
Héctor: A Framework for Testing IoT Applications
Across Heterogeneous Edge and Cloud Testbeds
Ilja Behnke

i.behnke@tu-berlin.de
Technische Universität Berlin

Lauritz Thamsen
lauritz.thamsen@tu-berlin.de
Technische Universität Berlin

Odej Kao
odej.kao@tu-berlin.de

Technische Universität Berlin

ABSTRACT
As a result of the many technical advances in microcomputers and
mobile connectivity, the Internet of Things (IoT) has been on the
rise in the recent decade. Due to the broad spectrum of applications,
networks facilitating IoT scenarios can be of very different scale
and complexity. Additionally, connected devices are uncommonly
heterogeneous, includingmicro controllers, smartphones, fog nodes
and server infrastructures. Therefore, testing IoT applications is
difficult, motivating adequate tool support.

In this paper, we present Héctor, a framework for automatic
testing of IoT applications. Héctor allows the automated execution
of user-defined experiments on agnostic IoT testbeds. To test appli-
cations independently of the availability of required devices, the
framework is able to generate virtual testbeds with adjustable net-
work properties. Our evaluations show that simple experiments can
be easily automated across a broad spectrum of testbeds. However,
the results also indicate that there is considerable interference in
experiments, in which many devices are emulated, due to the high
resource demand of system emulation.

KEYWORDS
application testing, virtual testbeds, IoT architectures, edge com-
puting, distributed stream processing

1 INTRODUCTION
The advances in network technologies and computing capabilities
of embedded systems are leading to an increasing amount of small
devices being connected to the internet in many fields. This ob-
servation, called the Internet of Things (IoT), is already widely in
productive use. Examples can be found in smart city applications
[4], networked and automated production environments, where
production cycles of thousands of parts are monitored individu-
ally [11], and in autonomous driving research [13].

This development, however, also comes with several challenges,
especially when regarding the feasibility of large-scale implemen-
tations. With the rapid growth of the IoT, an increasing amount of
data is generated outside of high performing computing backbones
such as server farms and clouds. Moreover, data generation happens
highly fragmented and in a geo-distributed manner [15]. As many
IoT appliances require low latencies, one of the main challenges
is the reduction of transport and processing times. This, and the
vast amount of data created by large sensor networks, led to the
establishment of the edge and fog computing approaches [2, 19].
By pulling computing tasks towards the point of data creation and,
thereby, relieving the central computing nodes, networks are disen-
cumbered. Where possible, data filtering and aggregation is moved
to small to medium-sized computers in the vicinity of the sensors.

Implementing this, extensions for distributed processing platforms
that incorporate edge resources have been proposed [10, 18].

However, the resulting complexity of the IoT make the develop-
ment and testing of such systems a difficult task, where aside of
the unsteadiness of many IoT networks, the number of devices also
makes it difficult to properly develop and test large-scale systems.
Hence, an adequate means to support changes in testbed scale—
taking into account heterogeneity of devices, complex dataflows,
and with the ability to support different kinds of streaming jobs—is
necessary. Since IoT testbeds need to scale not only in heterogeneity
but should also match the size of large sensor networks, small lab-
based experiments must be expanded into virtual environments [7].

Addressing the challenges of IoT application testing, this paper
makes the following contributions:

(1) An approach for a testbed-agnostic IoT testing framework,
which we call Héctor

(2) An implementation of a prototype of our approach using a
Python API and edge device emulation

(3) An empirical evaluation of the prototypical implementation
of our testing framework and emulation approach

The following section will cover some of the technical back-
ground. Section 3 presents other approaches for IoT testing. Section
4 explains our approach and testing process. Section 5 contains
specifics about the used systems and performed evaluations. Lastly,
Section 6 concludes this paper and gives an outlook on future work.

2 BACKGROUND
This section presents the technologies used in our approach.

2.1 Distributed Dataflows
Increasingly IoT applications make use of edge and fog computing
approaches due to their locally wide spread device deployment.
At the same time, the collected and processed data is produced
continuously by sensors. The resulting data streams make the pro-
cessing of acquired data in batches counter-productive. Therefore,
IoT applications typically use stream processing approaches.

Streaming applications are represented by directed graphs where
vertices are operations and edges are data streams. Data streams are
possibly infinite sequences of data elements, oftentimes represented
asmessages or key/value pairs. Streaming applications thereby are a
highly pipelined model of data-parallel computing [5]. To facilitate
the streaming methodology, higher order operators are used for the
implementation of functions inside a dataflow graph. These higher
order operators constrict functions to certain sets of parameters
and results to fit into the streaming framework and to ensure the
expected functionality.



Behnke and Thamsen and Kao

2.2 Virtualization
For the deployment of stream processing tasks dataflow platforms
oftentimes provide interfaces for operating system level (OS-Level)
virtualization solutions. OS-Level virtualization puts the virtualiza-
tion layer right above the operating system of the host machine.
The operating system offers separated operation environments to
so called containers which share hardware and operating system.
One computer can thereby offer multiple isolated machines with
different execution environments simultaneously [6].

The lowest layer of virtualization exists at the instruction set
level. Here, instructions of virtualmachines never directly go through
the host CPU. Instead, all instructions, including calls to hardware
resources are translated before being issued to the CPU. This ap-
proach facilitates setups where the virtual guests and the host are
not running on the same instruction set. Due to the high translation
cost, the gained support of a high number of platforms comes with
a significant performance penalty [6].

Themachine emulator Qemu is one of the most used system emu-
lators. It currently supports the emulation of 22 different platforms.
In its system emulation mode a full computer can be emulated,
including one or more processors as well as peripheral devices [1].
In addition to the emulation of CPUs, Qemu emulates devices such
as displays, serial ports, hard disks, and network cards. The possi-
bility to emulate specific embedded devices by adding new machine
descriptions and devices makes Qemu an interesting tool for the
parallel virtualization of sets of heterogeneous devices as found in
the IoT.

3 RELATEDWORK
This section presents an overview of several commercial and aca-
demic network emulation tools and simulation platforms tackling
the complexity of testing in heterogeneous, geo-locally distributed
IoT environments.

3.1 Network Emulation
ns-3 [17] is a free software solution for the simulation of discrete-
event networks. Networks can be freely specified by defining nodes
and connections including their network capabilities, failure prob-
ability and other node properties. Due to the high depth of the
simulations and their many configuration parameters, setup and
configuration of simulations becomes very complex.

A much simpler network simulation solution is the extension
of the Quality of Service (QoS) facilities of the Linux kernel called
NetEm [9]. NetEm worsens existing network connections, for ex-
ample by increasing the delay or losing packages. The objective
is to make it possible to test applications that are supposed to run
in wide area networks (WANs) with large distances in local area
networks (LANs). Instead of having to deploy an actual network
with a high number of devices and large distances, the presumed
connectivity effects are simply configured into the network devices.
The netem kernel module intercepts the regular traffic going over
a network interface and applies the configured interference before
transmission by implementing two queuing disciplines. The com-
mand line utility used for configuring the module is an extension
to the traffic shaping tool tc and part of the iproute2 package.

3.2 IoT Simulation Platforms
The commercially available IoTify 1 application development plat-
form was created in order to develop and test applications for the
IoT. It is targeted at programmers with little experience concern-
ing the pitfalls of the IoT and available platforms and protocols by
providing software building blocks and a suggestion engine rec-
ommending APIs and platforms to use. It virtualizes IoT devices in
a cloud to test the developed prototypes, making a development
effort independent of the availability of hardware. To a large extend,
this offer focuses on a quick start for IoT projects. However, since
there is no data available on the adequacy of IoTify’s virtualization
approach and simulation results, it is hard to assess its feasibility
in research and production environments.

The European Commission funded program "Federated Interop-
erable Semantic IoT Testbeds and Applications" (FIESTA-IoT) [20]
integrates IoT platforms, testbeds and associated silo applications
under one framework. The goal of the project was the creation of a
single API to use for the execution of IoT experiments. Currently,
it offers testbeds of varying sizes at ten locations in the EU. By pro-
viding a unified API, the experiments can be created in a platform
agnostic manner. The finite set of testbeds is the main drawback of
this project.

The developers of the large-scale IoT emulator MAMMoTH [14]
focus on the emulation of edge layer devices and networks. They
criticize that while simulators enable a close replication of pro-
cesses in an IoT environment, they do not actually behave like the
target systems. Their solution provides a testbed of VMs to create,
deploy and monitor experiments. To support its large scalability,
it runs as many nodes as possible inside one VM leading to the
conclusion that each VM also emulates a high number of links. Due
to this architecture, tens of thousands of nodes can be emulated but
experiments are limited to distinct scenarios. Also, the end devices
themselves are not emulated fully, but rather certain aspects of
them using the COOJA emulator [16].

Focusing on the emulation of fog infrastructures, MockFog [8]
implements a testing environment in the cloud where each device
is emulated by a virtual machine in a cloud service such as Ama-
zon EC2. Similar to our approach MockFog emulates both, devices
and network properties. While computation resources of devices
are approximated, their emulation is limited to the available VM
configurations.

4 THE HÉCTOR FRAMEWORK
While the presented approaches in Section 3 are quite mature, they
do not offer an easily usable and extendible solution for automatic
IoT testing. This section illustrates our approach for an IoT testing
framework.

4.1 Design
The goal of this research is to investigate if a unified testing method-
ology can be found that serves the highly divergent IoT architec-
tures. This is approached by the design of an IoT experimenting
framework that facilitates arbitrary testbeds to be used with an
expandable set of dataflow platforms. The framework should be

1https://iotify.io, accessed 2019-05-23

https://iotify.io


Héctor: A Framework for Testing IoT Applications
Across Heterogeneous Edge and Cloud Testbeds

run experiments

network
setup

experiment 
definitions

network
setup

experiment 
definitions

App

Héctor

testbedtestbed

data stream platformdata stream platform

platform 
properties
platform 
properties

code

config

Figure 1: Framework design and testing process

able to be used to easily run chains of automated experiments, inde-
pendent of their used dataflow platforms, testbeds, and application
code. Its design is guided by the following considerations.

1. Flexible Experiment Definitions. To facilitate flexibility, it must
be possible to create automated chains of experiments where all
properties are variable between runs and benchmark results be-
tween the runs are saved in a comparable fashion. At the same time,
experiment descriptions should be structured and uniform.

2. Extensible Platform Support. Depending on the application one
of several different dataflow platforms might be used. Therefore the
framework must implement support for a set of dataflow platforms
and provide the potential to simply extend this set.

3. Arbitrary Testbeds. To support different testbeds, it is necessary
that existing topologies can be added to a setup, so that the con-
nected machines become available. Next, a means to add virtual
topologies is needed. For this, VMs acting as edge or fog devices,
linked in a virtual network, are required, allowing to easily perform
experiments under different network conditions and on varying
scale. The migration among testbeds should be designed to be seam-
less.

The matter of the wide spectrum of platforms that is taken into
consideration for IoT task deployment defines the main imperative
of keeping the framework extensible. Additionally, the second de-
sign consideration (Platform Support) is attended by a non-static
way of executing binaries. An API call can be used to define the
specific Linux command to use on the executable or upload an ad-
ditional script that prepares the devices before execution. It is also
conceivable that code is uploaded to a certain (possibly emulated)
device and compiled there before deployment in the IoT network.

By extending the framework, platform specific functions can be
added without changing existing code and risking impairing its
functionality. In our case, the API provides a set of methods that

takes up the tasks of setting up experiments, preparing IoT environ-
ments as virtual testbeds and running the application code in the
respective platform’s context. Since it still requires programming,
experiments can be wrapped in arbitrary code to be chained or to
collect metrics at certain points of the execution serving the first
design consideration (Experiment Definitions).

The third consideration (Testbeds) is also attended by the use of
an API. All entities of a test can be represented as a data structure.
This includes the network, all its nodes (i.e. machines), and the spe-
cific experiment definitions with their runtime environments. As
long as an IoT device has the necessary properties such as an IP ad-
dress, it can simply be added to a virtual network as a corresponding
data structure.

4.2 Framework Structure
Figure 1 illustrates the resulting framework and the IoT testing
process, which we call Héctor. Users have to provide system and
dataflow platform specific configurations as well as an experiment
definition to the framework. The latter defines emulated network
properties and the testing flow through the use of API functions.
The following tasks are performed by the framework.

(1) Set up VMs
(2) Connect networks
(3) Set up dataflow platform
(4) Run experiment sequence
(5) Collect metrics
(6) Turn down system
Considering the three design considerations and their discussion

as well as the stated goal, we propose a framework consisting of
the following main components.

Virtual Network. The Virtual Network forms the core of an experi-
ment. It offers functions to add VMs as well as local host workers
to the testbed. This entity is also responsible for the management
of all VMs in the testbed, copying and running them. Network
conditions can be modified by setting the corresponding properties
here. These may include additional delay, random delay variation
with an optional correlation, delay distribution, packet loss, packet
duplication, packet corruption, and packet reordering emulated us-
ing NetEm. Destructing a Virtual Network is synonymic to closing
the testbed. All VMs are stopped, their files are deleted, physical
machines are reset, and the virtual network is removed.

Virtual Machines. The Virtual Machine represents an instance of
a Qemu VM holding all necessary invocation information. It is
possible to shape the network traffic to and from a single VM the
same way as for the whole virtual network.

Physical Machines. Even though physical IoT devices are running
and reachable by the host, a logical representation of them is neces-
sary for management. This representation includes the IP addresses
under which they are reachable and authentication information to
run worker tasks on them.

Experiment Properties. Next to the IoT devices and their connecting
network topologies, experiments must contain the actual context
they run in. This includes on the one hand the dataflow platform
that is used and on the other hand the actual application code. Data



Behnke and Thamsen and Kao

structures are used to hold all configurations necessary to set up
the underlying platform for the experiment. The methods that are
implemented take care of everything regarding the running of the
application. Additionally, the set up experiments are started and
stopped with appropriate methods. As the required parameters and
set up steps are very different between different platforms, each
supported platform needs an implementation of this part.

4.3 Emulation of Devices
To meet the third design consideration (Arbitrary Testbeds), the
framework has the ability to set up VMs, acting as edge and fog
devices. The downside of OS-level virtualization is that it is not able
to create heterogeneous testbeds. While the containers are isolated
from each other, they all run under the same operating system and
system architecture as the host machine (cf. Section 2.2). Since the
used edge and fog devices in IoT setups are heterogeneous, we
have decided to use a system emulation technology. The operating
system and system capabilities such as the number of cores and the
amount of memory can be equal to the target systems. Secondly, the
migration to a physical testbed with real machines can be designed
to be seamless. The edge devices do not have to be able to run
the same containers as the development host. When disregarding
limitations set by the dataflow platforms, even target systems that
do not run operating systems can be included in virtual testbeds
and applications can be moved to real world counterparts with no
extra effort.

Each VM is spawned as a separate Qemu process. To this end,
the used and prepared disk image files must be available on the
host. To ensure isolation and immutability by the experiments, each
VM invocation is done on a separate copy of the passed disk image
which is automatically duplicated by the framework.

4.4 Virtual Networking
To create a viable testbed, all devices are connected to a network
set up by the framework. This network connects the invoked VMs
as well as the available physical machines. To this end, two tasks
are performed:

(1) Creation of a virtual network bridge to connect all VMs to
the host.

(2) Configuration of the host’s network interface and routing
table additions to enable the physical devices to also connect
to the virtual network bridge.

The virtual bridge interface is the central part of each topology.
Furnished with an IP address, it acts as the access point for all
communication. Depending on the used dataflow platform, the
respective master entities such as the brokers in a Kafka setup or
the JobManager in a Flink setup listen on this device to manage the
worker nodes.

VMs are connected to the bridge using using TAP drivers. TAP
interfaces are kernel interfaces that are not backed by a real network
adapter. They simulate a link-layer adapter to which user-space
processes can attach themselves. Here, the emulated network inter-
face of each Qemu VM is connected to a TAP interface, which in
turn is connected to the virtual bridge. Since TAP interfaces operate
on Layer 2, they simply bridge ethernet frames, without specific
routing or an IP address.

host
eth

physical machines

tap
br

NetEm
data 

stream 
platform

tap

Figure 2: Hybrid testbed setup with Héctor-managed host

Furnishing each VMwith a separate and known IP address poses
some difficulties. Since the framework uses prepared disk images
as blueprints for multiple VMs, it is not possible to preset IP ad-
dresses in the disk image’s operating system. Additionally, the
process needs to stay dynamic so VMs can be added at will. To
solve this, the Dynamic Host Configuration Protocol (DHCP) is
used. A DHCP server is run on the host that is configured by the
framework between setting up the VM properties and starting them.
Each registered VM is given a separate Media Access Control (MAC)
address which is presented by its emulated network device. Each
of these MAC addresses is then assigned a different IP address in
the virtual testbed address space and the combinations are stored.
The DHCP server can now use the stored MAC-IP combinations to
hand out the right IP addresses to the VMs once they have finished
booting and broadcast a DHCP discovery message.

Physical devices can be added to virtual testbed by providing
their IP addresses and authentication information to the framework.
To this end, physical machines need to be up and running Secure
Shell (SSH) servers to connect to. Fig. 2 illustrates the necessity for
the host to act as a router for the participating networks in a hybrid
testbed.

5 EVALUATION
In this section we present experiments run on a working prototype
for evaluation purposes.

5.1 Prototype
To test the feasibility of the proposed approach, we implemented a
prototype of Héctor. To reflect the design structure of Section 4.2,
the API is implemented using an object-oriented Python program,
written to work under Python 3.7 on Linux operating systems.
Developers of experiments can simply import the IoT API module
and write the test cases around its functions. Currently, it supports
applications written for Apache Flink [3] and Apache Kafka [12] by
containing Experiment-class implementations for both platforms.
All networking tasks are performed by calling iproute2 tools. The
physical machines as well as the blueprint of the VMs are prepared
with RSA keys for automated access.



Héctor: A Framework for Testing IoT Applications
Across Heterogeneous Edge and Cloud Testbeds

Experiments are prepared by providing Python code using the
API’s functions and a static configuration file that is dependent on
the used platform.

5.2 Experiments
We conducted three experimentswith different testbeds and dataflow
applications.

5.2.1 Setup. All experiments were performed using a host com-
puter with 16GB memory running on an Intel i7 7700K CPU with
four cores and simultaneous multithreading to 8 concurrent threads.
Different testbeds were used containing only physical machines,
only VMs and both. Five Raspberry Pis 3+ running on Cortex-A53
quad-core CPUs with 1GB memory were used as physical edge de-
vices, connected in a wireless LAN through a 300Mb/s IEEE 802.11n
switch. The host was connected to the same switch through a
100Mb/s ethernet port. The VMs were emulated Raspberry Pis with
ARM1176 CPUs and 256MB memory.

5.2.2 Applications. The used applicationwas similarly implemented
for Flink and Kafka and represents a scenario, where multiple edge
devices collect sensor data in a locally distributed manner. The mes-
sages created by the edge nodes are key-value pairs where the key
represents the node id and the value a sensor message containing
a measurement and a time stamp. To model real sensor networks,
each source is scheduled to a different task slot or producer respec-
tively, starting a processing pipeline in which sensor messages are
filtered for significant measurements, grouped by key and averaged
over windows of 10ms. Finally, the averaged measurements are
submitted to a compute intensive multiplication operation. The
Flink application was run with two task slots per machine and the
Kafka application with four producers per machine.

5.2.3 Test Experiments. To test the feasibility of the framework
and explore the impact of device emulation in IoT testbeds, several
experiments were performed using the application. In the following,
three of the most significant experiments are outlined.

In the first evaluation, performances of VM testbeds were com-
pared to purely physical testbeds. The Kafka application was run
with four to twenty producers and the Flink application with two
to ten data source tasks, both running on one to five machines.
The experiments were run under the same constraints through
the Héctor framework and throughput as well as latencies were
measured.

To test the network emulation functionality of the framework
and the impact of network properties to IoT applications, a chain of
experiments was conducted while varying the network delay of a
virtual testbed. In this evaluation, the number of devices was kept
constant with five emulated machines, each running two producers
or task slots respectively. Both applications ran with eight different
configurations. The network emulation applied increasing delays on
the connections to all VMs from 10 to 300ms. Additionally, a small
probability for package loss of 2-4% was added. It was examined,
whether the externally added delay had an impact on the distributed
processes that could be seen in the latency and throughput graphs.

To explore the use of hybrid testbeds in the framework, the IoT
test applications on Flink and Kafka were run on testbeds includ-
ing both, physical and virtual machines. To see possible effects of

the addition of virtual machines to a network, we performed the
experiments eight times, increasing the number of machines in the
testbed. The first two tests only included physical edge devices.
Virtual edge devices were then added to the five running physical
machines. Each machine held two data source threads in the Flink
application and four producer threads in the Kafka application.

5.3 Results
The execution of the performed experiments showed, that the de-
veloped framework prototype enables the testing of different ap-
plications running on different platforms and testbeds in a simple
manner. Experiments can be easily performed without the necessity
to make changes to the code or setup. The inclusion of agnostic
testbeds has shown to be possible without difficulties.

The results of the first experiment from Fig. 3 show that an
increase of data producing sensors leads to the expected rise of
throughput for both, physical and virtual testbeds. Since more data
has to be transmitted and processed, the latencies increases with
high numbers of sensors. Especially the performance on virtual
testbeds suffers due to the additional resource demands on the

2 4 6 8 10

100

200

300

number of task slots

th
ro
ug

hp
ut

[k
B/
s]

throughput virt.
throughput phys.

100

200

la
te
nc
y
[m

s]

latency virt.
latency phys.

Figure 3: Machine type comparison on Flink setup

50 100 150 200 250

50

100

150

added delay [ms]

th
ro
ug

hp
ut

[k
B/
s]

50

100

150

200

250

300

la
te
nc
y
[m

s]
measured latency

throughput
added delay

Figure 4: Network emulation evaluation on Kafka setup



Behnke and Thamsen and Kao

4 12 20 28

100

300

500

700

900

number of task slots

th
ro
ug

hp
ut

[k
B/
s]

virtual
physical
total

Figure 5: Hybrid testbed experiment on Flink setup

host system. Since this hinders the scalability, physically separating
system emulations from experiment processing could be of avail.

The results of the second experiment illustrate the impact of high
latencies to distributed Kafka applications. As can be seen from Fig.
4, the throughput generated by Kafka records drops quickly once
additional delay is added. The plots also show that an application of
additional delay does not furthermore increase measured latencies.

The results of the third experiment from Fig. 5 show the mea-
sured throughput in the hybrid testbed when increasing the num-
ber of TaskManager nodes. Since no further physical machines are
added after 10 task slots are running, their throughput remains con-
stant after that point. Similar to the first experiment, the throughput
generated by virtual machines does not increase linearly with the
number of task slots due to the high emulation overhead on the
host machine.

6 CONCLUSION
In this paper, we investigated solutions for a flexible framework to
run IoT experiments on arbitrary and framework-agnostic testbeds.
To this end, we designed and implemented the Héctor framework,
which allows IoT developers and researchers to run automated
experiments. By delivering an experiment definition composed of
Python code and a static configuration file, any testbed of Linux-
running edge devices can be used to run stream processing appli-
cations on. To be able to use many different dataflow engines the
framework allows modular extensions for dataflow platforms. Fur-
thermore, we added the functionality to set up virtually networked,
emulated devices automatically and further use network emulation
to be able to test distributed stream applications intended for the
IoT without the need for the actual hardware.

To evaluate our testing approach and explore the limits of the
edge device virtualization, several experiments were performed.
These experiments compare virtual with physical testbeds and ex-
amine the impact of network properties. They demonstrate the
functional viability of the framework for IoT applications, yet the
measured performance impact of emulation points to the neces-
sity of physical separation between edge device emulation and
application data sinks in sensor network IoT scenarios.

To further investigate the use of system emulation in IoT testbeds,
additional tests need to be performed. The virtual network set up
by the framework is limited in its capabilities since all emulated
machines have to be directly connected to the same virtual bridge
device. To be able to emulate complex networks of VMs, a network
simulator could be added to the framework. The VMs then need to
be automatically loaded into the simulated network.

ACKNOWLEDGMENTS
This work has been supported through grants by the German Min-
istry for Education and Research (BMBF) as Berlin Big Data Center
BBDC2 (funding mark 01IS18025A). Moreover, we thank Ilya Ver-
bitskiy for his comments on a draft of this paper.

REFERENCES
[1] Fabrice Bellard. 2005. QEMU, A Fast and Portable Dynamic Translator.. In USENIX

Annual Technical Conference, FREENIX Track, Vol. 41. 46.
[2] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. 2012. Fog

Computing and Its Role in the Internet of Things. In First Edition of the MCC
Workshop on Mobile Cloud Computing (MCC ’12). 13–16.

[3] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache Flink: Stream and Batch Processing in a
Single Engine. IEEE Data Engineering Bulletin 36, 4 (2015).

[4] B. Cheng, S. Longo, F. Cirillo, M. Bauer, and E. Kovacs. 2015. Building a Big Data
Platform for Smart Cities: Experience and Lessons from Santander. In 2015 IEEE
International Congress on Big Data (BigDataCongress ’15). IEEE, 592–599.

[5] Mitch Cherniack, Hari Balakrishnan,Magdalena Balazinska, Donald Carney, Ugur
Cetintemel, Ying Xing, and Stanley B Zdonik. 2003. Scalable Distributed Stream
Processing.. In First Biennial Conference on Innovative Data Systems Research
(CIDR), Vol. 3. 257–268.

[6] Susanta Nanda Tzi-cker Chiueh and Stony Brook. 2005. A Survey on Virtualiza-
tion Technologies. Rpe Report 142 (2005).

[7] João Pedro Dias, Flávio Couto, Ana CR Paiva, and Hugo Sereno Ferreira. 2018.
A Brief Overview of Existing Tools for Testing the Internet-of-Things. In 2018
IEEE International Conference on Software Testing, Verification and Validation
Workshops (ICSTW). IEEE, 104–109.

[8] Jonathan Hasenburg, Martin Grambow, Elias Grünewald, Sascha Huk, and David
Bermbach. 2019. MockFog: Emulating Fog Computing Infrastructure in the Cloud.
In Proceedings of the First IEEE International Conference on Fog Computing.

[9] Stephen Hemminger et al. 2005. Network Emulation with NetEm. In Linux
Conference Australia. 18–23.

[10] G. Janßen, I. Verbitskiy, T. Renner, and L. Thamsen. 2018. Scheduling Stream
Processing Tasks on Geo-Distributed Heterogeneous Resources. In 2018 IEEE
International Conference on Big Data (Big Data). IEEE, 5159–5164.

[11] Hermann Kopetz. 2011. Internet of Things. Springer, 307–323.
[12] Jay Kreps, Neha Narkhede, Jun Rao, et al. 2011. Kafka: A Distributed Messaging

System for Log Processing. In 6th International Workshop on Networking Meets
Databases (NetDB). 1–7.

[13] Shih-Chieh Lin, Yunqi Zhang, Chang-Hong Hsu, Matt Skach, Md EHaque, Lingjia
Tang, and Jason Mars. 2018. The Architectural Implications of Autonomous
Driving: Constraints and Acceleration. In 23rd International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS’18).
ACM, 751–766.

[14] Vilen Looga, Zhonghong Ou, Yang Deng, and Antti Ylä-Jääski. 2012. Mammoth:
A Massive-Scale Emulation Platform for Internet of Things. In 2nd International
Conference on Cloud Computing and Intelligence Systems, Vol. 3. IEEE, 1235–1239.

[15] M. Ma, P. Wang, and C. Chu. 2013. Data Management for Internet of Things:
Challenges, Approaches and Opportunities. In GreenCom/iThings/CPSCom 2013.
1144–1151.

[16] Fredrik Österlind, Adam Dunkels, Joakim Eriksson, Niclas Finne, and Thiemo
Voigt. 2006. Cross-Level Sensor Network Simulation with Cooja. In Workshop on
Practical Issues in Building Sensor Network Applications (SenseApp 2006). IEEE.

[17] George F Riley and Thomas R Henderson. 2010. The ns-3 Network Simulator. In
Modeling and Tools for Network Simulation. Springer, 15–34.

[18] H. P. Sajjad, K. Danniswara, A. Al-Shishtawy, and V. Vlassov. 2016. SpanEdge: To-
wards Unifying Stream Processing over Central and Near-the-Edge Data Centers.
In 2016 IEEE/ACM Symposium on Edge Computing (SEC). IEEE, 168–178.

[19] M. Satyanarayanan. 2017. The Emergence of Edge Computing. Computer 50, 1
(Jan 2017), 30–39.

[20] Martin Serrano, Amelie Gyrard, Elias Tragos, and Hung Nguyen. 2018. FIESTAIoT
Project: Federated Interoperable Semantic IoT/Cloud Testbeds and Applications.
In The Web Conference 2018. Web Conferences Steering Committee, 425–426.


	Abstract
	1 Introduction
	2 Background
	2.1 Distributed Dataflows
	2.2 Virtualization

	3 Related Work
	3.1 Network Emulation
	3.2 IoT Simulation Platforms

	4 The Héctor Framework
	4.1 Design
	4.2 Framework Structure
	4.3 Emulation of Devices
	4.4 Virtual Networking

	5 Evaluation
	5.1 Prototype
	5.2 Experiments
	5.3 Results

	6 Conclusion
	References

