various sources and stores it into a
multi-modal knowledge graph. Komadu [6] follows a similar
approach but focuses on data provenance. All these systems
have low overhead but do not address adequately the scalability
issues that can arise with complex provenance queries.

Some WFMS have built-in provenance capabilities.
Nextflow [2], a widely used WFMS in genomics, focus on
reproducibility with post-execution summaries of resource
usage. However, it lacks real-time, queryable interfaces and
detailed tracking of dependencies. Similarly, Apache Airflow3,
a Python-based WFMS, uses SQL to allow tracking task states
and dependencies but does not support complex, workflow-
aware provenance queries.

Provenance management solutions that employ federated
approaches have seen limited application. SPADE [7] is such
an approach, focused solely on data provenance, that relies on
a decentralized system with each node maintaining a repository
of the provenance gathered on it. While not an implemented
provenance management system, in [8] the authors explore
building a global provenance schema and query mediation to
integrate and query provenance in three different subsystems.

Existing systems lack support for online, workflow-aware
provenance querying in a scalable manner. HyProv addresses

3https://airflow.apache.org/



this gap by integrating workflow and infrastructure provenance
within a hybrid architecture.

III. Provenance in Scientific Workflow Executions
This section provides an overview of the key aspects of

provenance management for SWs, including an introduction to
workflow systems, the generation of provenance data, and the
current approaches for querying and analyzing this information.

A. Scientific Workflows
SWs serve as structured representations for orchestrating

data analysis and computational experiments in scientific
research [19]. They are typically modeled as Directed Acyclic
Graphs (DAGs), where nodes represent tasks and edges
denote dependencies. This structured abstraction facilitates the
organization of complex data-processing pipelines, ensuring
that computations proceed according to predefined logical or
data-driven relationships.

B. Scientific Workflow management Systems
Scientific Workflow Management Systems (SWMSs) realize

these abstractions in practice. They streamline the develop-
ment, execution, and monitoring of workflows across various
infrastructures, from high-performance computing clusters
to cloud-based platforms. SWMSs are designed to handle
the growing computational demands of modern SWs, in-
cluding data-intensive applications requiring vast processing
and storage resources. By abstracting away much of the
complexity associated with distributed computing, SWMSs
allow scientists to focus on their domain-specific challenges
rather than infrastructure management. They typically offer a
certain level of portability across different systems, user-friendly
interfaces (graphical or command-line), and features such as
parallel execution of tasks, dynamic resource allocation, and
provenance capture [20]. Popular frameworks include Pegasus
and Apache Airflow, which provide robust environments to
manage and execute workflows effectively.

C. Workflow Execution
For executing a workflow, SWMS work together with

other infrastructure components, such as RMs or file systems.
Workflow execution is the process of translating a workflow’s
task definitions and dependencies into a series of executable
steps within the computational infrastructure. The execution
process begins with the SWMS constructing an initial DAG that
represents all executable tasks and their dependencies. Tasks at
the start of the DAG, without any prerequisites, are ready-to-run
immediately, while other tasks have to wait until all required
preceding tasks are completed. The SWMS interfaces with
an RM — such as Kubernetes or Slurm — to communicate
resource requirements, requesting and assigning CPU, memory,
storage, and other necessary resources for each task. The SWMS
also keeps track of tasks’ state while they are taken over by
the infrastructure, and may decide to retry in cases of failure.
The RM is of central importance to a workflow execution,
but numerous more components are involved in a workflow’s

execution, like a (distributed) file system that handles workflow
data and fault tolerance, container runtimes, and monitoring
databases that keep track of the state of the cluster and the
applications that run inside the tasks.

Another critical aspect of workflow execution, especially
in the context of provenance, is the automatic parallelization
feature provided by some SWMSs. Systems like Nextflow allow
the definition of abstract tasks, which represent high-level units
of computation. These tasks are associated with groups of input
files or parameters, enabling the SWMS to dynamically map
these inputs to concrete tasks during runtime. This means that a
single abstract task can generate an a priori unknown number of
concrete tasks, each executing independently on different input
files or data subsets. This approach offers scalable execution
with minimal user effort, as tasks can be distributed across
multiple compute resources for parallel processing. However,
it introduces additional complexity in mapping and tracking
the defined workflow to its runtime representations.

D. Provenance Generation
Provenance data in workflow environments is produced by

many components, each recording events at different levels
of detail, in varying formats, and at very different volumes.
Workflow management systems typically log high-level ex-
ecution information such as task dependencies, parameters,
and input/output files. In contrast, resource managers (e.g.,
Kubernetes, Slurm) and infrastructure services capture low-
level details such as task-to-node assignments, job states, and
failure reports. Since each component produces provenance
independently, the resulting information is highly heterogeneous
and often siloed.

Similarly, the other interacting components within the
infrastructure also produce valuable workflow provenance data
that can support understanding a workflow’s execution:

• Execution Objects: Different infrastructure environments
represent tasks through specific execution objects. For
instance, in a Kubernetes-managed workflow, tasks are
executed within pods, while in Slurm, tasks are run as jobs
on designated nodes. Capturing these execution objects and
their attributes, such as physical location or assigned/used
resources, provides insight into how tasks are deployed
and managed in different environments.

• Process Details: On each node, tasks may spawn multiple
processes to perform computations. Recording identifiers
and state changes of these processes (e.g., process IDs,
start/stop times, exit codes) provides fine-grained prove-
nance useful for debugging and reproducibility.

• File Access, Data Usage, and Transfers in Distributed
File Systems: Provenance information may include details
about files or datasets a task is accessing, such as file
paths, data volume, and timestamps. In workflows utilizing
distributed file systems like CEPH or Lustre, provenance
data also encompasses records of data transfers between
nodes, storage locations, and access details. This involves
tracking which nodes store specific data blocks, which
tasks access or transfer these blocks, and the protocols



employed for data replication and redundancy management.
By including information on data sharding, replication
factors, and file caching, provenance data ensures robust
tracking of data lineage and supports reliable monitoring
of data movement, which is crucial for understanding
workflows requiring intensive data sharing and processing
across multiple nodes.

• Error and Alert Logs: Infrastructure components, such
as the node’s operating systems and RMs, generate logs
indicating any errors or alerts during task execution.
Including these logs in provenance data allows for track-
ing failures and understanding their context within the
workflow execution.

• Resource Utilization Metrics: Provenance data often
includes detailed records of resource consumption, such
as CPU and memory usage, throughout a task’s execution.
These metrics, typically captured by monitoring tools
or the RM, are invaluable for understanding a task’s
computational demands and for optimizing future workflow
runs. For instance, tracking CPU spikes or high memory
usage can highlight resource bottlenecks or inefficiencies,
enabling better resource allocation in subsequent execu-
tions.

Each of these types of provenance information provides
essential insights but is typically siloed within individual
components of the infrastructure. How this data is stored has
a major impact on its later usability: while many systems keep
provenance locally in logs or monitoring databases, effective
provenance management requires bringing these heterogeneous
records into a form that supports integrated, workflow-aware
querying.

E. Provenance Queries

Provenance queries enable users to retrieve detailed infor-
mation about the origins, dependencies, transformations, and
resource usage of tasks and entire workflows. They allow both
real-time monitoring during execution and retrospective analysis
across past workflow runs.

Such queries can be broadly divided into online and
offline. Online queries operate while a workflow is actively
running, providing up-to-date information for debugging and
performance monitoring. They are typically limited in scope to a
single workflow and must be served with low latency, since their
value lies in enabling quick reactions to emerging issues. Offline
queries, in contrast, address large collections of historical
provenance data, supporting trend analysis, optimization of
future runs, and cross-workflow comparisons. Both modes are
essential for a robust provenance management system, as they
balance immediate insight with long-term understanding.

A further challenge arises because some workflow managers
dynamically expand abstract workflow specifications into many
concrete tasks at runtime. Provenance systems must therefore
support queries at both levels of abstraction, for example,
resolving all concrete executions of a given abstract task, to
support meaningful workflow-aware analysis.

IV. HyProv - A Hybrid Workflow Provenance Store
A. System Overview

HyProv consolidates selected, distributed provenance infor-
mation into a single connected model while preserving access
to raw data in underlying systems. For this, HyProv combines
a centralized enriched DAG (eDAG) with federated data
integration to capture and query workflow provenance across
distributed systems (Figure 1). It builds a central graph that
links workflow tasks with their execution infrastructure, while
simultaneously federating queries to underlying monitoring and
logging systems when needed. This hybrid design allows users
to query workflow provenance as if it were centralized, without
losing the scalability and online benefits of federated data
sources. The architecture is organized around four conceptual
components:

• eDAG: the central graph-structured model that represents
workflow tasks, their dependencies, and execution context.

• Event Mediation Layer: connectors to heterogeneous
provenance sources that translate raw signals into struc-
tured events; this layer also includes an event buffer that
decouples producers from consumers and preserves source
ordering.

• Event Processing Module: a coordinating component that
consumes buffered events, applies idempotent updates, and
continuously enriches the eDAG.

• Query Interface: an external access layer that exposes
provenance data through a single set of semantics, sup-
porting both “local” queries on the central model and
federated queries across distributed stores.

The following sections explain each component in detail.

B. eDAG model
The eDAG is derived from the workflow’s execution DAG,

where each node represents a concrete task instance and
directed edges indicate dependencies between tasks. Nodes
are enriched with attributes that link the task to its execution
environment—such as the specific execution unit (container
or process ID), the cluster node where it ran, start and
end timestamps, and current status (e.g., queued, running,
succeeded).

For workflows managed by systems with a static DAG
(e.g., Airflow or Pegasus), the eDAG can be initialized in
full before execution begins, based on the known task graph. In
contrast, for workflows with dynamic engines (e.g., Nextflow
or Snakemake) where the DAG unfolds at runtime, the eDAG
is built incrementally: new task nodes are added as tasks
become ready, and they are connected to their predecessors
as dependencies resolve. In both cases, the eDAG provides a
consistent, up-to-date representation of the workflow execution.

During execution, the eDAG is progressively enriched with
events. As tasks transition through states, the event processor
updates the corresponding node’s attributes (for example,
recording when a task starts or finishes and linking the task
to a specific pod and node in the cluster). This continuous
enrichment yields a live, integrated view of the workflow and its



Execution Infrastructure

WF Adapter
(Python)

RM Adapter
(Python)Task

(Pod)

Workflow Engine
(Airflow)

Spawns

Query Interface

Query Endpoints
(JSON/REST)

Query Federation
Module (Python)

Monitoring Databases

Time Series Database (Prometheus, resource conumption
metrics)

Document Store (Elasticsearch, logs)

Queries

Queries

Event Mediation Layer & Processing Module

Buffer (Redis) Event Processing Module (Python)Pulls events

Sends events Sends events

Central Provenance Store

eDAG (Redis)Sends 
Updates Queries

Resource Manager
(Kubernetes)

Controls

User

Queries/Results

Monitor

Fig. 1. HyProv system architecture, with implementation software noted in parentheses. The core HyProv components—the Event Mediation Layer &
Processing Module (blue), the Central Provenance Store (green), and the Query Interface (purple)—form the core of the system. They integrate with existing

infrastructure components, shown in black and red, such as the workflow engine (Airflow), resource manager (Kubernetes), and monitoring databases
(Prometheus, Elasticsearch).

platform. By capturing links between logical tasks and physical
execution units, the eDAG re-integrates context that would
otherwise be scattered across workflow logs and infrastructure
monitors. The result is a single graph that can be queried for
both high-level workflow provenance and low-level execution
details.

C. Event Mediation Layer

This layer connects HyProv to heterogeneous provenance
sources and turns their raw signals into loosely structured
events.

Source–specific adapters attach to workflow and infrastruc-
ture components (e.g., WFMS scheduler logs, RM/Kubernetes
event streams) and perform a lightweight, per–record normaliza-
tion, harmonize timestamps, and apply minimal de–duplication.
After this normalization step, adapters emit the structured events
into a event buffer. The buffer decouples event production from
consumption, absorbing short–term bursts and regulating flow
between components. It ensures that the Processing Pipeline
operates on uniform events rather than heterogeneous raw logs,
while preserving consistent semantics across sources.

D. Event Processing Module

The Event Processing Module is the bridge between incoming
event streams and the provenance graph. Whereas adapters
expose events from heterogeneous sources, the module decides
which of these are relevant for provenance and translates them
into structured updates. This filtering step is essential, as
infrastructure logs typically contain a large volume of low-
level noise that is unrelated to workflow execution.

Relevant events are then categorized into a small set of
canonical types (e.g., task_running, task_succeeded,
task_failed). For each categorized event, the module
extracts the identifiers needed to connect it to the workflow con-
text, such as task names, container instances, node allocations,
or abstract tasks.

The Event Processing Module thus acts as a convergence
point: it filters for provenance relevance, normalizes hetero-
geneous events into a uniform event vocabulary, and applies
them to enrich the eDAG. As workflows progress, the graph is
continuously updated with task and resource states, providing a
coherent and up-to-date view of workflow execution. The raw
event streams may not remain available in their original sources.
HyProv, on the other hand retains the relevant structured
provenance info. By maintaining these associations it enables
the connection of data points that would otherwise remain
unlinked due to the dynamic and distributed nature of the
environment.

E. Query Processing Layer

The Query Processing Layer provides users with a uni-
fied way of accessing provenance information. It hides the
complexity of multiple data sources behind a single interface
and presents queries against the provenance graph as if all
relevant information were available in one place. In this way,
clients interact with HyProv through a coherent query interface,
without needing to know which parts of a query can be
answered locally and which require data from external systems.

We distinguish between two types of queries. Local queries
operate directly on the evolving provenance graph (eDAG).
They answer questions about workflow execution that can be
derived from the graph alone, such as the state of tasks, their
dependencies, or lineage relationships. These queries remain
self-contained and do not require access to external databases.

Federated queries, by contrast, combine provenance infor-
mation from the eDAG with additional data from distributed
monitoring or infrastructure systems. For example, a query
may identify all tasks of a workflow in the eDAG and then
retrieve their resource usage metrics from a time-series store.
In this case, the eDAG provides the structural and contextual
information, while the federated sources contribute performance
or system-level details. The Query Processing Layer coordinates



these two sides, aligning identifiers and timescales so that the
user receives a single, consolidated answer.

In this way, the Query Processing Layer acts as both
an access point and an integration point: it makes local
provenance immediately accessible while also enabling cross-
cutting questions that span multiple systems, all through the
same interface.

V. Implementation
We have developed a prototype of HyProv to validate its

design and evaluate its performance. The prototype integrates
popular open-source tools for workflow execution, container
orchestration, monitoring, and logging, tied together by our
provenance capture and query layer. Specifically, we use Apache
Airflow as the WMS, Kubernetes as the cluster resource
manager, Prometheus for metric monitoring, Elasticsearch for
log storage, and a Python-based in-memory graph (backed by
Redis) to maintain the eDAG and event queue. The following
describes the prototype’s components and how they interact.

A. eDAG in Redis
In the prototype, the eDAG is implemented directly in Redis,

without a separate graph library. Redis maintains two kinds of
structures: (i) a set of relationships that capture dependencies
between tasks and map abstract tasks to their concrete instances,
and (ii) a set of task attributes that store execution-related details
such as status, pod name, node assignment, and timestamps.

Table I shows an example of task attributes as stored in
Redis for a concrete task instance. In this example, the task
node cpu_intensive_task_1 records its abstract task
identifier, last status update time, execution status, pod name,
and the node where it was executed.

TABLE I
Attributes of an eDAG Node

Attribute Exemplary value
Task Name cpu intensive task 1
Abstract Task Name cpu intensive task
Last Status Update 2024-12-11 17:08:54.964 UTC
Current Status task succeeded
Pod Name cpu-intensive-task-1-dff41d38f92a4
Node Name hu-worker-c25

B. Workflow Management with Airflow
In our prototype deployment, Apache Airflow orchestrates

the workflow’s execution. Airflow is configured to run on
Kubernetes, where each task of the workflow is executed in a
separate pod. Airflow’s scheduler generates logs and events as it
queues and launches tasks. These include task state transitions
(e.g., when a task is queued, started, retried, succeeded, or
failed) along with timestamps and task identifiers.

C. Kubernetes as Resource Manager
We use Kubernetes as the cluster Resource Manager to run

the workflow tasks in containers. Kubernetes is responsible for
scheduling each containerized task onto the available nodes,

handling task isolation and retries, and managing resource
allocation according to the cluster’s capacity. As tasks are
scheduled and executed, Kubernetes produces a stream of events
that we tap into for provenance purposes.

D. Adapters and Event Integration
Adapters are deployed as sidecar containers alongside the

event processor and Redis. This ensures they run close to the
data sources they monitor, while remaining loosely coupled to
the core provenance logic.

Each adapter is tailored to its source system. The Airflow
adapter watches the scheduler logs to detect task state changes
and emits events such as task_queued, task_running,
or task_succeeded. The Kubernetes adapter subscribes to
the event stream of the cluster, reporting provenance-relevant
events such as pod assignments, scheduling decisions, or failure
notifications.

Events are placed into the Redis queue, from which the
central event processor consumes them.

E. Elasticsearch for Logs
Elasticsearch stores unstructured and semi-structured logs

produced during workflow execution, such as application
output, container logs, and system alerts. In the prototype, it
provides full-text indexing and fast search capabilities, allowing
provenance queries that require keyword filtering or log-based
diagnostics.

F. Prometheus for Metrics
Prometheus captures time-series metrics from the Kubernetes

cluster, including CPU, memory, and I/O usage of pods
and nodes. These high-frequency measurements are essential
for answering federated provenance queries about resource
consumption.

1) API Overview: Each API endpoint is associated with
a query template specific to the underlying databases being
queried. The templates include placeholders for infrastructure
entities. When an endpoint is called, the relevant information
is fetched from the eDAG, and the corresponding infrastructure
entities are extracted. Afterwards, they are used to fill the
placeholders in the query template. Results from the endpoint
call are returned as JSON responses.

The following API endpoints provide access to various task
and workflow details, with query parameters allowing for fine-
grained filtering based on execution time, task status, and other
relevant criteria.

VI. Evaluation
This section describes the experimental setup, including the

infrastructure configuration, the workflows used, the queries
we will be executing through HyProv. The results of our
experiments assess HyProv’s workflow-awareness, scalability,
ability to work in an online manner, and the additional load it
puts on the cluster resources.

We do not include a direct comparison with existing
provenance systems for two reasons. First, several of our



TABLE II
HyProv API Endpoints and Parameters

Local Query Endpoints Description
/get/tasks/{task_id} Retrieve task details
/get/workflow/nodes List all workflow nodes
/get/workflow/abstract_tasks Retrieve abstract tasks
/get/workflow/tasks Retrieve workflow tasks
/get/node/tasks/ List tasks for a node

Federated Query Endpoints Description
/get/tasks/{task_id}/CPU CPU usage data
/get/tasks/{task_id}/RAM RAM usage data
/get/tasks/{task_id}/logs Task logs

Query Parameters Description
start, end Time interval for query
task_status Filter by task status
abstract_id Abstract task identifier
parent_of, child_of Parent or child task filter
node_id Identifier of compute node
last_status_update Last status change timestamp
full_text_query Search string for logs

representative queries are not directly expressible in many
prior frameworks, which typically separate workflow-level and
infrastructure-level provenance. Second, comparable systems
such as Komadu and Pegasus are primarily designed for
HPC and grid environments, while others like Provlake target
cloud-native deployments but follow different architectural
assumptions. While such an evaluation would be valuable,
we consider it out of scope for the present work.

A. Experimental Setup
The experiments are conducted on a Kubernetes cluster

consisting of four homogeneous nodes. System services, in-
cluding Airflow, Prometheus, Elasticsearch, and the HyProv
components, run on dedicated master nodes. Each node is
equipped with an Intel Xeon Silver 4314 CPU (16 cores, 32
threads, base frequency 2.40 GHz, turbo up to 3.40 GHz). In
total, each node provides 32 hardware threads. The nodes have
256 GB of DDR4 memory, configured as eight 32 GB ECC
DIMMs (3200 MT/s, operating at 2666 MT/s). For storage, each
node provides local disks alongside a Ceph cluster; however,
the synthetic workflows in our experiments do not use the
distributed storage backend.

The cluster runs Kubernetes v1.27.7 as the resource manager,
with container orchestration based on containerd. Workflow
execution is managed by Apache Airflow v3.0.1 using the
CeleryExecutor and the KubernetesPodOperator for tasks.
Monitoring data is collected using Prometheus (deployed via
Prometheus Operator v0.82.2) with a 10-second scraping inter-
val, while workflow and system logs are stored in Elasticsearch
v9.1.0. All nodes run Ubuntu 22.04.4 LTS as the operating
system.

The synthetic workflow is designed to assess the system’s
scalability and query processing under controlled conditions.
It consists of CPU-intensive, memory-intensive, and combined
tasks, each defined with fixed resource profiles. This workflow
is executed in three configurations (small: 10 tasks; medium:
100 tasks; large: 1000 tasks) to simulate varying task loads.

While large-scale HPC workloads may involve tens or even
hundreds of thousands of tasks, many typical scientific work-
flows consists of hundreds to a few thousand tasks, which our
experimental configurations are designed to represent.

B. Workflow-Aware Querying

We showcase three queries that demonstrate the style of
queries HyProv is capable of processing. These queries are
representative of typical real-life provenance questions that
require combining workflow-level abstractions with runtime
and infrastructure information. To ensure comparability, we use
synthetic workflows of multiple sizes in our experiments. We
do not report performance numbers in this subsection (those
results are presented later from Subsection VI-C onwards);
rather, we use this subsection to motivate and explain the
nature and mechanics of the query processing.

Each query demonstrates how HyProv leverages the eDAG
structure and, when necessary, external sources such as
Prometheus or Elasticsearch to provide answers that would
not be possible using individual systems alone. As described in
Section V-F1, these queries are executed via the HyProv API,
with local queries relying solely on the eDAG, and federated
queries involving integration with monitoring systems.

1) What node were the failing tasks on?: When executing a
large-scale workflow on a cluster, some of the individual task
executions may fail. These failures are often associated with
problems on the node where they were scheduled. Identifying
whether such failures are concentrated on a single node or dis-
tributed across the cluster is a common task for workflow man-
agers, as it supports debugging and diagnosis. This information
helps determine whether mitigation should focus on isolating
a faulty node or on more general rescheduling strategies. Our
objective is therefore to identify the physical nodes on which
tasks have failed. We formulate the query to the API endpoint:
/get/workflow/tasks?task_status=failed

The endpoint returns all failed concrete tasks, along with
their associated metadata, including node assignments and
status. The response is then aggregated on the client side into
a set of nodes that experienced task failures. This is a local
query, since all required data (task status and node identifiers) is
already present in the eDAG. No access to external monitoring
systems is required.

2) What is the CPU and memory usage of this abstract
task?: This query retrieves the resource usage of all task
instances corresponding to a specific abstract task. In practice,
workflow managers often need to determine whether a given
task consistently consumes more or fewer resources than
expected. For instance, if a task regularly underutilizes its
allocations, requests can be lowered to free cluster capacity,
while tasks that exceed expectations may require higher resource
requests or scheduling on dedicated nodes. Such queries are
therefore essential for informed resource tuning and cluster
optimization.

The user issues the following HyProv API calls, providing
the abstract task identifier as a query parameter:



• /get/tasks/CPU?abstract_task=
{abstract_task_id} — to retrieve CPU usage;

• /get/tasks/RAM?abstract_task=
{abstract_task_id} — to retrieve memory
usage.

Upon receiving the query, HyProv first filters the eDAG to
identify all concrete task instances associated with the given
abstract task. It then resolves each instance to its corresponding
execution object (i.e., Kubernetes pod) and extracts the relevant
runtime intervals. Finally, having gathered this vital information,
it queries Prometheus to retrieve CPU and memory usage data
for those pods.

This is a federated query, as it combines logical
workflow-level information (abstract-to-concrete resolution)
with infrastructure-level metrics stored in an external mon-
itoring system .

Figure 2 shows an example visualization of the data retrieved
by running Query 2 CPU usage across multiple executions of
a single abstract task in the medium-size synthetic workflow.

18:21:30 18:21:40 18:21:50 18:22:00 18:22:10
Time (UTC)

1

2

3

4

5

6

7

C
PU

 c
or

es
 (s

um
 o

f r
at

es
)

Aggregated CPU usage for abstract task 'combined_intensive_task'

Fig. 2. CPU usage for all instances of a specific abstract task.

3) What tasks that depend on this particular task emitted a
warning in their logs?: This query investigates whether any
tasks that are downstream of a given task, i.e., tasks that directly
depend on its output, have emitted warning messages during
execution. In real workflows, such warnings can indicate partial
data issues or degraded performance that may propagate along
dependency chains. Detecting them is therefore essential for
assessing whether localized problems affect subsequent tasks
and for deciding if workflow outputs remain reliable.

To make this query evaluable in a controlled setting, we
slightly modify the synthetic workflow so that the “com-
bined intensive” tasks emit the word warning in their logs.
This allows us to simulate warning conditions without relying
on actual runtime failures.

To express this query using the HyProv API, the user issues
a single call to the task log endpoint, filtered using query
parameters:

• /get/tasks/logs?child_of={task_id}
&full_text_query=warning

Here, child_of identifies the dependent tasks via the
eDAG, and full_text_query restricts the result to those
that emitted warning messages in their logs.

HyProv processes this query by resolving dependencies
through the eDAG information stored in Redis, where each

task edge captures dependency links. For the relevant tasks,
it gets relevant data (pod, time information, status). With this
information, and the information provided in the API endpoint,
it builds and issues a single query to Elasticsearch.

This is again a federated query, combining workflow-level
dependency resolution with external log inspection. It highlights
HyProv’s ability to unify structural provenance with runtime
observability in a single, declarative query.

C. Scalability Analysis

This section evaluates HyProv’s ability to scale with in-
creasing workflow sizes by measuring query response times
across small, medium, and large configurations of the synthetic
workflow. We benchmark all three representative queries
presented earlier, each executed three times per configuration.
To ensure consistency, the system cache is cleared between
runs, and query response times are measured from the moment
the request is issued until the response is fully retrieved.

1) What node were the failing tasks on?: Table III presents
the results for the first query, which retrieves the set of failed
tasks and the nodes they ran on. For this query, the reported
time reflects the duration required to collect the full list of failed
tasks, including their associated node identifiers, as returned
by the eDAG. The final step of aggregating or formatting the
set of nodes is performed client-side and is not included in the
measured query time.

As explained above, this is a local query, executed entirely
on top of the in-memory Redis store. Expectedly, query times
scale much more favorably than the number of tasks: from 10
to 1000 tasks, the average response time increases from 6 ms
to 129 ms. This non-linear growth reflects the efficiency of
Redis-based querying and the absence of external system calls.

TABLE III
Query Response Times for Query 1 (Local Query: Failed Tasks with

Node Info)

Configuration # of Tasks Min (ms) Avg (ms) Max (ms)
Small 10 5.704 5.768 5.837
Medium 100 13.419 14.507 16.539
Large 1000 119.538 124.338 129.149

2) What is the CPU and memory usage of this abstract task?:
The second scalability experiment measures the time required
to execute the federated query that retrieves CPU usage for all
instances of a given abstract task. This query was introduced
earlier and relies on Prometheus as the backend for time-series
metrics.

HyProv internally resolves the abstract task to all concrete
task instances and their runtime intervals, then issues a single
time-bounded PromQL query to Prometheus to compute CPU
usage over time.

Table IV presents the response times for this query. Unlike
the local query in the previous experiment, the response time
here reflects network latency and the cost of evaluating the
PromQL expression over the selected time range. The scaling
remains sub-linear thanks to HyProv’s in-memory resolution



of execution metadata and the use of a single aggregated query
per metric type.

TABLE IV
Query Response Times for Query 2 (Federated Query: CPU Usage of

Abstract Task)

Configuration # of Tasks Min (ms) Avg (ms) Max (ms)
Small 10 11.1 11.7 12.2
Medium 100 17.0 19.9 21.9
Large 1000 104.0 115.8 126.3

3) What tasks that depend on this particular task emitted
a warning in their logs?: The third scalability experiment
measures the time required to execute the federated query that
identifies which downstream tasks of a given task emitted
warning messages during execution. As described earlier,
HyProv first resolves all direct child tasks via the eDAG using
its knowledge of the DAG, and then queries Elasticsearch for
log entries containing the string warning for the execution
objects resolved in the previous step. To create controlled test
conditions, we modify the synthetic workflow so that some
tasks emit the word warning in their logs , simulating fault-
like behavior without relying on actual runtime errors.

The measured times include both the dependency resolution
in Redis and the subsequent log search in Elasticsearch. Table V
presents the results. While response times are naturally higher
than for purely local queries, they remain in the range of
hundreds of milliseconds even for the large configuration.

TABLE V
Query Response Times for Query 3 (Federated Query: Downstream

Tasks Emitting Warnings)

Configuration # of Tasks Min (ms) Avg (ms) Max (ms)
Small 10 57.3 65.3 72.6
Medium 100 65.6 68.0 71.2
Large 1000 122.2 125.3 129.5

D. Online Querying
In this subsection, we evaluate HyProv’s online capabilities.

Because Prometheus and Elasticsearch are widely used and
highly optimized backends, we treat their internal query engines
as black boxes and focus instead on HyProv’s contribution to
end-to-end freshness. Specifically, we measure the ingestion
latency, defined as the time from when an external event occurs
to when the corresponding provenance state becomes available
in the eDAG.

We conducted five independent runs for each workflow size
(small, medium, and large) to measure HyProv’s ingestion
latency. For each event, we record the time of occurrence at the
source (Airflow or Kubernetes) and the time the corresponding
update becomes available in the eDAG. We then report the
distribution of these latencies using the median (p50), 95th
percentile (p95), and the maximum time across all observed
events. These values provide a representative view of typical
ingestion delay as well as the system’s behavior under load in
the latency tail.

Table VI summarizes the results. Latencies scale modestly
with workflow size, growing sub-linearly with the number of
tasks, and even at the largest configuration, the tail latencies
(p95) remain comfortably below one quarter of a second.

TABLE VI
Ingestion Latency from Event Observation to eDAG Availability

Configuration # of Events p50 (ms) p95 (ms) Max (ms)
Small 250 1.992 3.693 5.074
Medium 2265 3.471 24.963 38.161
Large 24185 23.087 130.683 174.045

E. Overhead Measurements
To quantify HyProv’s resource overhead, we executed the

large synthetic workflow—the most demanding configura-
tion—five times and measured CPU and memory consumption
across all core components (adapters, Redis, eDAG, and
processing). Table VII reports the minimum, average, and
maximum utilization observed across runs. CPU demand
remained very low, averaging only 0.06 cores and never
exceeding 0.23 cores, while memory consumption was stable
at around 1.46 GiB, with only minor fluctuations between
1.43 GiB and 1.48 GiB. These findings demonstrate that HyProv
imposes only limited overhead even under the most resource-
intensive workload.

TABLE VII
HyProv Overhead on Large Synthetic Workflow (aggregated across

five runs)

Metric Min Avg Max
CPU (cores) 0.005 0.064 0.229
Memory (GiB) 1.426 1.465 1.481

VII. Conclusion
This paper introduced HyProv, a hybrid provenance manage-

ment system that makes workflow executions first-class citizens
by enabling workflow-aware queries across both workflow and
infrastructure layers. Unlike centralized approaches, HyProv
combines online processing with a federated design that
stores only compact eDAG execution data while reusing
existing provenance and monitoring systems. This architecture
ensures scalability and responsiveness without duplicating large
volumes of data. Our evaluation confirms that HyProv remains
lightweight in practice: even under the most demanding work-
flow configuration, CPU usage of the processing components
averaged only 0.06 cores and never exceeded 0.23 cores, while
memory consumption stayed stable around 1.46 GiB. Moreover,
the system scales sublinearly with workflow size, maintaining
modest overhead even as the number of tasks and events
increases exponentially. Together, these results demonstrate
that HyProv provides workflow-aware, scalable, and online
provenance management with limited resource costs.

Future work may explore how the collected metadata can
support the optimization of external provenance and monitoring
databases, for example, through improved indexing or query



planning—particularly for queries that span multiple federated
systems. It would also be valuable to assess HyProv’s exten-
sibility by integrating additional provenance sources beyond
Kubernetes (e.g., storage or filesystem services) and by applying
it to further workflow management systems and infrastruc-
ture backends. Lastly, a systematic comparison with other
provenance approaches—both centralized and hybrid—would
be a valuable direction for future work, helping to clarify
the trade-offs in design, deployment complexity, and query
expressiveness.

Acknowledgments

We acknowledge funding from the Deutsche Forschungs-
gemeinschaft through the SFB 1404 FONDA (Project-ID
414984028).

References
[1] Souza, R., Skluzacek, T., Wilkinson, S., Ziatdinov, M. & Da Silva, R.

Towards Lightweight Data Integration Using Multi-Workflow Provenance
and Data Observability. 2023 IEEE 19th International Conference On
E-Science (e-Science). 2023.

[2] Di Tommaso, P., Chatzou, M., Floden, E., Barja, P., Palumbo, E. &
Notredame, C. Nextflow Enables Reproducible Computational Workflows.
Nature Biotechnology. 2017.

[3] Papadimitriou, G., Wang, C., Vahi, K., Da Silva, R., Mandal, A., Liu, Z.,
Mayani, R., Rynge, M., Kiran, M., Lynch, V., Kettimuthu, R., Deelman,
E., Vetter, J. & Foster, I. End-to-End Online Performance Data Capture
and Analysis for Scientific Workflows. Future Generation Computer
Systems. 2021.

[4] Souza, R., Azevedo, L., Thiago, R., Soares, E., Nery, M., Netto, M., Vital,
E., Cerqueira, R., Valduriez, P. & Mattoso, M. Efficient Runtime Capture
of Multiworkflow Data Using Provenance. 2019 15th International
Conference On E-Science (e-Science). 2019.

[5] Vahi, K., Harvey, I., Samak, T., Gunter, D., Evans, K., Rogers, D.,
Taylor, I., Goode, M., Silva, F., Al-Shakarchi, E., Mehta, G., Jones, A.
& Deelman, E. A General Approach to Real-Time Workflow Monitoring.
2012 SC Companion: High Performance Computing, Networking Storage
And Analysis. 2012.

[6] Suriarachchi, I., Zhou, Q. & Plale, B. Komadu: A Capture and
Visualization System for Scientific Data Provenance. Journal Of Open
Research Software. 2015.

[7] Gehani, A., Kim, M. & Malik, T. Efficient Querying of Distributed Prove-
nance Stores. Proceedings Of The 19th ACM International Symposium
On High Performance Distributed Computing. 2010.

[8] Ellqvist, T., Koop, D., Freire, J., Silva, C. & Strömbäck, L. Using
Mediation to Achieve Provenance Interoperability. 2009 Congress On
Services - I. 2009.

[9] Pérez, B., Rubio, J. & Sáenz-Adán, C. A Systematic Review of Provenance
Systems. Knowledge And Information Systems. 2018.

[10] Yates, J., Lamnidis, T., Borry, M., Valtueña, A., Fagernäs, Z., Clayton,
S., Garcia, M., Neukamm, J. & Peltzer, A. Reproducible, Portable, and
Efficient Ancient Genome Reconstruction with Nf-Core/Eager. PeerJ.
2021.

[11] Lehmann, F., Frantz, D., Becker, S., Leser, U. & Hostert, P. FORCE on
Nextflow: Scalable Analysis of Earth Observation Data on Commodity
Clusters. Proceedings Of The CIKM 2021 Workshops. 2021.

[12] Schaarschmidt, J., Yuan, J., Strunk, T., Kondov, I., Huber, S., Pizzi,
G., Kahle, L., Bölle, F., Castelli, I., Vegge, T., Hanke, F., Hickel,
T., Neugebauer, J., Rêgo, C. & Wenzel, W. Workflow Engineering in
Materials Design within the BATTERY 2030+ Project. Advanced Energy
Materials. 2022.

[13] Liew, C., Atkinson, M., Galea, M., Ang, T., Martin, P. & Hemert,
J. Scientific Workflows: Moving Across Paradigms. ACM Computing
Surveys. 2016.

[14] Khan, F., Soiland-Reyes, S., Sinnott, R., Lonie, A., Goble, C. & Crusoe,
M. Sharing Interoperable Workflow Provenance: A Review of Best
Practices and Their Practical Application in CWLProv. GigaScience.
2019.

[15] Davidson, S. & Freire, J. Provenance and Scientific Workflows: Chal-
lenges and Opportunities. Proceedings Of The ACM SIGMOD Interna-
tional Conference On Management Of Data (SIGMOD). 2008.

[16] Herschel, M., Diestelkämper, R. & Ben Lahmar, H. A Survey on
Provenance: What for? What Form? What From?. The VLDB Journal.
2017.

[17] Deelman, E., Vahi, K., Juve, G., Rynge, M., Callaghan, S., Maechling,
P., Mayani, R., Chen, W., Ferreira da Silva, R., Livny, M. & Wenger,
K. Pegasus, a Workflow Management System for Science Automation.
Future Generation Computer Systems. 46, 2015.

[18] Harrison, A., Taylor, I., Wang, I. & Shields, M. WS-RF Workflow
in Triana. International Journal Of High Performance Computing
Applications. 2008.

[19] Deelman, E., Gannon, D., Shields, M. & Taylor, I. Workflows and E-
Science: An Overview of Workflow System Features and Capabilities.
Future Generation Computer Systems. 2009.

[20] Liu, J., Pacitti, E., Valduriez, P. & Mattoso, M. A Survey of Data-
Intensive Scientific Workflow Management. Journal Of Grid Computing.
2015.

[21] Bux, M. & Leser, U. Parallelization in Scientific Workflow Management
Systems. ArXiv:1303.7195 [cs]. 2013.


