
Towards a Real-Time IoT: Approaches for Incoming Packet Processing in
Cyber-Physical Systems⋆

Ilja Behnkea,∗, Christoph Blumscheina, Robert Danickia, Philipp Wiesnera, Lauritz Thamsenb, Odej Kaoa

aTechnische Universität Berlin, Distributed and Operating Systems, Berlin, Germany
bUniversity of Glasgow, School of Computing Science, Glasgow, United Kingdom

Abstract

Embedded real-time devices for monitoring, controlling, and collaboration purposes in cyber-physical systems are now
commonly equipped with IP networking capabilities. However, the reception and processing of IP packets generates
workloads in unpredictable frequencies as networks are outside of a developer’s control and difficult to anticipate,
especially when networks are connected to the internet. As of now, embedded network controllers and IP stacks are not
designed for real-time capabilities, even when used in real-time environments and operating systems.

Our work focuses on real-time aware packet reception from open network connections, without a real-time networking
infrastructure. This article presents two experimentally evaluated modifications to the IP processing subsystem and
embedded network interface controllers of constrained IoT devices. The first, our software approach, introduces early
packet classification and priority-aware processing in the network driver. In our experiments this allowed the network
subsystem to remain active at a seven-fold increase in network traffic load before disabling the receive interrupts as a
last resort. The second, our hardware approach, makes changes to the network interface controller, applying interrupt
moderation based on real-time priorities to minimize the number of network-generated interrupts. Furthermore, this
article provides an outlook on how the software and hardware approaches can be combined in a co-designed packet
receive architecture.

Keywords: real-time, embedded systems, network stacks, iot

1. Introduction

With the introduction of the Internet of Things (IoT)
in manufacturing industries and automotive systems IP
networks have entered the domain of real-time embedded
systems. Technologies such as 5th generation (5G) mo-
bile networks have been driving the integration of such
systems in business networks, command and control in-
frastructures, and machine-to-machine (M2M) communi-
cation [11, 36, 17]. Furthermore, commands that are be-
ing sent over IP networks are subject to real-time require-
ments in applications like remote control of industrial ma-
chines, remote surgery, and autonomous routing of logistic
robots [32, 40, 33]. To this end, recent research has inves-
tigated industrial network architectures in the Industrial
IoT (IIoT) and Time Sensitive Networking (TSN) [38, 10,
67]. However, the impact of IP networking on the real-time
behavior of embedded systems has largely been ignored.

Embedded real-time devices need to be designed holis-
tically and take hardware cost, energy efficiency and ro-
bustness into account, while computing power is typically

⋆This is the preprint of an article to be published in the Jour-
nal of Systems Architecture (https://doi.org/10.1016/j.sysarc.
2023.102891). CC BY-NC-ND

∗Corresponding author
Email address: i.behnke@tu-berlin.de (Ilja Behnke)

constrained [65]. At the same time, when devices are used
as controlling units in cyber-physical systems, they de-
mand predictable and limited execution times [1, 47]. In-
put devices like sensors or communication interfaces have
always undermined this predictability, as the used Inter-
rupt Requests (IRQs) preempt running real-time process
regardless of their priorities [37]. Yet, short Interrupt Ser-
vice Routines (ISRs) and controllable IRQ frequencies en-
abled real-time system developers to incorporate these into
worst case execution time analyses, making external inter-
rupts manageable.

In this regard, Network Interface Controllers (NICs)
act similarly to other I/O devices. When a network packet
is received, the content is written to memory and an IRQ
is triggered. The preempting ISR then pre-handles the
packet before notifying the operating system. Then, a
usually highly prioritized network task resumes packet pro-
cessing in order of entry and forwards it to a waiting ap-
plication socket. All these tasks are performed indepen-
dently of the presumed priority of the packet and create a
timing overhead proportional to the rate of incoming pack-
ets [5, 48]. In common IP networks this rate is not pre-
dictable by a real-time applications developer. Yet, IoT
use-cases may contain real-time requirements and tradi-
tional IP networking without real-time specific protocols
or hardware at hand [64].

Preprint submitted to Journal of Systems Architecture May 5, 2023



Evaluations on common off-the-shelf IoT microcontrollers
showed that network controllers and IP stack implemen-
tations are not prepared for to real-time environments [5].
The tested microcontrollers were overloaded already with
1000 packets per second with no apparent mitigation re-
actions other than network task and system shut down.
In light of this problem, developers must resort to dis-
abling interrupts during critical executions or require sep-
arate resources for networking and processing in resource-
constrained microcontroller environments. However, these
solutions are not practical in scenarios where IP networks
are used to control cyber-physical systems conveying soft
real-time messages that are relevant for baseline function-
ality. For example, complex industrial actuators with in-
ternal feedback control implemented on constrained em-
bedded devices need to meet local real-time requirements
independently of the network load while prioritizing the
reception of their real-time messages among the received
traffic.

While there is extensive research on enabling technolo-
gies in the areas of communication and integration in IoT,
device architectures have received less attention [3, 1, 53].
Recent approaches focus on blocking or processing traffic
before it arrives at the device [43, 50, 22]. Previous works
failed to include network-specific factors and focused on
interrupt management only [21, 46]. Past work has pro-
posed to do packet classification in the networking driver
as early as possible [13] and identify a priority for each
UDP-packet by receiving process and defer the subsequent
packet processing [35, 34] based on the assigned priority.
Furthermore, solutions exist using specialized networking
technologies such as TSN [68, 55, 58] or Software Defined
Networking (SDN) [39, 23, 16]. While these could be used
to mitigate the problem of high packet rates, they require
specialized cooperative networking hardware and a rigor-
ous, inflexible real-time network architecture [63, 55]. To
the best of our knowledge, there is no published research
on extending NICs and network stack implementations to
facilitate connected real-time embedded systems in com-
mon IP networks.

Contributions

This is an extended discussion of the work first pre-
sented at the International Symposium on Real-Time Dis-
tributed Computing 2022 [8] and also includes material
previously displayed at the poster session of the Sympo-
sium on Applied Computing 2022 [6].

With this article, we focus on the real-time implica-
tions of IP packet reception in real-time systems by propos-
ing two different network subsystem modifications. Both
approaches differentiate incoming packets by their prior-
ity. The priority of packets is determined by the receiving
task priority and real-time requirements in the Real-Time
Operating System (RTOS). The approaches regard con-
strained IoT devices with simple NICs and network stacks,
not able to participate in real-time specific networking via
Time-Sensitive or Software Defined Networking solutions.

The devices communicate using unmodified IP network-
ing.

The first implementation, a software modification,
reduces the impact of best-effort packet processing on the
real-time behavior in IoT devices. This is achieved using
an early priority-dependent demultiplexing scheme for in-
coming packets and subsequent aperiodic per-flow schedul-
ing in the network driver. The modification protects real-
time embedded systems against network-induced system
overloads while optimizing for low-latency processing of
high-priority IP flows. This is achieved by strictly control-
ling the best-effort performance of low-priority flows.

The second approach addresses the problem with a
hardware modification of network interface controllers.
By mapping IP flows to the priorities of receiver processes,
the priority space of an RTOS can be extended to include
the moderation of network-generated interrupts. By ap-
plying different interrupt moderation parameters of priority-
based receive queues and dropping unregistered flows, the
amount of interrupts is reduced while high-priority packets
are still handled immediately.

Both presented approaches include experimental eval-
uations under varying network loads on prototypical im-
plementations including real hardware and simulations.

Lastly, we present an outlook on how our hardware
and software approaches can be combined effectively to a
unified design.

Outline

Section 2 provides the relevant background informa-
tion. Section 3 presents the related work. Section 4 presents
the preliminary considerations made for the two approaches.
Section 5 presents the software-based modification of the
IP subsystem and 6 discusses its evaluation. Section 7 and
8 do the same for the hardware-based adaptation of a NIC.
Section 9 gives an outlook towards a combined packet re-
ceive architecture. Section 10 concludes this article.

2. Background

This section gives a short introduction to the reception
of network packets in RTOSs, interrupt handling, and in-
terrupt moderation.

2.1. Direct Memory Access

In order to relieve the CPU from actively pulling data
from or pushing data to the NIC memory, Direct Mem-
ory Access (DMA) has been established as a common fea-
ture in peripheral hardware. With it, the NIC can asyn-
chronously place received packet data into main memory
at previously assigned locations and afterwards only needs
to notify the CPU about the arrival of new packets via in-
terrupt.

The memory assignment usually happens in so-called
Buffer Descriptor (BD) rings, as outlined in Figure 1. In

2



headhead*

*

*

headNIC

tailtail

Bu�er...

Bu�er...

BD ring

Bu�er...

Figure 1: BD Ring: The data structure allows simultaneous access

from the NIC adding entries and the CPU checking off processed

descriptors.

memory such a ring comprises an array of Buffer Descrip-
tors, interpreted as a ring buffer. Each BD contains a
memory pointer to the respective buffer and some meta-
data for cooperation. The latter typically includes an own-
ership bit, indicating whether the CPU or NIC is obligated
to go on with processing, and a length field indicating how
far into the buffer data shall be sent or has been received
respectively. This way, both actors can track their current
working position(s) individually.

2.2. Receive Path in IP Networking

At a high level, the Receive (RX) path is organized into
subsequently executed stages as seen in Figure 2. Upon
packet reception, the NIC transfers the packet content to
a previously prepared memory location via DMA, marks
the corresponding BD entry and triggers an interrupt. The
network driver, handling the interrupt, acknowledges the
DMA-operation and exchanges the received frame buffer
with a newly allocated one. From here, protocol process-
ing can commence disregarding the already finished MAC-
layer operations.

The different network stack implementations vary in
their set of features. The lwIP network stack is widely
spread among embedded applications and sets its focus
on memory efficiency [14]. It covers the majority of com-
monly used and necessary protocols from Layer 2 up to
Layer 4 like ARP, IP, TCP, UDP, DNS, and DHCP. It
offers different APIs for efficient access, multi-threading,
and an implementation of the Berkeley Socket API. Inter-
nally, lwIP does not represent a complete data frame but
stores a subset of data in pbuf structures. Other stack
implementations like FreeRTOS+TCP1 offer the complete
frame and stick to the Berkeley sockets API while being
thread-safe. Using sockets, application tasks can register
to receive and transmit through their desired ports.

1https://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_

TCP/

BD ring

Network driver

Sockets

heap

Protocol Processing

Frame queue

NIC Appli-
cation

Figure 2: RX-Path: Packets are handled by OS data structures,

the network driver, and the networking stack implementation before

they can be accessed by the receiving application.

2.3. Interrupt Scheduling

IRQ and task priorities form two independent priority
spaces. Hence, hardware interrupts, such as those trig-
gered by incoming network packets, introduce some chal-
lenges to scheduling as they might take over CPU resources
at any time. Yet, when systematically tamed to known
minimum inter-arrival times and Worst Case Execution
Times (WCETs), an integration into the considerations
of a schedulable task set becomes possible. More prob-
lematic is the triggered execution of ISRs in an elevated
IRQ-context. It may be either completely uninterruptible
itself, or only by another higher priority IRQ-source (”in-
terrupt nesting”).

To minimize the worst-case latency incurred by priority
inversion situations between interrupts and high-priority
tasks, a widespread programming best practice is to re-
duce the work done in an ISR to a minimum, only un-
blocking a deferred Interrupt Service Task (IST) that then
does the actual processing. This compromises on interrupt
handling performance for better scheduler control. There-
fore it is often weighed by the driver developer how much
additional latency is acceptable until an ISR/IST split is
introduced.

2.4. Aperiodic Scheduling

Received network packets generate workload that can
be characterized as an aperiodic task inside the RTOS.
One approach to integrate aperiodic tasks into fixed-priority
scheduling uses so-called server tasks [60]. To the sched-
uler these behave as ordinary prioritized tasks. Opposed
to other tasks they have no individual objective. Instead,
they use their budget to serve the execution of aperiodic
jobs. Due to their limited budget in each period they can
be easily included into scheduling considerations.

A very simple yet effective aperiodic events server is the
deferrable server [62], which we also utilize in our real-time
receive architecture. It has a limited CPU-time budget to
serve aperiodic events. When the budget is depleted, it
pauses execution. At the end of each period, the server
budget gets restored to the initial amount. A big advan-
tage is the simplicity of the mechanism and therefore of
an implementation for that server scheme. Yet, the defer-
ral of budget consumption incurs on a higher worst-case
processing demand than one budget per period, due to
possible back-to-back execution patterns.

Let p be the server period and e its execution budget
for a period. There may arrive jobs just before the end

3



of a period consuming the whole capacity e of the server
for this period. With the start of the next period and the
consequent budget replenishment, another duration e may
be serviced to jobs. In the worst case, we need to expect
one extra execution budget. Thus, the highest possible
server demand d(∆) inside an arbitrary interval can be
indicated as

d(∆) = e ·
(⌈

∆

p

⌉
+ 1

)
Note that at least for a small period p, the CPU bandwidth
d(∆)
∆ still approaches the theoretical server optimum e

p .

2.5. Interrupt Moderation

To decrease the performance impact of incoming pack-
ets, high performance NICs employ interrupt moderation
techniques. Instead of sending an interrupt for each re-
ceived data frame, the NIC delays the delivery of an in-
terrupt in order to receive and coalesce additional pack-
ets [42]. Different strategies to realize the delay exist.

A simple approach is to use a packet counter that trig-
gers an interrupt and resets once a certain number of pack-
ets have arrived. This leads to a constant and homoge-
neous reduction of interrupts but also introduces the pos-
sibility of starving packets and very unpredictable packet
delays. To have control over the time packets reside in
memory unnoticed, different types of delay timers are ap-
plied:

The absolute timer begins a countdown once a packet
has been received and only triggers an interrupt once reach-
ing zero. All packets received in this time frame are an-
nounced by this interrupt and do not reset the timer. The
obvious disadvantage of this approach is the high latency
the first packet of each countdown experiences. In low
traffic scenarios, this is highly inefficient.

To this end, packet timers can be introduced. Instead
of having a relatively long countdown timer to trigger an
interrupt for multiple packets, the counter is a lot smaller
and resets with each incoming packet. In low traffic sce-
narios this leads to smaller delays while interrupts can be
entirely impeded under high traffic. The mostly applied
solution is therefore a combination of a longer absolute
timer and a shorter packet timer. The tuning of the spe-
cific parameters is highly dependent on the expected load
and subject to research in high performance computing
[45].

3. Related Work

The introduction of unpredictability in real-time envi-
ronments through interrupts has been a long-standing re-
search topic. In the following, we present past approaches
to mitigate interrupt impact as well as approaches towards
real-time aware network processing.

3.1. Interrupt Management in Real-Time Systems

The Advanced Interrupt Controller [21] monitors the
priority of the currently running process to determine if
an interrupt should be triggered or held back by compar-
ing it to the interrupt priority. A simple extension of the
interrupt controller unifies the priority spaces of attached
interrupts and operating system processes. However, this
does not facilitate for the circumstances around network
packets since interrupt priorities of all packets are the same
and different packets cannot trigger interrupts of different
priorities.

Prominent work regarding the unification of priority
spaces is the approach implemented in the Sloth OS [24]
[25]. Sloth implements a general abstraction for software
threads and ISR, abolishing their distinction. Instead of
using a software scheduler for threads, every control flow
is designed as a thread-related system call using the hard-
ware interrupt system. By letting the hardware manage all
control flows, context switches have less overhead and —
which is more interesting here — ISR and (other) threads
preempt each other in accordance with their priorities.
While this abolishes the problem of priority inversion, high
packet loads still lead to high interrupt frequencies, im-
pacting real-time tasks.

The priority inversion impact of interrupts in real-time
systems has been identified and tackled by Amiri et. al.
by employing priority inheritance protocols for interrupt
service threads [2]. This approach however only works
for the schedulable part of interrupt handling of device
drivers.

Using interrupt moderation to relieve the CPU in high
traffic scenarios is a method studied mainly for high through-
put devices, as systems connected to Gigabit Ethernet net-
works are subject to potentially millions of packets per
second [19]. However, some work also exists studying em-
bedded devices running the Linux kernel. Spanos et al.
evaluate the performance implications of advanced inter-
rupt handling techniques in the ”New API” Linux device
driver extension [59].

The issue of DoS attacks in industrial IoT environ-
ments has been addressed by Niedermaier et al. [50]. A
dual microcontroller architecture is proposed to separate
networking tasks from critical real-time processes. The
presented setup highlights the disproportionate processing
requirements of IP networking on microcontrollers. While
this does mitigate the effects of DoS attacks, it is not ob-
vious how time critical packets are separated from attack
packets.

The PIERES tool [7] is a small framework running on
real-time IoT devices, designed to analyze the real-time
behavior under different network loads and hardware con-
figurations. This playground allows developers and re-
searchers to perform network interrupt experiments on
real-time embedded systems with different network inter-
face controller implementations, load generators and tim-
ing utilities.

4



3.2. Real-Time Aware Packet Processing

The network stack architecture Lazy Receiver Process-
ing (LRP) introduced an important and much used ap-
proach still interesting today [13]. It improves perfor-
mance, stability and fairness on server systems with high
incoming network throughput. The processing of newly
arriving packets can cause persistent crowding of the ap-
plication processes so that they are not able to receive
data. The packets then have to be discarded while the ap-
plications continue to starve. This situation is prevented
by early multiplexing of incoming packets, prioritized ex-
ecution of the rest of the protocol stack in the context of
the receiving process, and thus enabling early discarding of
packets on congested paths. This approach would benefit
from a pre-sorting of packets by the hardware and the gen-
eral interrupt decrease attained from our multiqueue NIC.
The decrease in throughput as the packet rate increases
can thus be prevented or mitigated. By consistently dif-
ferentiating different network flows, they take an elegant
approach that may also efficiently improve real-time be-
havior in IoT devices.

Building atop the idea of LRP, Lee et al. investi-
gated on reducing the impact of Low Priority (LP)-packets
on the real-time behavior of a network-independent task
by introducing port-based prioritization of protocol pro-
cessing [35, 34]. In order to achieve this, they classify a
UDP-packet by it’s port in a “top half” interrupt handler.
By looking up a special port-priority-table, whose data is
sourced by all bound UDP-sockets, their top half infers
a priority for each packet. In Linux’s softirq schedul-
ing entity belonging to the kernel, they introduce a gate
functionality: Packets are only ever processed as long as
their priority is higher than the current active priority of
the system. Otherwise their processing is delayed until
at least the next regular softirq invocation. They con-
sequently show how their modification is able to reduce
a long-running critical task lateness measurably. How-
ever their implementation is restricted by the inappropri-
ate scheduling behavior of the softirq-handler in Linux,
which is not preemptable even by the most critical pro-
cesses and gets rescheduled in similar way as polling, adding
unnecessary high network latency once packets aren’t pro-
cessed eagerly anymore. Moreover, their work only con-
siders UDP-packets. Finally, when considering overload-
ing scenarios a mere flow differentiation and prioritization
is not sufficient for protecting execution guarantees, since
packets may also arrive at a highly prioritized task port in
high quantities.

The time-predictable IP stack tpIP [54] addresses the
challenge of real-time communication in cyber-physical sys-
tems. To enable timing predictability and WCET analysis
the proposed stack uses polling functions in the socket API
with non-blocking read and write operations. While focus-
ing on timing analysis and predictability, no measures are
taken towards processing performance, interrupt schedul-
ing or the issue of traffic overloads.

Strategies presented in [12] deal with the detection and
mitigation of network packet overloads in real-time sys-
tems. The Burst Mitigation approach, limits the amount
of IRQs that may get processed in a time slice, effectively
applying a deferrable server scheduling scheme which con-
siders each IRQ a standard-sized job. While the work does
not consider differentiating mitigation measures over dif-
ferent packet flows, the evaluation already hints the prac-
ticality of simple mitigation techniques that can be used
beneficially in our approach. The Queue mitigation en-
ables back-propagation of frame queue stagnation to the
IRQ, making it adopt the priority of the network task with
some delay. This has great effect when the network task
is only equipped with medium priority and no particu-
lar small scheduling latency is required. Two other ap-
proaches deal with dynamic schemes, taking advantage of
the critical task slack time. The evaluation indicates the
effectiveness of the static mitigation approaches. The dy-
namic ones however strongly depend on the cooperative-
ness of the critical task and it’s execution time consistency.

The Linux kernel provides advanced networking ca-
pabilities for routing and traffic control (tc) [27]. The
latter provides mechanisms to control IP traffic such as
traffic shaping and forwarding. Using queuing disciplines
(qdiscs), incoming and outgoing packets can be queued
for each network device. Traffic rates can be moderated
and packets can be assigned priorities on the basis of meta
information. Similar to the approaches presented in this
article, packets can be matched to certain descriptions and
inserted to a qdisc depending on the packet classification.
Recent work also shows that the novel Linux kernel fea-
tures eBPF and EDT can be used to improve the scala-
bility of filters in Linux-based networking [4]. Due to the
packet-proportional overhead, RTOSs do not commonly
provide similar tools.

3.3. Specialized Hardware

Network Interface Controllers with multiple transmit
and receive queues have been introduced by Intel as early
as 2007. The goal is to make use of multicore systems
by parallelizing network load on the different queues. The
trend is to increase the number of queues to facilitate cloud
computing as Zhu et. al. showed in 2020 [69]. Multiqueue-
ing in general exists for different high-throughput I/O de-
vices but to our best knowledge is not a common sight
among real-time or embedded architectures.

Some modern NICs support serving received packets
into multiple BD rings [57]. For once, this is useful to dis-
tribute packet reception work over multiple CPU cores in
high-performance scenarios. The assignment of packets to
these queues can also result from a hardware classification
based on packet header fields, which may be configurable
by the driver [56, 66]. However, this is a feature only found
in advanced NIC hardware [26].

Loom [61] is a multiqueue NIC design that moves per-
flow scheduling decisions from the software network stack
into the NIC. This way, high throughput and homogeneous

5



policy enforcement can be guaranteed while also providing
isolation in multi-tenant cloud data centers.

In [41] Lonardo et al. present an application specific
NIC design run on FPGAs for high energy physics exper-
iments. The design allows a remote DMA to CPU and
GPU memories, relieving the OS from data transfer man-
agement, allowing real-time processing on data received
over the network.

3.4. Industrial Networking

Low latency, predictability and reliability are longstand-
ing requirements in industry automation. In the 2000s
field bus technologies were moved to work via Ethernet
connections. Industrial Ethernet encompasses all usage
of Ethernet in an industrial setting. The target applica-
tions typically have both latency and reliability require-
ments and this drives the design of protocols away from
traditional Ethernet approaches for collision detection and
avoidance. The most common traditional real-time Ether-
net protocols are EtherNet/IP [9], PROFINET and Ether-
CAT [28]. EtherNet/IP uses the Common Industrial Pro-
tocol (CIP) over Ethernet to controlling real-time devices
on the network. PROFINET prioritizes traffic on one
physical Ethernet network based on real-time classes. Par-
ticularly, the PROFINET-IRT class caters for stringent
real-time requirements, leveraging globally synchronized
time-triggered switches and interfaces and supporting sub-
millisecond cycles. EtherCAT is particularly relevant in
industrial control and automation due to its speed and de-
terminism. It is specified to offer cycle times of less than
100µs by bypassing transfer processing on the slave device
and traffic prioritization.

In 2011, the first part of what was to be known as
Audio/Video Bridging (AVB) was published in a series
of IEEE Standards for switched Ethernet [29, 30, 52, 51].
With AVB, later renamed to TSN a network can be config-
ured to provide Quality of Service (QoS) guarantees that
allow real-time traffic to flow through the network with ex-
tremely low packet loss and with predictable and bounded
latency. The need for TSN has been reinforced by Indus-
try 4.0 requirements. Several standards exist to guarantee
time synchronization, packet delivery and maximum la-
tency in industrial environments where contracts can be
made between senders and receiver [15]. Approaches to
minimize interrupt loads are not part of proposed TSN
protocols.

In this work, we assume the absence of an industrial
networking infrastructure. Hence, aperiodic and unex-
pected bursts of traffic are possible. Compared to the re-
ferred works making similar assumptions, there are none
that address the vertical discrimination of packet handling
based on flow priorities. The following sections will de-
scribe and evaluate such approaches.

network NIC task 

task 

task 

actuator

output

actuator

 IP processing

Figure 3: Data flow: Path of received messages through the re-

garded device.

4. Preliminary Considerations

This section highlights considerations concerning the
environment, devices, and data flow for both presented
approaches.

For the purposes of this article we consider an IoT de-
vice to be an embedded system running an RTOS and a
small number of processes with fixed priorities managed
by a preemptive scheduler. The embedded device is a con-
strained IoT node in an IP network serving real-time ap-
plications as well as best-effort networking. No specialized
real-time network protocols or infrastructure are available
to the device. In the network stack, a driver controls DMA
transfers, establishes cache coherency and passes packet
buffers to a networking task by means of a queue. The
device contains a baseline embedded NIC used to connect
to an IP network which itself might be connected to the
Internet.

The proposed approaches make use of IP flow informa-
tion for real-time aware packet prioritization. Packets are
received by real-time processes on the embedded system.

Definition 1. Let F be the set of IP flows received by the
regarded system. An IP flow f ∈ F is a sequence of IP
packets arriving at the regarded device and for the purposes
of this article characterized by the tuple (Src,Dstport, P, tP ).

• Src is the source node, identified by its IP address.

• Dstport is the destination port number.

• P is the priority of the flow as observed by the re-
garded device.

• tP is the minimum expected period of the flow, mean-
ing the interarrival time between two packets in the
flow.

The priority of a flow is a parameter assigned by the
receiving system, as the real-time implications to this sys-
tem need to be considered. The period of a flow depends
on the sender, application, and network infrastructure.

Data Flow. Each task listens on a separate socket for mes-
sages. Each message is delivered using one IP packet. The
tasks process the message and produce an output or con-
trol a physical actuator. Figure 3 shows the resulting data
flow model.

6



4.1. Priority Inversion in the RX Path

We observe a problem of incorrect priority enforcement
in the networking subsystem receive path. Generally, an
incoming packet is used by (at most) one specific task.
Yet, as long as its purpose is unknown, we have to sched-
ule the processing of each packet equally. For the practical
implementation of the networking subsystem in an RTOS,
that means assigning a fixed priority to the protocol pro-
cessing server task, inevitably creating a priority inversion
situation:

• Using a high priority, as usually found in current em-
bedded frameworks, high priority tasks may starve
in favor of low priority packets.

• Using a low priority, a receiving high priority task
may wait for the end of execution of a medium pri-
ority tasks.

The above formulated priority inversion cannot be com-
pletely eliminated by its inherent nature. On the one hand,
we do not want to spend computing resources until know-
ing whether it will be worth it considering the current
scheduling situation. On the other hand, incorporating
the use of a particular packet requires prior protocol han-
dling.

As already shown in [12, 5, 49], a first angle to pre-
vent receive packet induced overloads is the introduction of
budget enforcement to the entire RX-path. However, when
limiting the reception of incoming packets, one might in-
clude soft real-time traffic that, while not being critical to
the integrity of the controlled cyber-physical system, is rel-
evant for baseline functionalities. This converts the catas-
trophic situation of potential system failure into a tenable
but still undesirable situation of reduced network commu-
nication liveness, trading availability for robustness. Note
that we are expecting multiple IP flows with different levels
of timeliness requirements and packet frequencies enabling
a different grasp on the problem.

5. The Software Approach: Priority-Aware Schedul-
ing of Incoming Packets

The first of the two presented approaches is entirely
software based. By adapting common light weight IP
stacks, we aim to introduce real-time aware packet pro-
cessing and mitigate the unpredictability of IP network-
ing.

5.1. Requirements

A modification of the packet reception subsystem for
real-time IoT devices should satisfy the following require-
ments.

1.1 Priority Inversion Mitigation. Packets of high-priority
flows must be processed and delivered before those
of low-priority flows.

1.2 Overload Protection. Packet floods must not lead to
system overloads. In case of a packet flood, low-
priority flows must be throttled in favor of high-
priority processes. A general rate limitation must
protect the real-time properties of running tasks.

1.3 Performance Retention. The approach should not
introduce a longer packet processing delay. How-
ever, predictability and overload protection must be
prioritized.

5.2. Overview

The proposed architecture is designed around a data
structure of differentiated flow queues, which replaces the
simple frame queue. Each flow defines a priority and a
period, to affect the further processing of its packets. For
the prioritization of processing, we add a priority manipu-
lation mechanism to the protocol processing task. In order
to gain a maximal advantage from scheduling the subse-
quent processing stage, the driver is modified to do only
the necessary work of classifying incoming packets to flows
by their header entries. The remaining activity is then ex-
ecuted on packet retrieval by the scheduled protocol pro-
cessing task as presented in Figure 4.

ISR
Network task

priority

Classifi-
cation

Minimal
Driver

Packet flows

Remaining
Driver Protocol Processing

Figure 4: Architecture overview: Packets are classified early and

enqueued by their flow, with individual periodic capacity restrictions

applied. Further processing is scheduled by inherited priority.

The proposed architecture combines three concepts:

1. Soft Early Demultiplexing into receiver-centric flows.

2. Prioritized Protocol Handling based on these flows.

3. Rate Limitation applied per flow as well as overall.

While theses are not novel ideas independently, we ar-
gue that only in this combination they exhibit properties
making for a viable solution to the discussed problem:

• Early Demultiplexing is necessary for differentiating
flows on an End-to-End basis, without reliance on
network QoS and as a result satisfy Requirement 1.1.

• Proper prioritization facilitates best-effort commu-
nication processes that utilize background resources
on the same system and is necessary to satisfy Re-
quirements 1.2 and 1.1.

• Rate limitation as a last resort protects the system
from being vulnerable to unexpectedly high traffic in
High Priority (HP) flows satisfying Requirement 1.2.

7



Network
driver

Remove head

Insert head

Invalidate bu�er
cache range

Invalidate bu�er
cache range

Rx frame
queue

Enqueue

Allocate Network
bu�er heap

1.

2.
3.

4.
5.

6.

BD ring

Figure 5: Receive activity in the original driver: Once an

interrupt occurs, the driver code moves a packet buffer from the BD

ring to a simple queue, and fills the vacant position with a newly

allocated one. Due to cache coherency requirements of the memory

system, the buffer caches have to be invalidated for both the retrieved

and the replacement buffer.

Thus, being able to fully defend the considered system
against flooding induced overload, while at the same time
ensuring high connectivity for particular well-behaved HP-
flows even in scenarios with overall high incoming traffic,
and handling LP-flows with best-effort resources, this com-
bination forms an IoT real-time aware overload protection.

In the following subsections we introduce the concept of
each of the three basic building blocks of our architecture
and discuss relevant implementation aspects.

5.3. Soft Early Demultiplexing

In order to minimize the effort spent until after classifi-
cation, we employ Early Demultiplexing [13]. By peeking
into key header entries, a packet is assigned to its eventual
receiver process.

The benefit of demultiplexing performed in software
depends heavily on the amount of work that can be saved
by mere demultiplexing compared to full protocol process-
ing. Since the packet scheduling in our architecture can
only influence the processing that follows after Early De-
multiplexing, the achievable degree of partial network live-
ness in overload scenarios depends on its quick execution.

Starting from the existing driver receive path, depicted
in Figure 5, we introduce two changes: Packet classifica-
tion and lazy cache invalidation.

5.3.1. Packet Classification

The classification differentiates incoming packets into
flows defined by the protocols ARP, ICMP, TCP and UDP.
While the former two form a single flow, the latter are
further differentiated by local port numbers in order to
implement the receiver task association.

Depending on the used network stack, the lookup from
the port to a flow may either be performed using the exis-
tent network stack’s list of bound socket control blocks, or
else requires an additional data structure managed by the

7

0

priority

10ms

(UDP 400)

(ICMP)

(TCP 80)

10ms

(ARP)

(TCP 443)

Priority
Index

nonempty flow queues

Figure 6: Differentiated flow queues: Between reception by the

driver and further driver and protocol processing, packets get stored

in a queue according to their identified flow. These queues are or-

ganized by the flow priority, to facilitate fast retrieval of the high-

est/lowest prioritized packet.

driver. In our prototype based on FreeRTOS+TCP, the
socket managing code in the original network stack can
easily be locked in a critical section, leaving the ISR safe
to access it.

If a scenario requires anticipating a large number of
bound sockets, a sophisticated data structure with better
complexity should be employed. However, with only a few
sockets bound at any particular point in time, a linear
linked list lookup as found in typical embedded network
stacks suffices.

Instead of enqueueing every received packet to the same
RX frame queue, each packet is inserted into a specific
queue according to the result of the classification. Because
the packets do not necessarily get processed in bounded
time, the network subsystem might experience buffer star-
vation. To avoid this, buffers of low priority packets are
recycled when the buffer memory reaches its limit. Buffer
recycling here means that the allocated buffer element is
freed and a new empty element is appended to the BD
ring. The packet is effectively dropped. To this end, the
differentiated flow queues are organized in a priority queue
structure as depicted in Figure 6.

The priority of a flow is defined by its respective re-
ceiver task and the overall priority space is equal to the
one used by the RTOS task scheduler. This way, packet
processing priorities are inherited according to the real-
time considerations made for the running processes start-
ing with the enqueueing of packets. Another feasible op-
tion is the utilization of network priorities such as the Dif-
ferentiated Services Field 2, flow priorities from real-time
protocols, or traffic classes inside TSN-based networks.
Yet, we assume environments that do not necessarily pro-
vide a network priority, thus relying on receiver priorities.

8



Network
driver (2)

I
Invalidate

remaining bu�er

Network
driver (1)

Remove head

Di�erentiated
�ow queues

BD ring Invalidate
�rst line

Classi�cation

Network
bu�er heap

Insert tail Invalidate bu�er
cache range

Allocate

Invalidate
�rst lineInsert tail

Enqueue

recycle

Protocol 
Processing

Figure 7: Receive driver activity in our approach: The driver is separated into two halves. In the eager driver (1), a minimal effort is

taken to classify each packet into a flow. As part of the scheduled subsequent protocol processing, the deferred driver (2) establishes cache

coherency and refills the BD ring once the packet is needed.

5.3.2. Lazy Cache Invalidation

On embedded systems that feature CPU-caches, the
commonly cache incoherent DMA introduces a significant
cost with the obligation to invalidate the transferred buffer
cache lines. In our case, the memory architecture requires
the network driver to invalidate buffer cache lines prior to
and after the processing by the NIC DMA engine, as shown
in Figure 5. As cache management noticeably prolongs the
execution time of Early Demultiplexing, we incorporate a
lazy cache coherency establishment scheme into the driver
to retain the highest possible performance as per Require-
ment 1.3. The driver is therefore split into two halves, as
depicted in Figure 7.

(1) Eager driver: An immediately processed layer, exe-
cuted as part of the ISR, classifies and enqueues pack-
ets.

(2) Deferred driver: A schedulable layer, executed in
the network task according to the packet priority, es-
tablishes full cache coherency of received packets and
prepares fresh replacement buffers.

Prior to classification, only the first cache lines of the
packet buffer containing the relevant header fields are in-
validated. Once the packet is chosen to be processed fur-
ther, the remaining part is invalidated and a fresh packet
buffer prepared and appended to the DMA BD ring (cf.
Section 2.1). This implies that as the differentiated flow
queues fill up with packets, the BD looses free packet
buffers, forming a closed pool of packets shared by the
BD ring and the differentiated flow queues. To prevent
starvation of the BD-ring caused by LP-packets in the
differentiated flow queues, the eager driver recycles low-
est priority packet buffers once the BD-ring hits a critical
threshold (e.g. 1

2 ). This can be carried out with little
cost, since only the accessed header cache lines have to be
invalidated again.

2RFC 2474

The resulting activity in the eager half driver is de-
picted in Figure 8. Notable are the three different exe-
cution paths that might be taken: If, due to a high BD
ring fill state a packet buffer has to be recycled, and the
currently considered packet is of lowest priority, it gets re-
cycled in a short-circuiting branch (a). A flow queue may
decline further packets to prevent overload by this partic-
ular flow (b). Lastly, if the short-circuit branch was not
taken but the BD ring fill state is high, another packet
buffer has to be recycled and inserted into the BD ring (c).

5.4. Prioritized Protocol Handling

Once the heterogeneous incoming packets are demul-
tiplexed into differentiated flow queues, the protocol pro-
cessing can be carried out with the receiver priority, as
proposed in [13, 35].

We apply a priority inheritance scheme to the single
protocol processing task [44]. It allows the task scheduler
to preempt the packet processing at any point in time.
Additionally, it keeps a low footprint in terms of task
resources and can be integrated into embedded network
stacks that commonly use a single network task.

To implement this scheme, the priority of the network
task has to be moderated depending on the currently pro-
cessed packet and waiting packets, in order to avoid pri-
ority inversion. Consider F as in Definition 1, P (f) the
priority of flow f and p(f) a packet of f . Let further W
be the set of currently waiting packets and E the set of
packets in processing. The priority of the network task
(PIP-task) must be assigned as follows.

PIP-task = max(P (f) : f ∈ F ∧ ∃ p(f) ∈ W ∪ E)

This assignment implies the network task priority is re-
computed every time a packet gets queued or a packet has
been processed. On packet reception, the priority needs to
be elevated iff the respective flow priority is higher than

9



the current priority assigned to the network task. On fin-
ished packet processing, the priority needs to be decreased
iff the priority of the highest priority packet waiting in
the differentiated flow queues is lower than the current
network task priority. This operation is supported by the
ability of the differentiated flow queue data structure to ef-
ficiently provide the highest enqueued priority (reconsider
Figure 6).

It may appear that by using priority inheritance car-
ried out per packet, we put an overly high computational
burden on the fixed-priority task scheduler. Yet, among all
possible designs that involve the task scheduler in packet
scheduling decisions by correctly signaling the current pri-
ority demand at each time, this design has the lowest
scheduler data structure manipulation overhead: Another
design could use multiple processing tasks with constant
priority, to which packets are assigned according to their
flow. The unblocking operation triggered when the first
packet of a particular priority is enqueued then adds at
least the same overhead — the task has to be moved into
the priority-respective ready task list, and moved out once
blocked again.

Eager Driver

Retrieve packet
bufferRefill packet buffer

(a)
High BD ring fill state

and lowest priority flow

Enqueue to flow
queue

(b)
Rate limit reached

Recycle lowest
priority buffer

Classify

High BD ring
fill state

(c)

Figure 8: Eager driver ISR: Key execution paths that determine

whether and when a packet buffer is recycled to save execution time

in high-load scenarios.

In order to also have the deferrable parts of the driver
processing scheduled according to packet flows, the net-
working task dequeues a highest priority packet buffer
from the differentiated flow queues and executes the sec-
ond half of the driver before continuing with the regular
processing procedure.

5.5. Rate Limitation

To take advantage of Early Demultiplexing while at
the same time keeping the system protected from over-
load conditions, deterministic mitigation techniques [12]

are applied to all but the low priority best-effort flows.
Additionally, the unconditionally executed ISR that de-
multiplexes incoming packets could incur a high load even
if the subsequent scheduling cuts off further processing.
Hence, an additional, global rate limitation needs to be
present.

To apply the rate limitation, each flow is scheduled by
a conceptual aperiodic events server with each incoming
packet being modelled as an aperiodic request. In our
prototype we use the deferrable server scheme (cf. Sec-
tion 2.4). Beyond the server capacity, packets are dis-
carded. For the individual flow queues, this happens as
part of the inserting operation (reconsider Figure 8), in
order to avoid a situation with a paused HP flow queue
full of packets blocking all other processing.

To enforce a global rate limitation, once the capac-
ity has been reached in one period, the driver processing
switches from ISR-based execution to a polling driver task,
staying in this mode until the capacity is not immediately
reached at the begin of a period anymore. When not pro-
cessing packet receive IRQs issued by the NIC, the BD
ring is filled until eventually packets are discarded by the
NIC.

5.6. Policy Integration

In order to control the scheduling properties capacity,
period and priority for a flow, we expose these to the user
for each socket via the setsockopt-Application Program-
ming Interface (API). Special flows such as for the pro-
tocols ARP, ICMP and those that are managed by the
network stack, such as DNS and DHCP, can be config-
ured using C macro definitions. Similarly, the scheduling
properties for the global rate limitation can be defined.

5.7. Limitations

The ability to proceed with deferred packet process-
ing after a phase of higher system load depends on the
number of available packet buffers. As these buffers have
to be prepared for immediate DMA operation and there-
fore a constant amount is dedicated to the lower levels of
processing, additional memory might be necessary.

IP fragmentation cannot be dealt with properly in our
architecture. To demultiplex fragmented packets, their
reassembly had to be done in the ISR, jeopardizing its
WCET. This design treats all packet fragments as belong-
ing to a background priority flow. Yet, IP fragmentation
is discouraged, as it introduces robustness, reliability and
security issues [31, 20].

6. Evaluation of the Software Approach

In this section we present empirical results collected
from our prototypical IP stack implementation and subse-
quently discuss the effectiveness of the approach.

10



6.1. Test Setup

The test setup contains the FreeRTOS operating sys-
tem with a modified FreeRTOS+TCP stack running on a
Xilinx Zynq-7000 processing system containing a dual-core
ARM Cortex A9. Networking is done through a Gigabit-
class Ethernet interface controlled by a Marvell 88E1518
Physical Layer (PHY) controller. Notable features are
DMA and TX/RX-checksum offloading. Measurements
are taken on a single core.

Two methods for measuring the effect on system load
under high packet loads were pursued:

1. Passive: A background worker carries out CPU in-
tensive work and monitors its performance.

2. Active: The software is instrumented to indicate no-
table events, i.e. task switches, IRQs, and packet
processing.

The former is suitable for precisely estimating the aver-
age load that a particular scenario puts on the CPU. While
the latter introduces some overhead in the range of 1-5%
to the processing and misses some of the IRQ switching, it
allows us to evaluate the distribution of processing-induced
latency.

6.2. Experiment 1: CPU-Time Saved with Early Demulti-
plexing

In this scenario two UDP sockets are bound, one with
a low and one with a high priority receiver process. To
not alter the results, the capacity of all flows as well as the
overall IRQ limitation is set to infinity.

Multiple system configurations were confronted with
a zero-length UDP-packet load of a constant rate for 60
seconds. Through passive measurement performed by a
medium-priority task, the average CPU processing time
per packet was then calculated (Figure 9). In this exper-
iment we observed that the CPU costs for processing a
single packet are rather independent from the magnitude
of incoming traffic, staying approximately constant in the
range from 102 to 106 pkt/s.

Results

The results show the difference in processing time be-
tween the packet processing paths. When LP packets get
no chance to be scheduled, the executed activity is only
that of the Early Demultiplexing ISR with an average pro-
cessing duration of 1.62µs per packet. Compared to the
original stack as a baseline, which needs 12.1µs to fully
process a packet, this results in a speedup of 7.5x. How-
ever, due to the short-circuiting logic depicted in Figure
8 (a), in this constant LP-flow measurement the packet
buffers are discarded without being placed into a flow
queue. When disabling the short-circuiting code path, the
per-packet processing time increases to 1.75µs, still yield-
ing a seven-fold speedup compared to the full processing
in the original stack.

modified: LP
modified¹: LP

original
modified: HP

modified²: LP

0

2

4

6

8

10

12

ti
m
e
[µ
s]

Figure 9: Processing impact: CPU time per zero-length UDP

packet under loads between 102 and 106 pkt/s with different config-

urations.

¹Short-circuiting branch disabled. ²Cache invalidation deferral dis-

abled.

In this scenario, the HP packets are processed the en-
tire network stack and cause a processing time of 12.3µs
per packet, decreasing receive performance by 1.7 % com-
pared to the baseline stack. This already small relative
difference would decrease further if the subsequent (oblig-
atory) reception by the receiver task was taken into ac-
count.

By modifying the prototype to again eagerly establish
cache coherency in the ISR, the time spent for LP packets
increases notably to 4.4µs. Hence, we conclude that incor-
porating a driver deferral mechanism into the architecture
is essential to the performance on cached systems.

6.3. Experiment 2: Packet Processing Latency

The second experiment deals with the predictability
of packet processing latencies in the modified IP stack.
Using the active approach, the reconstruction of precise
execution times of each packet is possible. Additionally,
this allows us to differentiate between the execution paths
of the modified driver. Since we instrumented the ISR
entry, some constant IRQ overhead due to context saving
is not included in this analysis. Compared to Eperimant
1, where the overall impact on CPU time is measured, this
experiment measures the duration of the eager driver per
packet.

The system was flooded with 105 zero-length UDP pack-
ets of two different priorities successively. Figure 10 visu-
alizes the distributions of ISR processing duration for spe-
cific processing paths. For each distribution, the quantiles
0%, 90%, 99%, 99.9%, 99.99% are visualized as horizontal
bars, in order to estimate a probabilistic WCET.

Results

LP packets initially take the fastest path (”regular”),
where incoming packets are enqueued without any other
processing. Once the BD ring has reached a high fill state,
packet buffers have to be recycled. Since the incoming
packets are already at the lowest level present in the dif-
ferentiated flow queues, the short-circuiting path (”short-
circuit”, (a) in Figure 8) is taken.

11



regular
shortcircuit (a)

mitigating (b)
prio+

recycling (c);
prio+

IRQ processing path

1.5

2.0

2.5

3.0

3.5
D
u
ra
ti
o
n
(µ

s)

Figure 10: Eager driver: Latency distributions for different exe-

cution paths in our modified stack: The horizontal bars indicate the

percentiles 0%, 90%, 99%, 99.9%, 99.99%

HP packets in contrast can cause a noticeable increase
in ISR processing time. At each occurrence of such a
packet, the network task priority has to be increased in
order to be scheduled subsequently (”prio+”). In case the
BD ring is already filled by previously received LP packets
now waiting inside their flow queue, a revocation is needed,
adding further processing time (”recycling; prio+”). We
also investigated on HP packets that get rejected from
their flow queue (”mitigating”), yet they behave similarly
as shortcircuited packets.

The results show that the first three execution paths
are similarly fast, while the ones that include an increase
in priority or recycling operations are more costly. As
we discussed in section 5.4, a priority increase can only
happen if the flow priority of a received packet is higher
than the one of all the currently enqueued ones. Without
the network task being active to process packets and lower
the highest enqueued priority again, this is only possible
once for each flow in a cascade of increasingly prioritized
flows. Thus, when the system is flooded for some time and
LP packets start building up in their queues, eventually
the faster paths of the ISR will be taken.

6.4. Experiment 3: Mitigation and Prioritization

The final experiments show the effect of protocol pro-
cessing prioritization and rate limitation, applied both for
an individual flow and globally. Experiments were con-
ducted for multiple combinations of packet flood rates for
a HP- and LP-flow, respectively, over a duration of 3 sec-
onds each. Again, a medium prioritized task measured the
CPU load passively, preventing the scheduling of LP pack-
ets. Additionally, a receiver task was employed for the HP
flow in order to count the packets that arrived at their
destination. Figure 11 shows the CPU utilization and the
ratio of successfully received HP packets to sent ones, as a
function of both packet rates.

The original stack was slightly modified to feature an
overall ISR rate limitation, in order to allow a meaningful
comparison to our approach. It is implemented by switch-
ing to polling mode once the capacity is reached for a cer-
tain period, similar to the one employed in our prototype.

In this experiment, the limitations is set at 3 packets per
2 milliseconds.

Results

The CPU utilization increases linearly along with both
packet rates, until the global limit of 1500 pkt/s is reached.
Once the polling mode is active, the CPU load drops no-
ticeably. This can be accounted to the performance im-
provements gained by switching to a polling-based retriev-
ing activity that handles multiple packets at once. Further
increasing the packet rate causes more HP packets to be
discarded by the NIC.

For the modified stack, parameter values anticipating
a similar worst case CPU utilization were chosen. We con-
figured a high priority flow to allow one packet per mil-
lisecond and an unbounded low priority flow. The ISR
was limited to processing 7000 packets per second.

The CPU load also increases linearly with both packet
rates. As we would expect from the results of the first
experiment, the load increases much slower with increas-
ing LP packet rates (notice the denser scale). Above 1000
pkt/s (blue line) of HP packets, the utilization stagnates
as processing of further packets is cut off by the flow queue.
The additional triggered ISR executions are negligible at
this scale. When the sum of both rates exceeds 7000 pkt/s
(black line), the CPU utilization also drops with polling
activated. Regarding the liveness of the HP flow, we can
see how it continuously decreases above the flow-specific
rate of 1000 pkt/s. Additionally, the global limitation im-
pacts the HP flow. So, independent of the HP flow rate
itself, the communication liveness drops as the system is
flooded with LP packets.

0

500

1000

1500
Original* Modified

0 500 1000 1500
0

500

1000

1500

0 2500 5000 7500 10000

0

1

2

C
P
U

lo
a
d
(%

)

60

80

100

R
ec
ei
v
ed

H
P

p
a
ck
et
s
(%

)

H
P

fl
ow

p
ac
ke
t
ra
te

(p
k
t/
s)

LP flow packet rate (pkt/s)

Figure 11: Results: CPU utilization and HP flow liveness at vari-

ous packet rates on our modified system versus the original system

employing only an overall rate limitation.

The blue and black lines mark flow-specific and overall rate limita-

tions respectively.

When comparing the approach to a simple mitigating
stack as a baseline, it becomes clear that it cannot help

12



with processing higher rates of important packets. In-
stead, supported by fast Early Demultiplexing and indi-
vidual prioritization against the remaining tasks, it allows
to postpone an overall limitation. This way, a system can
sustain a much higher load of less important packets before
real-time disturbing effects start to occur.

7. The Hardware Approach: Priority-Aware In-
terrupt Moderation

Improving the prioritized real-time performance of net-
work drivers still leaves a door open to overwhelm the sys-
tem with network-generated interrupts. Since the IRQs
are triggered outside the operating system’s sphere of in-
fluence, smartly moderating these interrupts requires some
modification to the generating hardware, in this case the
NIC. This section proposes an extension to the receive
functionality of NICs to minimize IRQs under high load
while maintaining short packet receive delays for critical
tasks.

7.1. Requirements

We specify four requirements to the NIC adaptation
appropriate for real-time IoT devices with control over
physical processes.

2.1 Interrupt Moderation. The danger of network-generated
interrupt floods and unpredictable networking over-
heads should be mitigated by reducing the number
of interrupts triggered by the NIC.

2.2 Packet Prioritization. Solely limiting the number of
interrupts leads to an analogous increase in receive
delays as packets are accumulated before a notifica-
tion occurs. Furthermore, the system can still be
flooded with unrelated packets forcing the operating
system to handle them. Packets need to be classified
and filtered before they reach the operating system.

2.3 NIC Parametrization. To effectively prioritize and
filter packets in different environments, the intro-
duced NIC needs to be configurable. It needs to be
possible to affect generated receive delays per process
and tune them for the scenario’s real-time require-
ments.

2.4 Continuous Configurability. The necessary configu-
ration of the NIC needs to be possible dynamically
during runtime to facilitate changes in processes and
the environment.

7.2. Overview

The problem of network-generated interrupts affecting
system performance can be solved by interrupt moder-
ation (Requirement 2.1 ). However, the techniques pre-
sented also have drawbacks. While they increase the over-
all efficiency of interrupt processing, they also increase the
resulting packet delays and make them less predictable
since packets are held back for a variable amount of time.

In real-time systems, where process runtimes depend on
incoming traffic, the occurrence of inaccuracies must be
minimized. Therefore, a potential NIC design must at-
tempt to reduce network overhead while guaranteeing low
and constant latency for critical packets. As presented in
Section 3.3 some specialized hardware exists running on
FPGAs for specific real-time application types as well as
multiqueue NICs for better multicore performance in data
centers. However, to the best of our knowledge none ex-
ist for embedded IoT hardware or real-time processing in
general IP networks.

To this end, the interrupt moderation parameters are
designed to be reconfigurable. By minimizing the relative
packet delay, the time a packet dwells in memory before it
is processed is reduced. At the same time, however, this
increases the total number of interrupts, which reduces
efficiency. This problem is not unique to real-time IoT
devices, but is a natural consequence of interrupts. In
closed IIoT environments, however, we can take advantage
of this fact. Since embedded systems typically perform a
fixed set of specific tasks, we can use their metadata to
filter and manage incoming packets before interruption at
the hardware level. These are the priorities of the protocols
or packet-receiving processes and their associated IP flows.
Interrupt moderation can thus become a tool to enforce
priority-compliant traffic scheduling before they enter the
realm of the operating system.

7.3. Hardware Modifications

The modifications made to the NIC concern only the
reception of packets and begin after frame validation at the
MAC layer. An illustration of the design can be seen in
Figure 12. To accommodate incoming packets belonging
to different real-time processes, the receive buffer hold-
ing packet descriptors of the NIC is divided into multiple
queues realized as ring buffers. This way, packet descrip-
tors are assigned to different queues depending on their
destination process and its priority, accounting for Require-
ment 2.2.

The metadata of validated packets is compared to a list
of registered ports residing in a distribution map on the
NIC. Here, packets are assigned to queues which hold pack-
ets of one IP flow each. According to the process priority
and expected packet load, different interrupt moderation
configurations (e.g. delay timers and counter threshold)
are applied to them by the operating system.

This way, packets for critical processes trigger inter-
rupts immediately upon reception while less important
packets (packets with low priority receiving tasks) are co-
alesced before one interrupt is triggered for all packets in
the respective queue, indicated by the millisecond specifi-
cations in Figure 12. Packets with no associated process
can be dropped before an interrupt is triggered since these
packets would be dropped by the operating system at a
later point in any case, but after generating unnecessary
ISR and network stack work. This is especially impor-
tant under high unanticipated traffic loads targeting the

13



NIC

0 ms

0-1 ms

3-5 ms

interrupt

configure queues

IP
traffic

set mapping

OS

proc 1 prio 1

proc 2 prio 2
proc 3 prio 3

distribution
map

Figure 12: Multiqueue NIC: Traffic is organized into different queues with exemplary delay values attached; configurations of queues and

mapping are performed by the operating system upon socket binding.

device and potentially leading to a denial of service. Find-
ing appropriate queue configurations for different process
priorities is part of the design process of the embedded
real-time system as introduced delays need to be part of
scenario modeling.

7.3.1. Synthetically Added Bursts

Coalescing packets in the NIC reduces the number of
interrupts triggered, ISRs run and context switches per-
formed. However, the amount of data to be processed by
the network stack remains unchanged for packets regis-
tered for one of the running processes. Depending on the
number of packets coalesced, interrupt moderation might
lead to an accumulation of network stack workload into
bursts. The necessary runtime to process an incoming
packet is a lot smaller than the delay introduced by co-
alescing packets. A meaningful delay through these bursts
can hence only happen under extremely high packet rates.
We consider this when choosing the queue parameters as
follows.

7.3.2. Relevant Parameters

The multiqueue NIC introduces four parameters affect-
ing packet delays and resource utilization as posed in Re-
quirement 2.3 :

• Number of queues m. The number of queues the
receive buffer is divided into depends on the number
of currently active processes accepting packets and
supported protocols.

• Size of a queue nq. The number of elements of
a queue q corresponds to its expected packet load,
available memory, and moderation parameters.

• Absolute queue timer values tabs(q). Periodic dura-
tion until an interrupt is triggered by the queue q.

• Packet timer values tpack(q). Amount of time after
a packet is received by the queue q that triggers an
interrupt if not reset by another incoming packet.

Additionally, the system introduces one implicite pa-
rameter:

• Maximum expected packet rate Rmax(q). The maxi-
mum expected packet rate of the flow corresponding
to a queue q. Equal to 1

tP (f) as per Definition 1.

The timer values are used to span a time window of
how long a packet remains in the queue. Depending on
the packet rate, a variable number of packets is then co-
alesced to be announced by one interrupt. As these pa-
rameters have a high impact on the timeliness of incom-
ing traffic and generated workload on the real-time device,
the accuracy of their configuration is of high importance.
While the number of queues is directly dependent on the
current number of active (i.e. socket binding) processes,
timer values and queue sizes have to be cautiously chosen.
To be able to sensibly choose the parameters knowledge
about expected packet rates and slack times of real-time
processes is necessary.

The added packet processing time needs to be accounted
for when developing an IP-connected real-time system.
Process deadlines must allow for enough slack time for the
system to handle concurrent packet reception. The higher
the slack times are, the more packets can be processed
without resulting in deadline misses. The worst-case sce-
nario is subject to high interrupt rates affecting the process
with the smallest slack time. For the calculation of appro-
priate queue parameters this value has to be factored in.
The parameters must be chosen respecting the following
considerations.

Queue size. Choosing an appropriate queue size affects
memory consumption as well as the maximum number of
packets that can be coalesced in one interrupt. Apply-
ing interrupt moderation generally means holding more
unprocessed packets in memory ultimately increasing the
demand for the whole system. Memory implications for
queue structures behave analogous but in a much smaller
scale as only descriptors are held.

14



The more packets can be held by one queue, the bigger
the packet burst to be processed by the IP stack may be-
come. Hence, this parameter also enforces an upper limit
for the incoming packet rate per queue as elements are
dropped when new packets arrive at a full queue. Addi-
tionally, this value has to be kept small enough for the
IP stack processing time to be smaller than the minimum
slack time when all queues generate a burst at the same
time. The resulting delay corresponds to the Worst-Case
Packet Processing Delay (WCPD) which depends on the
per packet processing time tnetstack.

WCPD = tnetstack

m−1∑
q=0

nq

Absolute timer value. The absolute queue timer realizes
the upper latency bound of the interrupt rate window. To
minimize the number of interrupts, this parameter needs
to be maximized. At the same time, a higher absolute
timer value also leads to a higher added latency an incom-
ing packet might experience. Hence, the absolute timer
value is limited by the maximum additional delay the un-
derlying process can handle while still meeting its deadline.
As a high value increases the burst of packets to be pro-
cessed under high loads, the chance of the queue filling up
increases, leading to packet loss. The maximum expected
packet rate Rmax per queue q needs to be factored in. td
is the process-specific maximum allowed delay.

tabs(q) ≤ max(td(q), tqf(q))−WCPD

tqf(q) =
nq

Rmax(q)

Packet timer value. The packet timer realizes the lower la-
tency bound of the interrupt rate window. Increasing this
value generally decreases the number of interrupts as there
is more time available for a new packet to arrive and reset
the timer. This also means, that this value directly influ-
ences the minimum additional latency an incoming packet
experiences. At the same time the amount of interrupts is
highly dependent on the incoming traffic shape. The worst
case in terms of interrupts generated is a packet rate cor-
responding to the packet timer value (one interrupt per
packet). Hence, the available slack time needs to suffice to
handle the number of interrupts generated by all packet
timers combined when every timer iteration of each queue
triggers an interrupt. tP (f) is the expected packet arrival
period as per Definition 1.

tP (f) ≤ tpack(q) ≤ tabs(q)

7.3.3. Configuration

As shown in Figure 12, two interfaces are used for the
NIC configurations. One for setting the queuing param-
eters mentioned earlier and a second to write process-to-
IP flow mappings to the distribution map. Both config-
urations are performed when a socket is bound using the

network stack API (see Section 2.2). For this purpose, the
socket API is extended with driver calls that make the spe-
cific changes. Whenever a new process registers or releases
a socket, the operating system transparently adjusts the
number of queues and their parameters. The delay times
and the size of the queues must be set for specific scenar-
ios. The required information is passed to the driver as
socket binding parameters.

As stated in Requirement 2.4, the system must be dy-
namically tunable at runtime to facilitate changes in pro-
cesses or IP flows. Since the configuration process is linked
to the socket API, the required tuning parameters can be
passed at any time by the registering process. In the same
way, NIC queues are released when a socket is no longer
bound.

Since a network packet does not contain explicit in-
formation about the receiving process, a mapping must
be made between the packet metadata and the processes.
For this purpose, a mapping between IP flows and pro-
cesses is created and placed on the NIC. In this design,
the destination port is used to map a packet to a process.
However, it could also be extended to match specific tags.
This is be useful when all components of the distributed
system are under the control of the developer to add se-
curity measures. The map must be on the NIC itself to
cause minimal additional distribution delay, and still be
configurable by the operating system to reflect the current
set of existing processes.

7.3.4. Memory Implications

The presented approach has implications for memory
usage on two levels: Firstly, the network buffer on the
host system needs to be able to hold packet contents until
they are processed, even when multiple packets are coa-
lesced. Depending on the timer values and packet rate
this might be a multiple of the usually necessary space.
The network buffer resides on system RAM and is ac-
cessed by DMA. The second level is the required memory
on the NIC. In an example implementation with 32 bit
addresses, 32 bit timers, and a conservatively chosen max-
imum packet queue length of 65,536 KB the on-NIC mem-
ory necessary for one table entry is 30 Bytes as broken
down in Table 1.

Table 1: Required register memory per queue on the NIC for an

example implementation.

Component Size
port id 16 bit
base address 32 bit
buffer size 16 bit
offset 16 bit
next base address 32 bit
packet timer 32 bit
absolute timer 32 bit
packet timer expiration 32 bit
queue timer expiration 32 bit

15



The base address field contains the RAM address of
the beginning the the queue packet memory. The offset
is incremented for each incoming packet by its size. The
next base address is switched for the base address when an
interrupt for the queue occurs to be able to receive new
packets while the buffered ones are processed. When re-
serving one queue for non-transport layer protocols such as
ARP (not requiring interrupt moderation fields and hence
being 14 Bytes wide), the total memory requirement is

m · 30 B + 14 B

for m table entries on the NIC.

8. Evaluation of the Hardware Approach

The proposed NIC extension reduces the number and
frequency of interrupts caused by incoming packets. Yet,
as packets that belong to registered processes are not dropped,
driver and network stack workloads remain in a time shifted
manner. We evaluate the resulting timing implications by
conducting three sets of experiments: The first explores
the ability to reduce interrupts. The second compares
the robustness of the real-time system against high traf-
fic loads. The third analyzes the effects of different queue
configurations under expected loads.

8.1. Test Setup

As the design proposes changes to hardware but an
evaluation on a real IoT device is necessary for plausibil-
ity, the evaluation platform comprises of two layers. One
layer assuring plausibility by providing a real IoT device
running real-time processes (process layer) and one allow-
ing hardware and configuration changes to the NIC (NIC
layer). The evaluation setup is depicted in Figure 13.

To evaluate the real-time behavior of a running IoT
system, we used an ESP323 microcontroller for the process
layer. It is equipped with a dual-core CPU and widely used
for IoT tasks that involve communication via WiFi and
Bluetooth. The two cores of the device permit a separa-
tion between observed processes and testing system. The
observed processes run on the real-time operating system
FreeRTOS where scheduling is performed preemptively on
basis of process priorities. To generate realistic network
loads, traffic traces from common industrial control sys-
tems are used.

8.2. NIC Layer: Simulator Implementation

The upper half of Figure 13 illustrates the NIC layer.
A traffic generator pre-processes captured network traces
and synthetic load patterns to generate a receive traffic
trace for the NIC simulator. The simulator is written in
Python using the event-based simulation library SimPy.
It is configured for each experiment run (as explained in

3https://www.espressif.com/en/products/socs/esp32

 NIC Layer

traffic
generator

traffic
trace

irq trace

parameter
configuration

 Process Layer

RXqueue

driver

worker 1

worker 2

worker 3

worker 4

worker 5

netstack

interrupt
generator

NIC-Sim

distribution
map

NetRx ISR driver

0 ms

0-1 ms

3-5 ms

Figure 13: Evaluation setup on two layers: Interrupt/packet

trace generation by a NIC simulator and process observation on a

real-time IoT device.

Section 7.3) depending on relevant IP flows and processes.
With the possibility to change NIC parameters, different
interrupt traces can be created from the same network
packet stream. These traces additionally contain packet
metadata for use by the process layer.

8.3. Process Layer: Network Stack Implementation

The interrupt traces generated by the simulator are
applied to the processing layer by an interrupt generator
implemented on the ESP32. Due to the interrupt moder-
ation, each interrupt notifies the network driver of a batch
of one or more incoming packets. The NIC interrupt ser-
vice routine (NetRx ISR in Figure 13) receives this batch
of packet descriptors and appends them to an operating
system queue to be fetched by the network driver. From
here, each packet is processed by the network stack task.
If the packet destination port has a socket registered to it,
the packet descriptor is forwarded to the socket mailbox
and the associated task is notified. Otherwise, the packet
is dropped.

The receiving real-time worker processes get access to
sockets through the socket API. Using a receive function,
the processes can then read data from the socket mail-
box. This approach implementation of Berkeley sockets
corresponds to the mapping of IP flows to processes. The
receiving processes are workers of different priority. Each
incoming packet is tracked from its time of arrival at the
NIC until processing in its worker process where it triggers
the task workload.

16



0 5 10 15 20 25 30
Time (s)

0

20

40

60
Ev

en
ts

 p
er

 se
co

nd
s

Packets

0 5 10 15 20 25 30
Time (s)

Interrupts
q0
q1
q2
q3

Figure 14: Histogram of packets and caused interrupts over time with bin size of 5 seconds.

8.4. Experiment 1: Interrupt Generation

In all experiments, the IoT device runs four worker
processes of different priority. The processes receive traf-
fic using the widely used industrial communication proto-
col MODBUS/TCP4. As each of the processes binds their
own socket, four queues with different interrupt modera-
tion configurations are set up in the NIC.

Table 2 shows the queue configurations for the worker
task flows. Queue 0 is configured to receive the IP flow
of the critical task, hence no moderation is applied to this
flow and packets are forwarded immediately upon arrival.
Queues 1-3 are moderated with increasing delay values.
Queue capacities are kept at a constant 128 packets per
queue. Additionally, one baseline experiment is performed
without any interrupt moderation. We observe the pro-
gression of interrupts generated in respect to packets re-
ceived.

Table 2: Queue configurations for baseline process IP flows in mil-

liseconds.

queue absolute
timer

packet
timer

0 unmoderated
1 30 20
2 40 30
3 80 70

Results

The number of interrupts generated depends on the
number of packets received in each queue and their con-
figuration. Figure 14 shows a comparison of packet and
interrupt numbers for the baseline experiment without ad-
ditional load. Queues 1 - 3 moderate interrupts in differ-
ent time windows, so they generate fewer interrupts than
queue 0, which is receiving packets for a critical task.

8.5. Experiment 2: Unfiltered Packet Flood

To observe the system under high traffic, it is sub-
jected to packet floods ranging from 0 to 15000 packets per
second. The worker setup on the device stays as defined
in Experiment 1. To observe the effects of packet floods

4MODBUS/TCP traces provided by [18].

when they are targeted at unregistered sockets they are
subjected to a separate moderated NIC queue. We eval-
uate the compute load of the flood on the system. The
experiments are repeated on four different absolute delay
timer values for the added packet floods. The absolute
timer values range from 800µs to 3200µs resulting in the
designations nomod (for unmoderated flood traffic), d800,
d1600, d2400, and d3200. As we are testing the system
under higher than expected load, the packet timer can be
disregarded for this experiment (cf. Section 2.5). Each
experiment runs for a duration of 30 seconds. We observe
the additional runtime of the processes incurred by the
network traffic.

Results

The total rate of interrupts per packet ranged from
70% in the undisturbed experiment (Experiment 1) to 2%
with high additional load of 15000 packets per second and
3200µs absolute timer value. The absolute moderation
timer is an effective tool to moderate the high load as more
packets are coalesced into interrupts while the critical task
is unaffected.

0 1000 2000 3000 4000 5000
Load (packets per second)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

A
dd

iti
on

al
 ru

nt
im

e 
(%

)

nomod
d800
d1600

d2400
d3200

Figure 15: Additional runtime of critical process (queue 0) induced

by increased network load.

Next, we observe the interrupt-induced runtime increase
of the critical process. A significant mitigation of the
harmful effects of packet floods can be obtained in all mod-
eration configurations for the critical process. Processes of
lower priority also benefit from the approach, as the CPU

17



is freed up from unnecessary ISRs. Figure 15 shows the
mitigating effects for the critical task under variable addi-
tional load. The visible linear increase continues through-
out all experiments. Further, it can be seen that there
is a scenario-specific optimal configuration between d2400
and d3200 due to the effects of packet burst processing (cf.
Section 7.3.1). By increasing the delay parameters, more
packets are coalesced for each interrupt, meaning that the
networking tasks are confronted with larger bursts of pack-
ets per notification. This has negative effects on CPU
load starting at a critical packet count. For the maxi-
mum depicted packet load of 5000 packets per second the
additional runtime could be decreased by 80% (or 12 per-
centage points) resulting from the prevention of 93% of
interrupts.

8.6. Experiment 3: Expected Load

Since the NIC retains packet notifications for low pri-
ority tasks, it causes an additional interrupt delay depend-
ing on the delay timer configurations. To investigate this
delay, the second set of experiments was performed on a
stable system with no unexpected traffic floods. The com-
bination of absolute and packet delay timers spans a win-
dow for the period length of interrupts. Using the approx-
imated incoming packet rate of a flow 1/tP (f), developers
can adjust the values to minimize the introduced interrupt
delay as described in Section 7.3.2.

In this experiment, the four processes receive IP flows
ranging from about 50 (for queue 0) to 200 (for queue
3) packets per second. We compare three different NIC
configurations:

• No moderation: All queues trigger interrupts as soon
as a packet arrives.

• Medium moderation: Queue 0 triggers an interrupt
as soon as a packet arrives. Queues 1, 2, and 3 are
configured to coalesce 2, 3, and 4 packets per inter-
rupt, on average.

• Strict moderation: Queue 0 triggers an interrupt as
soon as a packet arrives. Queues 1, 2, and 3 are con-
figured to coalesce 5, 6, and 7 packets per interrupt,
on average.

Results

The results, depicted in Figure 16, show that the crit-
ical process (queue 0) does not suffer from any additional
delay. The delay added to processes of less priority is
directly dependent on the chosen moderation parameters
and process-specific load and can be chosen to fit the re-
quirements of each process before or during runtime. At
the same time, the delay window prevents interrupt fre-
quencies to climb to a critical level. An increase in the
OS-induced delay can be observed when too many packets
are coalesced to one interrupt as the resulting bursts in
packet processing increase the processing time for individ-
ual packets in the networking and worker processes.

no
moderation

medium
moderation

strict
moderation

0

20

40

60

To
ta

l D
el

ay
 (m

s)

q0
q1
q2
q3

IRQ delay

Figure 16: Median delay times of the four configurations. The IRQ

delay specifies the average coalescing delays.

While the queue moderation can effectively reduce the
impact of high packet loads, the tuning of moderation pa-
rameters requires care. Task deadlines, as well as packet
loads and latencies for each process should be identified to
reduce the impact of interrupt moderation under normal
conditions while at the same time ensuring operability for
critical tasks under unexpectedly high loads.

9. Towards a Unified Architecture for Real-Time
Aware Packet Processing

In this section, we give an outlook on a combination
of the two evaluated approaches, attending to challenges
arising and necessary changes to be made to the individual
designs. We furthermore discuss the compatibility of ad-
vantages gained through a unified hardware/software co-
design for real-time packet reception.

9.1. Preliminary Considerations

To implement a unified design, the networking task,
driver, and hardware components should be designed holis-
tically and make available configuration parameters in a
standardized manner. This design is subject to the same
assumptions and requirements as the individual approaches.
Most notably the placement of devices in a real-time IoT
setting with no industrial grade real-time networking in-
frastructure. The preliminary considerations in Section 4
remain relevant here.

A unified design could combine the advantages of the
two presented approaches while also mitigate some of the
individual disadvantages. These shortcomings can be sum-
marized as follows.

Hardware Approach.

• Only the amount of ISR runs is reduced in a priori-
tized manner. Once packets are received by the OS
queue, no reordering can happen and packet process-
ing can still lead to an inversion of priorities.

• The design creates bursts of low priority packets
that, once inside the operating system, might block
the processing of high priority packets and lead to
priority inversion.

18



classify

NIC

pck IRQ

Packet queues

minimal
driver

ISR

Network task

priority
deferred
driver

protocol
processing

OS

queue configuration & flow mapping

Figure 17: Unified design: Demultiplexing of packets and interrupt moderation in the NIC. Packet ordering, priority inheritance, and burst

control in the network driver.

• Interrupt moderation and multiqueue parameters have
to be set by developers apriori and for each process
individually.

Sofware Approach.

• The number of interrupts can not be reduced other
than by switching to polling mode.

• In the case of a flood of incoming unwanted packets
the system can still be overwhelmed by IRQs and
ISR runs or be forced into polling mode with the
remaining packet processing overhead.

• The classification of packets and packet-wise cache
invalidation adds workload to the (preempting) ISRs.

9.2. Overview

The combined design unifies the priority spaces of real-
time tasks, packet processing, and network-generated in-
terrupts. An abstract representation of a unified design
can be seen in Figure 17. Depending on developer-defined
tasks and their priorities incoming packets can be dropped
and coalesced to fewer IRQs before any workload emerges
in the RTOS. With the mapping of tasks to IP flows being
performed in the NIC, the packet classification is shifted
from the eager part of the driver to hardware. The moder-
ated queues in the NIC remain configurable over the socket
API and write their contents to the BD ring where the re-
maining part of the eager driver fetches them. The descrip-
tors can then be placed in process specific packet queues
enforcing the rate limitation and priority inheritance in-
troduced by the software approach.

9.2.1. Changes to Individual Implementations

To accommodate the combined design the individual
implementations have to be adapted. This section dis-
cusses the challenges of a new design and presents neces-
sary changes.

Hardware Approach. Since the classification of packets should
not have to be repeated in the driver, the packet descrip-
tors written to the RTOS need to b extended to contain the
priority of the expecting process. By furthermore adding
a field for the IP-flow ID (i.e. the port number) flows of
equal priority can be prevented from blocking each other
in case one experiences a packet flood. This way, packet
descriptors fetched from the ring buffer already contain
priorities and flow IDs and only need to be enqueued ac-
cordingly by the ISR.

A more complex yet optional change to the original
design could include the dynamization of queue configu-
ration. As a means of reactive rate limitation the driver
could be enabled to dynamically change NIC queue sizes
during periods of high packet volume. This way, packets
could be dropped in a priority aware manner before reach-
ing the driver when the rate limitation is expected to lead
to the same. The initial configuration via the socket API
can remain unchanged.

Deferred
driver

Eager driver

Remove head

Differentiated
flow queues

BD ring

Insert tail Invalidate buffer
cache range

Allocate

recycle

Protocol
Processing

Network
buffer heap

Invalidate buffer
cache range

Enqueue

Figure 18: Receive activity in adapted driver: Classification,

as well as cache invalidation of the header line is removed.

Software Approach. With the classification being shifted
to hardware, the software side can save packet processing
time at the eager driver in two manners: The ISR does
not have to read the packet headers from memory in order
to place the descriptors in the appropriate queue as the
descriptors now contain priority and flow ID fields. With
header inspection in the ISR being unnecessary, the time

19



consuming task of packet-wise cache line invalidation can
also be eliminated from the eager driver, resulting in the
receive workflow in Figure 18.

The due to the interrupt moderation bursty nature of
packet reception through ISRs is not impeded by the com-
bination of the two approaches. Packets, especially those
of low priorities come in bursts, possibly resulting in im-
mediate rate limitation by the driver. To prevent this from
happening for each burst, queue sizes need to be adapted
to each other. Furthermore, some of the unschedulable
ISR runs will require more time, as bursts of packets need
to be handled. However, this is somewhat mitigated as the
comparison and raise of the network task priority only has
to happen once at the end of the ISR and not for every
packet as in the original design.

10. Conclusion

Unexpected floods of network traffic can delay process
flows in real-time systems, putting critical real-time re-
quirements at risk. This paper presented two individually
evaluated approaches – one software- and one hardware-
based – to mitigate the real-time violating effects of IP
packet reception in constrained IoT devices.

The software approach is soft IP stack design to in-
dividually schedule packet processing for differently pri-
oritized IP-flows after early demultiplexing. The issue of
costly processing in the network driver is approached by
integrating the possibility of deferred buffer processing into
our architecture. On our test system, even when having to
deal with packet buffers travelling CPU-caches, the CPU
load caused by LP packets in an already occupied system
is reduced by 86%, leading to a 7-fold speedup of concur-
rently running processes. Through limitation parameters,
the software approach allows system designers to antici-
pate packet rates of certain soft real-time flows and derive
an estimate for the respective processing WCET. Budget-
ing the same CPU resources to the processing of incoming
packets, the networking subsystem can still process pack-
ets of a HP-flow for up to 600% higher overall traffic loads.

The hardware approach presented a multiqueue NIC
design shifting the early demultiplexing to hardware. This
way, the number of network-triggered IRQs can be moder-
ated depending on packet priorities. By configuring the ex-
tended NIC via an adapted Berkeley socket API, currently
active processes waiting for packets can register their pri-
orities with the hardware, effectively mapping IP flows to
processes when a socket is bound and changing queue pa-
rameters accordingly. We evaluated the hardware design
using a NIC simulation and an IoT device running a real-
time operating system. The results of these experiments
show that our approach significantly reduces the impact of
traffic floods on critical process runtimes by saving 93%
of interrupts and 80% of processing delay under packet
rates of 5000 per second while the configuration of multi-
queue parameters requires knowledge about expected net-
work traffic and real-time requirements.

The combination of the two approaches requires a hard-
ware/software co-design of real-time NIC, network driver
and IP stack implementation, further addressing the re-
maining weaknesses of the individual designs.

Acknowledgments

We sincerely thank the reviewers for their helpful com-
ments which significantly improved this work. This re-
search was supported by the German Academic Exchange
Service (DAAD) as ide3a.

References

[1] V. Alcácer and V. Cruz-Machado. Scanning the industry 4.0:
A literature review on technologies for manufacturing systems.
Engineering science and technology, an international journal,
22(3), 2019.

[2] J. E. Amiri and M. Kargahi. A predictable interrupt manage-
ment policy for real-time operating systems. In CSI Symposium
on Real-Time and Embedded Systems and Technologies. IEEE,
2015.

[3] S. Bansal and D. Kumar. Iot ecosystem: A survey on devices,
gateways, operating systems, middleware and communication.
International Journal of Wireless Information Networks, 2020.

[4] S. Becker, T. Pfandzelter, N. Japke, D. Bermbach, and O. Kao.
Network emulation in large-scale virtual edge testbeds: A note
of caution and the way forward. In International Conference
on Cloud Engineering (IC2E). IEEE, 2022.

[5] I. Behnke, L. Pirl, L. Thamsen, R. Danicki, A. Polze, and
O. Kao. Interrupting real-time iot tasks: How bad can it be
to connect your critical embedded system to the internet? In
39th International Performance Computing and Communica-
tions Conference. IEEE, 2020.

[6] I. Behnke, P. Wiesner, R. Danicki, and L. Thamsen. A priority-
aware multiqueue nic design for real-time iot devices. In Pro-
ceedings of the 35th Annual ACM Symposium on Applied Com-
puting. ACM, 2022.

[7] F. Bender, J. J. Brune, N. L. Keutel, I. Behnke, and L. Tham-
sen. Pieres: A playground for network interrupt experiments
on real-time embedded systems in the iot. In Companion of the
ACM/SPEC International Conference on Performance Engi-
neering. ACM, 2021.

[8] C. Blumschein, I. Behnke, L. Thamsen, and O. Kao. Differen-
tiating network flows for priority-aware scheduling of incoming
packets in real-time iot systems. In 25th International Sym-
posium on Real-Time Distributed Computing (ISORC). IEEE,
2022.

[9] P. Brooks. Ethernet/ip-industrial protocol. In 8th Interna-
tional Conference on Emerging Technologies and Factory Au-
tomation. Proceedings, volume 2. IEEE, 2001.

[10] D. Bruckner, M.-P. Stanica, R. Blair, S. Schriegel, S. Kehrer,
M. Seewald, and T. Sauter. An Introduction to OPC UA
TSN for Industrial Communication Systems. Proceedings of the
IEEE, 107(6), 2019.

[11] J. Cheng, W. Chen, F. Tao, and C.-L. Lin. Industrial iot in 5g
environment towards smart manufacturing. Journal of Indus-
trial Information Integration, 10, 2018.

[12] R. Danicki, M. Haug, I. Behnke, L. Mädje, and L. Thamsen.
Detecting and mitigating network packet overloads on real-time
devices in IoT systems. In Proceedings of the 4th International
Workshop on Edge Systems, Analytics and Networking. ACM,
2021.

[13] P. Druschel and G. Banga. Lazy receiver processing (lrp): a net-
work subsystem architecture for server systems. ACM SIGOPS
Operating Systems Review, 30(SI), 1996.

[14] A. Dunkels. Design and implementation of the lwIP TCP/IP
stack. Swedish Institute of Computer Science, 2(77), 2001.

20



[15] N. Finn. Introduction to time-sensitive networking. IEEE Com-
munications Standards Magazine, 2(2), 2018.

[16] L. Foschini, V. Mignardi, R. Montanari, and D. Scotece. An
SDN-Enabled Architecture for IT/OT Converged Networks: A
Proposal and Qualitative Analysis under DDoS Attacks. Future
Internet, 13(10), 2021.

[17] F. Foukalas, P. Pop, F. Theoleyre, C. A. Boano, and C. Buratti.
Dependable wireless industrial iot networks: Recent advances
and open challenges. In European Test Symposium. IEEE, 2019.

[18] I. Frazão, P. H. Abreu, T. Cruz, H. Araújo, and P. Simões.
Denial of service attacks: Detecting the frailties of machine
learning algorithms in the classification process. In Interna-
tional Conference on Critical Information Infrastructures Se-
curity. Springer, 2018.

[19] S. Gebert, T. Zinner, S. Lange, C. Schwartz, and P. Tran-Gia.
Performance modeling of softwarized network functions using
discrete-time analysis. In 2016 28th International Teletraffic
Congress, volume 1. IEEE, 2016.

[20] Y. Gilad and A. Herzberg. Fragmentation considered vulnera-
ble: blindly intercepting and discarding fragments. In Proceed-
ings of the 5th Conference on Offensive Technologies. USENIX,
2011.

[21] T. Gomes, P. Garcia, F. Salgado, J. Monteiro, M. Ekpanyapong,
and A. Tavares. Task-aware interrupt controller: Priority space
unification in real-time systems. IEEE Embedded Systems Let-
ters, 7(1), 2015.

[22] C. Haar and E. Buchmann. Fane: a firewall appliance for the
smart home. In Federated Conference on Computer Science and
Information Systems. IEEE, 2019.

[23] D. Henneke, L. Wisniewski, and J. Jasperneite. Analysis of real-
izing a future industrial network by means of Software-Defined
Networking (SDN). In World Conference on Factory Commu-
nication Systems (WFCS). IEEE, 2016.

[24] W. Hofer, D. Lohmann, F. Scheler, andW. Schröder-Preikschat.
Sloth: Threads as interrupts. In 30th Real-Time Systems Sym-
posium. IEEE, 2009.

[25] W. Hofer, D. Lohmann, and W. Schröder-Preikschat. Sleepy
sloth: Threads as interrupts as threads. In 32nd Real-Time
Systems Symposium. IEEE, 2011.

[26] M. Honda, F. Huici, C. Raiciu, J. Araujo, and L. Rizzo. Rekin-
dling network protocol innovation with user-level stacks. ACM
SIGCOMM Computer Communication Review, 44(2), 2014.

[27] B. Hubert et al. Linux advanced routing & traffic control howto.
Netherlabs BV, 1, 2002.

[28] D. Jansen and H. Buttner. Real-time ethernet: the ethercat
solution. Computing and Control Engineering, 15(1), 2004.

[29] T. Jeffree, P. Congdon, and M. J. Teener. Ieee standard
for local and metropolitan area networks–audio video bridging
(avb) systems. IEEE Std 802.1BA-2021 (Revision of IEEE Std
802.1BA-2011), 2021.

[30] T. Jeffree, P. Congdon, M. J. Teener, and C. Gunther. Ieee stan-
dard for local and metropolitan area networks–virtual bridged
local area networks amendment 14: Stream reservation protocol
(srp). IEEE Std 802.1Qat-2010 (Revision of IEEE Std 802.1Q-
2005), 2010.

[31] C. A. Kent and J. C. Mogul. Fragmentation considered harmful.
SIGCOMM Comput. Commun. Rev., 17(5), 1987.

[32] H. Laaki, Y. Miche, and K. Tammi. Prototyping a digital twin
for real time remote control over mobile networks: Application
of remote surgery. Ieee Access, 7, 2019.

[33] C. K. Lee. Development of an industrial internet of things (iiot)
based smart robotic warehouse management system. In Inter-
national Conference on Information Resources Management.
Association For Information Systems, 2018.

[34] M. Lee, H. Kim, and I. Shin. Priority-based network interrupt
scheduling for predictable real-time support. Journal of Com-
puting Science and Engineering, 9(2), 2015.

[35] M. Lee, J. Lee, A. Shyshkalov, J. Seo, I. Hong, and I. Shin. On
interrupt scheduling based on process priority for predictable
real-time behavior. ACM SIGBED Review, 7, 2010.

[36] L. Leonardi, F. Battaglia, and L. L. Bello. Rt-lora: A medium

access strategy to support real-time flows over lora-based net-
works for industrial iot applications. IEEE Internet of Things
Journal, 6(6), 2019.

[37] L. E. Leyva-del Foyo, P. Mejia-Alvarez, and D. de Niz. Inte-
grated task and interrupt management for real-time systems.
ACM Transactions on Embedded Computing Systems, 11(2),
2012.

[38] Y. Li, J. Jiang, and S. H. Hong. Joint traffic routing and
scheduling algorithm eliminating the nondeterministic interrup-
tion for tsn networks used in iiot. IEEE Internet of Things
Journal, 2022.

[39] C. Lin, Y. Bi, H. Zhao, Z. Liu, S. Jia, and J. Zhu. DTE-
SDN: A Dynamic Traffic Engineering Engine for Delay-Sensitive
Transfer. IEEE Internet of Things Journal, 5(6), 2018.

[40] W. Liu, G. Nair, Y. Li, D. Nesic, B. Vucetic, and H. V. Poor. On
the latency, rate, and reliability tradeoff in wireless networked
control systems for iiot. IEEE Internet of Things Journal, 8(2),
2020.

[41] A. Lonardo, F. Lo Cicero, A. Cotta Ramusino, I. Neri, F. Sime-
one, M. Sozzi, A. Biagioni, O. Frezza, P. S. Paolucci, R. Ammen-
dola, et al. A fpga-based network interface card with gpudirect
enabling realtime gpu computing in hep experiments. 2015.

[42] S. Makineni, R. Iyer, P. Sarangam, D. Newell, L. Zhao, R. Il-
likkal, and J. Moses. Receive side coalescing for accelerat-
ing TCP/IP processing. In International Conference on High-
Performance Computing. Springer, 2006.

[43] A. M. Mandalari, D. J. Dubois, R. Kolcun, M. T. Paracha,
H. Haddadi, and D. Choffnes. Blocking without breaking: Iden-
tification and mitigation of non-essential iot traffic. In Proceed-
ings on Privacy Enhancing Technologies, 2021.

[44] C. W. Mercer and H. Tokuda. An evaluation of priority con-
sistency in protocol architectures. In 16th Conference on Local
Computer Networks. IEEE, 1991.

[45] M. Musleh, V. Pai, J. P. Walters, A. Younge, and S. Crago.
Bridging the virtualization performance gap for HPC using SR-
IOV for InfiniBand. In 7th International Conference on Cloud
Computing. IEEE, 2014.

[46] R. Müller, D. Danner, W. S. Preikschat, and D. Lohmann.
Multi sloth: An efficient multi-core rtos using hardware-based
scheduling. In 26th Euromicro Conference on Real-Time Sys-
tems. IEEE, 2014.

[47] L. D. Nguyen and A. Kortun. Real-time Optimisation for In-
dustrial Internet of Things (IIoT): Overview, Challenges and
Opportunities. EAI Endorsed Transactions on Industrial Net-
works and Intelligent Systems, 7(25), 2020.

[48] M. Niedermaier, J.-O. Malchow, F. Fischer, D. Marzin,
D. Merli, V. Roth, and A. Von Bodisco. You snooze, you lose:
measuring PLC cycle times under attacks. In 12th Workshop
on Offensive Technologies. USENIX, 2018.

[49] M. Niedermaier, J.-O. Malchow, F. Fischer, D. Marzin,
D. Merli, V. Roth, and A. von Bodisco. You snooze, you lose:
Measuring PLC cycle times under attacks. In 12th Workshop
on Offensive Technologies. USENIX, 2018.

[50] M. Niedermaier, D. Merli, and G. Sigl. A secure dual-MCU
architecture for robust communication of IIoT devices. In
8th Mediterranean Conference on Embedded Computing. IEEE,
2019.

[51] G. Parsons, J. Messenger, J. Farkas, C. Gunther, G. Garner,
and S. Kehrer. Ieee standard for local and metropolitan area
networks–timing and synchronization for time-sensitive appli-
cations. IEEE Std 802.1AS-2020, 2020.

[52] G. Parsons, J. Messenger, M. J. Teener, and J. Farkas. Ieee
standard for local and metropolitan area networks – bridges and
bridged networks - amendment 25: Enhancements for scheduled
traffic. IEEE Std 802.1Qbv-2015, 2016.

[53] T. Qiu, J. Chi, X. Zhou, Z. Ning, M. Atiquzzaman, and D. O.
Wu. Edge computing in industrial internet of things: Architec-
ture, advances and challenges. IEEE Communications Surveys
Tutorials, 22(4), 2020.

[54] M. Schoeberl and R. U. Pedersen. tpIP: A Time-Predictable
TCP/IP Stack for Cyber-Physical Systems. In 21st Interna-

21



tional Symposium on Real-Time Distributed Computing. IEEE,
2018.

[55] S. Schriegel and J. Jasperneite. A Migration Strategy for
Profinet Toward Ethernet TSN-Based Field-Level Communica-
tion: An Approach to Accelerate the Adoption of Converged
IT/OT Communication. IEEE Industrial Electronics Maga-
zine, 15(4), 2021.

[56] P. Shinde, A. Kaufmann, K. Kourtis, and T. Roscoe. Modeling
nics with unicorn. In Proceedings of the Seventh Workshop on
Programming Languages and Operating Systems, 2013.

[57] P. Shinde, A. Kaufmann, T. Roscoe, and S. Kaestle. We need to
talk about nics. In 14th Workshop on Hot Topics in Operating
Systems. ACM, 2013.

[58] L. Silva, P. Pedreiras, P. Fonseca, and L. Almeida. On the
adequacy of SDN and TSN for Industry 4.0. In 22nd In-
ternational Symposium on Real-Time Distributed Computing
(ISORC). IEEE, 2019.

[59] S. Spanos, A. Meliones, and G. Stassinopoulos. The internals
of advanced interrupt handling techniques: Performance opti-
mization of an embedded linux network interface. Computer
Communications, 31(14), 2008.

[60] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task scheduling
for hard-real-time systems. Real-Time Systems, 1(1), 1989.

[61] B. Stephens, A. Akella, and M. Swift. Loom: Flexible and effi-
cient NIC packet scheduling. In 16th Symposium on Networked
Systems Design and Implementation (NSDI). USENIX, 2019.

[62] J. K. Strosnider, J. P. Lehoczky, and L. Sha. The deferrable
server algorithm for enhanced aperiodic responsiveness in hard
real-time environments. IEEE Transactions on Computers,
44(1), 1995.

[63] S. Sudhakaran, V. Mageshkumar, A. Baxi, and D. Cavalcanti.
Enabling QoS for Collaborative Robotics Applications with
Wireless TSN. In International Conference on Communica-
tions Workshops (ICC Workshops). IEEE, 2021.

[64] H. Tahaei, F. Afifi, A. Asemi, F. Zaki, and N. B. Anuar. The
rise of traffic classification in iot networks: A survey. Journal
of Network and Computer Applications, 154, 2020.

[65] K. Tindell and J. Clark. Holistic schedulability analysis for
distributed hard real-time systems. Microprocessing and mi-
croprogramming, 40(2-3), 1994.

[66] S. Tripathi, N. Droux, T. Srinivasan, K. Belgaied, and V. Iyer.
Crossbow: A vertically integrated qos stack. In Proceedings
of the 1st Workshop on Research on Enterprise Networking.
ACM, 2009.

[67] S. Vitturi, C. Zunino, and T. Sauter. Industrial communication
systems and their future challenges: Next-generation ethernet,
iiot, and 5g. Proceedings of the IEEE, 107(6), 2019.

[68] M. Wollschlaeger, T. Sauter, and J. Jasperneite. The Future
of Industrial Communication: Automation Networks in the Era
of the Internet of Things and Industry 4.0. IEEE Industrial
Electronics Magazine, 11(1), 2017.

[69] H. Zhu. NIC-based parallellism. InData Plane Development Kit
(DPDK): A Software Optimization Guide to the User Space-
Based Network Applications. CRC Press, 2020.

22


