
Tarema: Adaptive Resource Allocation for Scalable
Scientific Workflows in Heterogeneous Clusters

Jonathan Bader∗, Lauritz Thamsen∗, Svetlana Kulagina‡,
Jonathan Will∗, Henning Meyerhenke‡, and Odej Kao∗

∗ {jonathan.bader, lauritz.thamsen, will, odej.kao}@tu-berlin.de, Technische Universität Berlin, Germany
‡ {kulagins, meyerhenke}@hu-berlin.de, Humboldt-Universität zu Berlin, Germany

Abstract—Scientific workflow management systems like
Nextflow support large-scale data analysis by abstracting away
the details of scientific workflows. In these systems, workflows
consist of several abstract tasks, of which instances are run in
parallel and transform input partitions into output partitions.
Resource managers like Kubernetes execute such workflow tasks
on cluster infrastructures. However, these resource managers
only consider the number of CPUs and the amount of available
memory when assigning tasks to resources; they do not consider
hardware differences beyond these numbers, while computational
speed and memory access rates can differ significantly.

We propose Tarema, a system for allocating task instances to
heterogeneous cluster resources during the execution of scalable
scientific workflows. First, Tarema profiles the available infras-
tructure with a set of benchmark programs and groups cluster
nodes with similar performance. Second, Tarema uses online
monitoring data of tasks, assigning labels to tasks depending
on their resource usage. Third, Tarema uses the node groups
and task labels to dynamically assign task instances evenly
to resources based on resource demand. Our evaluation of a
prototype implementation for Kubernetes, using five real-world
Nextflow workflows from the popular nf-core framework and two
15-node clusters consisting of different virtual machines, shows
a mean reduction of isolated job runtimes by 19.8% compared
to popular schedulers in widely-used resource managers and
4.54% compared to the heuristic SJFN, while providing a better
cluster usage. Moreover, executing two long-running workflows
in parallel and on restricted resources shows that Tarema is able
to reduce the runtimes even more while providing a fair cluster
usage.

Index Terms—Resource Management, Scientific Workflows,
Profiling, Heterogeneous Cluster Resources, Scheduling

I. INTRODUCTION

Scientific workflow management systems (SWMS) like
Nextflow [1], Pegasus [2], or Snakemake [3] help scientists
to abstract, compose and execute scalable data analysis pro-
cesses in domains such as bioinformatics, geosciences, or
physics [4]–[6]. In these systems, workflows consist of several
abstract tasks, of which numerous data-parallel instances run
simultaneously on cluster nodes and transform input data
partitions into output partitions. With the help of resource
managers like Kubernetes [7], Slurm [8], HTCondor [9] or
Yarn [10] tasks are scheduled to the infrastructure components.
This is necessary since workflows can consist of a large
number of tasks, which are often recurring [6], [11], [12].
This specific pattern, combined with large amounts of data,
leads to long runtimes on clusters such as several days or

weeks [11], [12]. Therefore, data-parallel computing on large
scale-outs is needed to increase the throughput and to ensure
that the analysis executes in a certain timeframe.

Scientists often use a heterogeneous cluster infrastructure
to run these data analysis workflows. While some clusters
are planned with heterogeneous nodes to support multiple
purposes, some get partially upgraded, and in other clus-
ters failed hardware components are replaced with newer
ones [13]. These resources differ in many aspects like age
of the components, CPU cores, memory size, or storage
speed [13]. Even the same number of available CPU cores
or memory can lead to highly different runtimes, for instance
when instructions per cycle or memory clock rates differ. Con-
sidering such heterogeneous characteristics when allocating
tasks onto the infrastructure leads to better resource usage
and shorter runtimes. Manually and statically allocating a
large number of tasks onto such a heterogeneous infrastruc-
ture is impractical. The above mentioned resource managers
perform the allocation and assignment while ensuring that
the task resource requirements are met. However, resource
managers treat each task itself as a black box. In addition,
fine-grained heterogeneity aspects, beyond the amount of cores
and memory sizes, are not taken into account. This leads to
a suboptimal allocation, where task and infrastructure profiles
are not considered.

This paper presents Tarema, a system addressing this prob-
lem through infrastructure profiling and the use of workflow
monitoring data, which support the adaptive allocation of
resources for scientific workflow tasks in heterogeneous cluster
infrastructures. The infrastructure profiling analyzes the avail-
able computing infrastructure regarding performance metrics
and their available hardware with a set of microbenchmarks.
Then, Tarema determines node groups through clustering
nodes with similar performance metrics. Based on the profiling
results, we are able to label the nodes inside our infrastructure
according to the performance characteristics. In the second
step, Tarema uses the monitoring data of the hardware usage
of all executed tasks at runtime. This information is then used
to create a performance profile and label recurring tasks. In the
third step, Tarema conducts a scoring which uses the labels
from profiling and monitoring to allocate task instances to
resources. These data are then used by the scheduler of the
resource manager to assign the task instances to the managed

nodes. Tarema combines the named steps in a system, which
aims to fill the gap between the SWMS and the resource
manager.

Contributions. The contributions of this paper are:
• The approach Tarema, which uses infrastructure profiling

and task monitoring data to create task-resource profiles,
which are then used to determine a task-resource alloca-
tion through matching the profiles.

• A practical implementation of Tarema, with a cluster
profiling tool1 for heterogeneous infrastructures, an ex-
tended version of the SWMS Nextflow2, and a custom
Kubernetes scheduler3.

• An evaluation of our prototype on two heterogeneous
cluster infrastructures by using five real-world scientific
workflows from the popular nf-core framework4 and a
comparison of our system with three frequently used
scheduling approaches for resource managers and the
heuristic SJFN.

• Our evaluation shows that Tarema helps SWMS to de-
crease workflow runtimes significantly while providing a
lower variance and a better resource utilization.

II. PROBLEM STATEMENT

This section first explains the execution model of scalable
scientific workflows that we assume in this paper. We further
specify our problem statement and the assumptions we make.

a) Execution model: Formally, a workflow W (T,E) is
a directed acyclic graph (DAG), which consists of a set of
tasks T and a set of directed edges E. An edge represents
a dependency between two tasks, as well as the order of
their execution. The predecessor task, the one on the outgoing
side of the edge, always has to finish executing before the
successor task can initiate work. The input data of a single task
definition can be divided into several parts to create multiple
task instances which can run in parallel. Tasks transform these
data to generate output partitions used by successor tasks. We
assume that the tasks communicate via files.

As an example, Figure 1 shows a workflow with 7 task
instances and two input files. After task A finished, the
workflow performs a fork and executes two instances of task B
in parallel. Task C joins the results, while the succeeding tasks
D and E run in parallel. The task without an outgoing edge,
task F, merges the results from task D and E and produces the
output file.

SWMS like Nextflow [1], Pegasus [2], or Snakemake [3]
take workflow descriptions, parse them, send the task in-
stances one-bye-one to the resource manager and supervise
their execution, making sure that their dependencies are not
violated [4], [14]. Resource managers like Kubernetes [7],
Slurm [8], HTCondor [9] or Yarn [10] receive task instances
and treat them as black-boxes [11], [15], have no knowledge
about task graphs, actual hardware usage, or runtimes and can

1Available at github.com/CRC-FONDA/tarema-cluster-profiler
2Available at github.com/CRC-FONDA/tarema-nextflow-extension
3Available at github.com/CRC-FONDA/tarema-k8-scheduler
4github.com/nf-core/

Fig. 1: Workflow execution model with 7 tasks instances, two
input files and one output file.

therefore only apply simple scheduling approaches. Simple
scheduling means assigning task instances to resources based
on amount of resources reserved by users and available on
nodes, such as cores and memory, without information on
the tasks’ actual resource demands and node performance.
For instance, Kubernetes uses a scheduler that works in a
round-robin fashion5, while several YARN distributions use a
fair scheduling approach6,7. We therefore define the following
problem statement:

b) Problem statement: How to dynamically allocate spe-
cific resources in heterogeneous commodity cluster infrastruc-
tures for black-box task instances of scalable scientific work-
flows based on actual hardware performance and resource
demand?

c) Assumptions: Addressing the problem statement, we
make the following assumptions:
A1: A heterogeneous cluster environment where nodes not

only differ in the amount of cores, memory, or disks, but
also in performance characteristics of these resources.

A2: During the initial profiling phase, the respective cluster
nodes do not run any workloads to avoid interferences.

A3: Workflows are executed repeatedly with possibly differ-
ent input data.

A4: The scientific workflow management system uses the
previously described execution model.

III. RELATED WORK

Several categories of works are related to our approach.
a) Scheduling Scientific Workflows on Heterogeneous

Clusters: Scheduling workflows can be done in a static or
dynamic manner [16]. Static scheduling addresses the problem
of assigning a set of tasks to compute resources in advance.
The Heterogeneous Earliest Finish Time (HEFT) [17] is a
frequently cited static heuristic scheduling approach. The
algorithm, however, requires comprehensive knowledge about
execution times between all task resource pairs, communica-
tion times between dependent tasks, and the DAG. Dynamic
scheduling approaches are in turn more flexible and map
tasks to resources at runtime. There exist many dynamic
scheduling methods, where some are based on static schedul-
ing approaches and consider heterogeneous clusters, like P-
HEFT [18]. Due to the extensive knowledge which is required
to use many of these approaches, they are often not feasible

5kubernetes.io/docs/concepts/scheduling-eviction/scheduler-perf-tuning
6docs.datafabric.hpe.com/62/AdministratorGuide/Job-Scheduling.html
7bdlabs.edureka.co/static/help/topics/admin fair scheduler.html

2

in real-world systems. Our proposed system uses profiling and
workflow monitoring data to estimate infrastructure charac-
teristics and task-resource demands, which are then used to
dynamically allocate resource to tasks. The information about
the task-resource allocation can then be used by schedulers
that determine the order of task instance executions and exact
placement on clusters

In addition, workflow scheduling distinguishes between
scheduling of a single isolated workflow and multiple work-
flows [19]. Many scheduling approaches are not feasible
for scheduling multiple workflows. Especially if the exact
number of executed workflows and the order of tasks are
unknown, only dynamic methods are an option. Tarema can be
configured to support the allocation of isolated and multiple
workflows. Since we assume that clusters are shared and the
single isolated workflows are not the only workload, even the
scheduling of isolated workflows aims to achieve an even
distribution of tasks to the infrastructure according to the
capabilities.

b) Scheduling of scalable workflow and batch jobs:
Paragon [20] or Quasar [21] propose the use of profiling to
determine resource allocation for workloads. These systems
also assume that there is no knowledge about workload
runtimes and infrastructure characteristics. Therefore, Paragon
uses short profiling runs to classify workloads and continu-
ously recommends a target according to the characteristics.
Quasar extends this model by integrating scale-out and scale-
up impact estimations. Paragon and Quasar are full resource
management systems, addressing both resource allocation and
assignment, using machine learning methods to schedule batch
and continuous user-facing tasks in heterogeneous clusters. In
contrast, Tarema’s scope is resource allocation, so it can be
used with existing resource management systems and different
schedulers.

Rupam [22] considers the resource usage of tasks and
hardware characteristics to schedule Spark tasks onto hetero-
geneous resources. Similar to Tarema, the authors consider
not only the number of CPU cores, the amount of memory,
or disk size but also different speeds. However, Rupam’s
node monitoring metrics are partly static and not sufficient to
fully model heterogeneity. In Tarema, we resolve this problem
through extending static attributes with microbenchmarks.
Tarema groups resources, which leads to a fair resource usage
and is not conducted by Rupam. Additionally, Rupam is
designed for Spark’s execution model, while Tarema can run
with different SWMS.

StarPU [23] is a platform that uses a dynamic scheduling
approach to schedule tasks to CPU and GPU nodes and op-
timizes data movements along scheduling tasks. StarPU does
not require prior knowledge about task makespan and offers an
API to design custom schedulers on a low abstraction level. In
StarPU user have to provide a cost model for each task. While
StarPU is used in the domain scheduling in high-performance
computer architectures, Tarema’s scope is resource allocation
for scientific workflow tasks in commodity clusters. Addi-
tionally, Tarema does not rely on a user defined cost model

for tasks. Instead, Tarema uses infrastructure profiling, the
monitoring data from the SWMS, and relative performance
scores as well as group labels to influence allocations.

c) Cluster Configuration for Distributed Batch Process-
ing: Profiling-based approaches use probe jobs on sample
data to determine a near-optimal resource configuration for
a given workload [24]–[26]. These samples run on different
machines with the goal of estimating a near-optimal cluster
configuration. The key techniques of these existing profiling-
based approaches for cluster configuration can be transferred
and applied to facilitate adaptive task-resource matching.
Profiling tasks in the domain of scientific workflows has
drawbacks. Some tasks have short runtimes of even less than
a few seconds, while others run for hours and days [6].
Our approach abandons task profiling and instead conducts an
infrastructure profiling once, then uses the task performance
data from the monitoring at runtime.

Some systems make use of historic runtime data to model
the scale-out behavior of a given job [27]–[30]. Through the
provisioning of shared runtime data, performance profiles of
identical jobs can be used to create models prior to execution.
Since scientific workflows typically run for multiple days and
with different input datasets, it is usually too costly to await
the availability of historic runtime data before optimizing. In
comparison, Tarema creates task performance profiles already
at workflow runtime. Also, Tarema neither aims to estimate
job runtimes nor to configure entire cluster reservations.

d) Task Runtime Prediction: Other approaches aim to
predict the runtime of tasks [15], [31], [32]. Based on historic
data, different prediction models can be applied. Tarema does
not intent to predict the runtime. Instead, our aim is to
estimate task-resource demands in relation to other workflow
tasks to create task performance profiles. Thereby, we are not
dependent on a certain number of workflow runs to train the
models, nor on the input data size since the overall task-
resource profile stays constant.

e) Grouping of Resources and Tasks: Infrastructure clus-
tering is frequently used [33]–[35] and aims to build homoge-
neous groups of machines, to take advantage of this at resource
allocation time. Triplet [33] is a scheduling algorithm that
clusters groups of machines with similar characteristics. In
addition to machine grouping, Triplet performs clustering of
tasks into groups with the goal to reduce communication times.
Since the resource manager has no knowledge about the DAG,
Tarema conducts no task clustering. Tarema uses infrastructure
grouping to identify similar machines, which are then used to
allocate the tasks according to the groups’ capabilities.

IV. APPROACH

This section first presents an overview about our system.
It then explains the three phases: 1© cluster profiling, 2©
dynamic task monitoring and labeling, and 3© task to resource
allocation.

A. Overview
Tarema is a system which aims to bridge the gap between

the SWMS and the resource manager through allocating tasks

3

1.1

1.3

Scientific Workflow
Management System

Task vCPU RAM

A 320% 8192MB

... ...

Z 84% 2560MB

Resource Manager

A

B

E

D
C

Task
Monitoring

Task
Labeling

Cluster Infrastructure

2.22.1

Task B

CPU 3
RAM 3

IO 1

Infrastructure Groups

Group CPU RAM IO

G1 3 3 1

...

GN 2 1 1

Task A

CPU 3
RAM 3

IO 1

Allocation3.

Resource Allocator

Cluster Profiler

1.2

Profile nodes

Group nodes

Label nodes

Task A Instance Task A Instance Assign

Monitoring Database

Fig. 2: Overview of a typical scientific workflow environment, extended by our Tarema approach (green).

to heterogeneous resources based on extensive infrastructure
knowledge and automatically created task performance labels.
Figure 2 gives an overview about our approach, where the
bold boxes and lines are part of Tarema. Phase 1© conducts
the infrastructure profiling. In Step 1.1, the cluster profiler
uses a set of microbenchmarks and hardware analysis tools
to gather performance and static node characteristics. In Step
1.2, based on the profiling information, our approach builds
node groups with similar performance profiles. Then, in Step
1.3, Tarema assigns node labels that express performance
and static characteristics and can be used by the resource
managers during the allocation phase. In 2©, Tarema uses the
online monitoring data from the SWMS and labels tasks at
runtime through a workflow management system extension.
The monitoring data in Step 2.1 contain task-resource demands
and statistics about active and historic workflows. During
the task-labeling Step 2.2, these data are used to build a
task performance profile for recurring tasks based on the
resource demand relative to other tasks. In the last phase
3©, Tarema conducts dynamic task-resource allocation through

the information from the previous steps. First, an allocation
function determines the score between the infrastructure node
groups and the task-resource demands through using the labels
previously assigned. Our allocator uses a minimization func-
tion to determine a priority list of task-resource allocations.
Then, a scheduling algorithm can use this information to
perform the task-resource assignment.

B. Cluster Profiler
Since we expect the compute cluster to consist of nodes

with different kinds of hardware, we want to gather detailed
performance characteristics. Tarema analyses static node prop-
erties like the number of CPU cores, CPU cache sizes, or

RAM speed, as well as dynamic performance metrics. To this
end, our approach uses microbenchmarks to measure CPU,
memory and I/O characteristics. This step can be executed
in parallel, takes less than a minute, and is only done once
for each node. To consider hardware changes and failures
in the cluster, one can run the profiler once changes in the
cluster are identified by the resource manager. By using a
provisioning and configuration management tool, the cluster
profiler ensures that the required dependencies are installed
on all target machines.

Before labeling the nodes depending on the gathered per-
formance metrics, Tarema builds node groups with similar
performance characteristics. For this, we use a clustering
algorithm that uses a control function, like the silhouette
score [36], to estimate the number of node groups. The features
we select for the clustering will later result in labels. In
the default settings we use features for the CPU speed, the
memory speed, sequential read/write performance and random
read/write performance. The features can be individually se-
lected and extended to fulfill specific task-resource mapping
goals. A possible extension could be a certain CPU flag,
the integration of hardware accelerators or labels for GPU
instances. After building the node similarity groups, Tarema
estimates the order of groups for all features, where weaker
performance results in a lower rank. Then, depending on the
node’s rank, we map the respective labels to scalar values
ranging from 1 to n, where n is the number of node groups.

These labels are assigned to the nodes controlled by the
resource manager and can then be used during the allocation
process.

4

C. Dynamic Task Monitoring and Labeling
Normally, the workflow system would directly submit the

tasks to the resource managers, to allocate these for execu-
tion on the infrastructure. We intercept this process through
extended task monitoring and labeling.

The online monitoring data of the runtime metrics are
retrieved from the SWMS monitoring capabilities, which
mostly rely on an operating systems monitor. A database
extends the monitoring and stores the executed tasks together
with their runtime metrics and related workflows. In addition,
statistics about currently executed and historical workflows
are maintained and updated with the execution of new tasks.
Depending on the number of node groups and the amount of
respective nodes in the group, Tarema creates task labels at
runtime.

Let us illustrate the labeling for the CPU speed. Let G be
the list of node groups, gi the i-th node group in this list and
n the number of elements in G. We denote the total number of
CPU cores inside node group gi as mi. We sort the elements
from G in ascending order depending on the CPU performance
score. Then, Tarema creates n+ 1 percentiles pi, where:

p0 = 0; pi =
mi∑n

k=1 mk
+pi−1, i ∈ [1, n−1]; pn = 1;

The denominator is the sum of all CPU cores in the groups.
The percentiles express the respective feature distribution over
the nodes, in this case the number of CPU cores. The monitor-
ing database contains the CPU utilization monitoring data from
tasks of the currently running workflows and their historic
executions. For example, a CPU usage monitoring value for
task t of 210% would indicate a measured full usage of 2 full
CPU cores and 10% of a third one. We sort the monitoring
task data for the respective workflow and feature, in this case
the CPU utilization, in ascending order. Now, Tarema applies
the percentiles on the sorted CPU utilization data. The CPU
utilization value vpn

at the bounds of percentiles pn is used
to build n intervals [0, vp1 [, [vp1 , vp2 [, . . . , [vpn−1 ,+∞[. An
example interval for three node groups could look like the fol-
lowing: [0, 54%[, [54%, 112%[, [112%,+∞[. Tarema searches
the database for historic data from the task to be submitted. In
the case of existing historic executions, we have an estimation
of the resource usage. Tarema examines in which interval the
CPU utilization of the task to be submitted lays. We then label
the CPU feature with a value between 1 to n according to the
interval rank in which the task falls, where a higher number
expresses higher resource demand. Tarema conducts this step
also for features like RAM (memory speed) or I/O (sequential
read/write). Through creating percentile intervals according to
the resource capabilities of node groups, we aim to achieve a
fair task distribution so that less demanding tasks do not block
the most capable nodes.

D. Adaptive Resource Allocation
After the task has been submitted to the resource manager,

Tarema’s resource allocator aims to find the best-fitting re-
source for each task. The results from the resource allocation,

TABLE I: Resource Allocation matrix for task t on four node
groups

Node Group 1 Node Group 3
CPU RAM I/O CPU RAM I/O

1 1 1 1 1 2
CPU 3 2 - - 3 2 - -
RAM 3 - 2 - 3 - 2 -
I/O 2 - - 1 2 - - 0

Node Group 2 Node Group 4
2 2 3 3 3 3

CPU 3 1 - - 3 0 - -
RAM 3 - 1 - 3 - 0 -
I/O 2 - - 1 2 - - 1

as well as the provided knowledge about infrastructures and
tasks can then be used to implement a scheduling algorithm.
To support the allocation, we create labels for the infrastructure
and tasks according to their performance characteristics. For
the resource allocation of our system, we use a scoring
algorithm to determine the best match between a task and
the available resources. By calculating a score of the task in
relation to each node group, we can create a priority list of
node-groups to allocate the task. Let S be the list of all node-
group-task pairs, and P is the list of pairs where nodes inside
node-group n satisfy the resource requirements of task t. Our
score function for one node-group-task pair is defined as:

f(n, t) =

q∑
k=1

|nk − tk|,

where q is the number of features (CPU, Memory, I/O), and nk

and tk are scalar feature labels for the respective node-group-
task pair. The values of the scalar feature labels originate from
cluster profiling and task monitoring in the previous steps.
After applying f(n, t) on all pairs of P , the minimum list entry
determines the near-optimal task-resource allocation. Table I
gives an example where task t has to be assigned to one of four
available node groups. The task has the labels t1 = 3, t2 = 3,
t3 = 2, where t1 is the CPU label, t2 the memory label, and t3
the I/O label. The result of applying f(n, t) on all pairs of P is
the respective sum of the main diagonal. In the given example,
we would prefer nodes from group four since the sum is the
minimum. In the case where no node insight the preferred
group has sufficient resources, the priority list of task-resource
pairs can be used by the scheduling algorithm to select the next
best-fit. In our scheduling algorithm, our first-order criterion is
to select a node from the preferred node-group list. If there are
several node-groups with the same ranking, we select the most
powerful node group, which we determine by summing up all
scalar feature values. Inside the group, we select the node
with the currently smallest load as the second-order criterion.
Unknown, and therefore unlabeled tasks, are assigned to the
nodes with the least load to achieve a fair distribution.

This score function helps Tarema to avoid mapping
resource-intensive tasks to less powerful hardware resources,
and vice versa. Matching values closer to zero indicates that
task-performance profiles map to node characteristics. Since

5

higher resource demands result in higher scalar feature values,
they have an increased impact on the matching process.

V. EVALUATION

This section presents our prototype implementation, the
experiment setup, as well as the experimental results from
running five real-world scientific workflows with different
scheduling approaches on two different clusters. The entire
source code to conduct the evaluation is available online.8

A. Prototype Implementation

In accordance with the three phases in our model, this
section first presents the profiler, followed by the scientific
workflow management system extension and the scheduler.

a) Cluster Profiler: Our system uses sysbench to mea-
sure the single-threading and multi-threading performance of
the machines. Sysbench runs a CPU benchmark that verifies
prime numbers. We limit the runtime to ten seconds, and the
maximum number to verify to 20000. In addition, we run lscpu
on all destination systems to collect more specific static CPU
information, which can be used for more specific workload
schedules. An example is a certain CPU flag like Advanced
Vector Extension, which can improve certain calculations.

The memory benchmark uses sysbench as well. In the
memory test, we set the memory block size buffer to one
megabyte, the total memory size to 100 gigabytes, and the
number of threads to one. Running the memory benchmark
with all available threads would be possible. However, there
are two major problems doing this. First, the values will be
hardly comparable, for example, a node with 4 vCPUs would
score less even with a faster physical memory than a node with
8 vCPUs. Second, the tasks allocate a fix amount of memory.
Therefore, a benchmark value which has been obtained with
more than the requested memory will be misleading. We
therefore decided to use one thread to provide a coarse
comparability. Our tool also provides static information by
running dmidecode –type 17 on the target machines.

We test the I/O performance of the target systems with the
tool fio. We conduct one benchmark for sequential read-write
and one to measure random read-write characteristics. In both
tests, we set the filesize to 4 gigabytes, and use the libaio
library for asynchronous access with a depth of 64. To omit
the page cache and the use of the memory, we set the direct
parameter to one. The lshw -class storage command provides
the static information about the available devices.

We are aware that modern hardware is tailored to achieve
high scores in frequently used benchmarks like sysbench and
fio. Therefore, the results may not fully reflect the actual
performance of the hardware. However, we do not aim to
exactly estimate the single infrastructure performances in
detail. Benchmarking the cluster hardware has the goal to
relatively compare the nodes inside the cluster.

With the knowledge from the benchmarks, Tarema uses the
k-means++ algorithm to form the node groups. The silhouette

8Available at github.com/CRC-FONDA/tarema-experiments

TABLE II: The cluster configuration for the 5;5;5 cluster.

GCP Name # Nodes vCPUs Memory Storage Bandwidth
N1 5 8 32 GB HDD 16 Gbps
N2 5 8 32 GB HDD 16 Gbps
C2 5 8 32 GB HDD 16 Gbps

score is used to determine the quality of the clusters and the
nodes inside the groups, as well as the number of similarity
groups.

b) Nextflow Extension: In the default configuration,
Nextflow gathers task runtime information to create a report
file in html. These monitoring data are retrieved from the
Linux process stats (ps) and contain information like CPU
usage, resident set size, or read/write data. We intercept this
process and collect the task-resource demand in a PostgreSQL
database. Further, Tarema uses materialized views with in-
dexes in the database to update workflow statistics at task
completion. Before Nextflow submits the task to the resource
manager, we start labeling the task. Therefore, we query
historical task executions and hit our materialized views. Since
the resource managers need additional labeling information,
Tarema extends the resource managers’ executor interface.

c) Kubernetes Scheduler: Nextflow supports several re-
source managers, one of the most popular ones is Kubernetes.
The default Kubernetes scheduler schedules in a round-robin
fashion.9 We therefore use the fabric8io K8 library10 to pro-
vide a custom Java Kubernetes scheduler that supports three
well-known scheduling approaches for resource managers, a
Shortest-Job-Fastest-Node scheduler, as well as Tarema’s task-
resource allocation logic and the scheduling algorithm. The
scheduling approaches are easily exchangeable and extensible
to enable the implementation of custom schedulers. Our sched-
uler observes submitted tasks and active nodes using Informers
and Watchers.

d) Usage with other SWMS: The cluster profiler only
requires the machines in the cluster to run POSIX compliant
operating systems and does not depend on any SWMS. Fur-
ther, the resource allocator expects labeled Kubernetes pods
and is therefore also independent of a specific SWMS. For us-
ing Tarema with other SWMS, the respective monitoring part
has to be extended by task labeling. The SWMS monitoring
extensions offer similar metrics like resource usage. However,
the different SWMS do not provide uniform interfaces and,
therefore, require individual adaptions.

For example, the popular SWMS Pegasus offers a mon-
itoring REST-API, which could be used to label the tasks.
Snakemake supports panoptes, a monitoring service that can
also be used to label the tasks before submitting them to the
resource manager.

B. Cluster Setup

Since we focus on heterogeneous cluster environments, we
use Terraform, an open-source infrastructure as code soft-

9kubernetes.io/docs/concepts/scheduling-eviction/scheduler-perf-tuning
10github.com/fabric8io/kubernetes-client

6

TABLE III: The cluster configuration for the 5;4;4;2 cluster.

GCP Name # Nodes vCPUs Memory Storage Bandwidth
E2 5 6 16 GB HDD 8 Gbps
N1 4 6 16 GB HDD 10 Gbps
N2 4 8 32 GB HDD 16 Gbps
C2 2 16 64 GB HDD 32 Gbps

ware11, to build the evaluation setup in a reproducible manner.
For our evaluation, we choose the Google Compute Plat-

form and select the virtual machines to model heterogeneous
infrastructure.

We use two different heterogeneous cluster configurations,
where each contains in total 15 machines. Table II gives an
overview about the first cluster used for our experiments. We
choose a uniform distribution of nodes, where each node has
the same amount of CPUs and memory. On the first look the
hardware characteristics in Table II look homogeneous. How-
ever, the different names indicate different kind of machines.
Our N1 machines are based on Intel Broadwell platforms with
a base clock of 2.0 GHz, N2 are Intel Cascade Lake CPUs
with a base clock of 2.8 GHz, and C2 are compute-optimized
machines based on Intel Scalable Processors (Cascade Lake)
with a higher turbo clock of up to 3.8 Ghz.12

The specifications of the second cluster are depicted in
Table III. Here not only the hardware specification is het-
erogeneous, we also choose a different node distribution. In
addition to N1 nodes, we select E2 machines types, which are
cost-optimized and are based on Intel Broadwell with a base
clock of 2.2 GHz and model the older hardware nodes existing
in a cluster, while the C2 machines can be seen as the newly
available infrastructure nodes, which are more powerful but
expensive and therefore scarce.

Since the nodes in the cluster reside in the same region and
zone, they have a latency in the range of [1ms, 2ms] between
each other. We do not consider external load on the cluster
during the experiments.

The current Nextflow version requires a single persistent
volume claim. Therefore, it is not viable to take advantage of
heterogeneous I/O characteristics and explains why we choose
the same storage type for all node instances.

C. Workflow Setup

We chose five publicly available real-world workflows from
the popular nf-core repository: Viralrecon - variant calling
for viral samples; Eager - ancient DNA analysis; Mag -
assembly and binding of metagenomes; CAGE-Seq; Chipseq -
peak-calling. Recall that we mentioned that scalable scientific
workflows can run for days and easily exceed terabytes of
input data. We therefore use very small parts of datasets or
cut these to reduce the runtimes. The five chosen workflows
have different structures and exhibit diverse resource usage
patterns, which can be seen in Figure 3. For example, the Mag
workflow contains many CPU-intensive tasks, while Chipseq

11terraform.io
12cloud.google.com/compute/docs/machine-types

50 100 150 200
CPU utilization in %

0

10

20

30

40

50

N
um

be
r o

f T
as

ks

0 1000 2000 3000
Memory utilization in MB

0

10

20

30

40

50

60

N
um

be
r o

f T
as

ks

Workflow
viralrecon
eager
mag
chipseq
cageseq

Fig. 3: CPU and memory utilization of the experiment work-
flows.

and Eager contain more memory-intensive tasks. We assigned
all tasks 2 CPUs and 5GB of memory.

D. Cluster Profiling

Initially, the Tarema cluster profiler creates a fine-granular
infrastructure profile with groups of similar nodes. Table IV
shows that Tarema splits the nodes for both configurations
into three node groups. The profiling shows that the hardware
performance characteristics inside the respective groups have a
small range. However, there is a significant difference between
the node groups’ memory and CPU speed.

Tarema then automatically labels the nodes inside the cluster
according to the steps described in Section IV.

E. Experiments

With our experiments, we aim to show how knowledge
about infrastructure performance and task resource demands
can help determine task-resource allocations that improve the
runtimes of tasks and evenly utilize available resources.

a) Experiment Design: First, we examine how three stan-
dard scheduling algorithms in widely used resource managers
schedule isolated real-world workflows without any infrastruc-
ture and task profile knowledge. As a first set of baselines we
selected Round-Robin, Fair Scheduling, and Fill Nodes [37],
which are frequently used schedulers in resource managers like
Kubernetes, Slurm, or Yarn. The default Kubernetes scheduler
works in a round-robin fashion. Fair scheduling aims to
distribute the resources reserved on all nodes equally and is
used similarly in Yarn distributions and Slurm. The Fill-Nodes
scheduling approach aims to fully claim node resources before
assigning tasks to the next node in the node list.

Afterwards, we apply the profiling and labeling capabilities
of Tarema to gather detailed information about the cluster
and the submitted tasks. With this knowledge, we evaluate
Tarema’s default allocation and scheduling implementation
with regard to workflow runtimes and resource usage. In
addition, we use the obtained knowledge also for the heuristic
scheduling approach Shortest-Job-Fastest-Node (SJFN), which

7

TABLE IV: The results of Tarema’s profiling runs. The last column shows the node similarity groups Tarema created.

of Nodes CPU events/s RAM MiB/s random write IOPS random read IOPS sequential write IOPS sequential read IOPS Group
5;5;5 Cluster Configuration

5 367-384 13800-14300 107-108 102 483 481 1
5 458-468 17500-17700 107-108 102 483 481 2
5 523-525 19800-19900 107-108 102 483 481 3

5;4;4;2 Cluster Configuration
9 368-384 13100-14200 107-108 102 483 481 1
4 469-470 17700-17800 107-108 102 483 481 2
2 522-524 19800 107-108 102 483 481 3

Round Robin Fill Nodes Fair SJFN Tarema

450

500

550

600

650

700

750

R
un

tim
e,

 s
ec

Workflow = Cageseq

Round Robin Fill Nodes Fair SJFN Tarema
250

260

270

280

290

300

310

320

Workflow = Chipseq

Round Robin Fill Nodes Fair SJFN Tarema
Scheduler

260

280

300

320

340

Workflow = Eager

Round Robin Fill Nodes Fair SJFN Tarema
Scheduler

300

350

400

450

500

550

R
un

tim
e,

 s
ec

Workflow = Mag

Round Robin Fill Nodes Fair SJFN Tarema
Scheduler

340

360

380

400

420

440

460

480

Workflow = Viralrecon

Fig. 4: Workflow runtimes on the 5;5;5 cluster comparing Tarema to the baseline schedulers (y-axis not starting at 0, to
highlight differences)

is based on Shortest-Job-Next (SJN) [38], [39]. SJFN is a
heuristic scheduling approach which schedules the shortest
jobs to the fastest resources with the aim to reduce the
turnaround time [39], [40]. We include it as another baseline to
compare Tarema’s performance also against another heuristic
scheduling approach that takes into account data on infras-
tructure and task performance. Our SJFN implementation uses
the historic runtime data from Tarema’s monitoring extension
to order the tasks for the shortest runtime, as well as the
infrastructure data from the profiling phase. Beyond runtimes,
we also compare Tarema and SJFN in the resulting resource
utilization. Later, we compare Tarema with SJFN running
multiple workflows.

To ensure that the scheduling results are not influenced by
the order of nodes which the scheduler holds in a list, we
shuffle the nodes each time.

The five schedulers run each workflow seven times on both
clusters. An initial run for each Scheduler-Workflow pair to
acquire data dependencies and to pull the docker images is
not part of the benchmark. After the experimental evaluation of
each Scheduler-Workflow pair, we delete the database entries.

b) Experiment results - Isolated Workflows: The runtimes
and their distributions can be seen in the Figures 4 and 5. One
can see that SJFN and Tarema consistently outperform the
scheduling approaches which are widely used in resource man-
agers in both clusters and on all workflows. The experiments

8

Round Robin Fill Nodes Fair SJFN Tarema

450

500

550

600

650

700

R
un

tim
e,

 s
ec

Workflow = Cageseq

Round Robin Fill Nodes Fair SJFN Tarema
250

275

300

325

350

375

400

425

450

Workflow = Chipseq

Round Robin Fill Nodes Fair SJFN Tarema
Scheduler

260

280

300

320

340

360

Workflow = Eager

Round Robin Fill Nodes Fair SJFN Tarema
Scheduler

300

350

400

450

500

R
un

tim
e,

 s
ec

Workflow = Mag

Round Robin Fill Nodes Fair SJFN Tarema
Scheduler

360

380

400

420

440

460

480

Workflow = Viralrecon

Fig. 5: Workflow runtimes on the 5;4;4;2 cluster comparing Tarema to the baseline schedulers (y-axis not starting at 0, to
highlight differences)

Viralrecon Eager Mag Cageseq Chipseq
Workflow

0

20

40

60

80

100

120

140

R
es

ou
rc

e
U

sa
ge

 -

of
 T

as
ks

Tarema - Node group 1
SJFN - Node group 1
Tarema - Node group 2
SJFN - Node group 2
Tarema - Node group 3
SJFN - Node group 3

Fig. 6: Resource usage Tarema vs. SJFN on cluster 5;5;5.

in our first cluster result in a geometric mean runtime decrease
of 17.87%, comparing Tarema to the three standard baselines
on all workflows. Meanwhile, in Cluster 5;4;4;2 Tarema is

Viralrecon Eager Mag Cageseq Chipseq
Workflow

0

20

40

60

80

100

120

140

R
es

ou
rc

e
U

sa
ge

 -

of
 T

as
ks

Tarema - Node group 1
SJFN - Node group 1
Tarema - Node group 2
SJFN - Node group 2
Tarema - Node group 3
SJFN - Node group 3

Fig. 7: Resource usage Tarema vs. SJFN on cluster 5;4;4;2.

able to decrease the geometric mean runtime by 21.47%. In
addition, Tarema outperforms the heuristic approach SJFN
between 2.1% and 9.5% over all setups. Tarema achieves a

9

4.65% runtime decrease in Cluster 5;5;5 and a 4.45% runtime
decrease in Cluster 5;4;4;2 compared to SJFN.

SJFN and Tarema show a lower standard deviation and
a lower runtime compared to the standard scheduling ap-
proaches.

In general, task runtimes can vary in real-world systems
and impact the arrival time of subsequent tasks which might
have to be assigned to a less powerful nodes and therefore
impact SJFN schedules. This can affect the runtime through
the sequence and timing of tasks.

In contrast to SJFN, the task-resource allocation Tarema
conducts is not dependent on the arrival times or the ordering.
However, this only applies as long as there are historic task
information that can be used to label the recurring tasks in the
workflow. Figures 4 and 5 show that single runtime outliers
exist for Tarema executions. The log data shows that these
outliers are the first runs, where little knowledge about tasks is
known yet and Tarema has to assign unknown tasks according
to fair scheduling. Therefore, the first runs only partially profit
from labeling at workflow runtime.

Figures 6 and 7 compare the resource usage of Tarema and
SJFN for each workflow. Tarema aims to allocate the tasks
according to the existing node group distribution. However, in
contrast to the task-node allocation which Tarema performs
based on the resource distribution, SJFN assigns to the most
powerful nodes first. Comparing the resource usage of cluster
5;5;5 with cluster 5;4;4;2 for SJFN, one can see that for the
second configuration, more tasks are scheduled to the less
powerful node groups two and one. This behaviour is expected
due to fewer C2 and N2 machines in cluster 5;4;4;2, compared
to cluster 5;5;5, which are available for allocation. For Tarema,
the resource usage for cluster 5;4;4;2 shows that more tasks
are assigned to the least powerful nodes and fewer to the most
powerful ones.

In Figures 4 and 5 we saw that Tarema outperforms SJFN
with regard to runtime. It might sound counterintuitive that a
fair resource allocation achieves lower runtimes compared to
a case where only the most powerful nodes are used. Since
SJFN assigns all tasks to the most powerful machines, many
tasks have to share the resources. This sharing can lead to
interferences, which can get higher with a higher number of
competing tasks [41]–[43].

c) Experiment results - Multiple Workflows: The first
configuration in Figure 8 compares the runtimes of Tarema
to SJFN, running Viralrecon and Cageseq, which are the
workflows with the longest runtimes, in parallel on the 5;5;5
cluster. Running Viralrecon and Cageseq in parallel using the
first configuration yields a mean runtime decrease of 6.22%. In
the restricted configuration, we disabled 20% and 40% of the
machines in each node group for scheduling. Restricting 40%
of the cluster shows that Tarema is able to decrease the runtime
by 23.90% compared to SJFN. The log data analysis shows
that SJFN sends the memory-intensive and long-running tasks,
visualized in Figure 3, to the least powerful nodes. Meanwhile,
Tarema evenly distributes the tasks on the restricted resources.

Vir-Cage: 555 555-20%-Disabled 555-40%-Disabled
Configuration

850

900

950

1000

1050

1100

1150

Su
m

 o
f r

un
tim

es
, s

ec

Scheduler
SJFN
Tarema

Fig. 8: Sum of the workflow runtimes Tarema vs. SJFN.

VI. CONCLUSION

This paper presented Tarema, a system that dynamically
allocates scientific workflow tasks to heterogeneous cluster
resources. To this end, Tarema conducts a profiling run with
microbenchmarks, creating detailed infrastructure performance
profiles, and then clusters nodes with similar profiles into
groups. The system further labels the tasks of workflow jobs
upon execution, thereby annotating resource demands without
requiring separate task profiling runs. Finally, Tarema uses
the node groups and task labels to allocate tasks to available
cluster resources at runtime.

We implemented a prototype of Tarema for the SWMS
Nextflow, the resource manager Kubernetes, utilizing standard
Linux benchmark tools. Our evaluation with real-world scien-
tific workflows reveals that through profiling, monitoring data,
and task-resource profiles a geometric mean runtime decrease
of 19.8% over all workflows and runtimes can be achieved
compared to standard schedulers for widely-used resource
managers. Since these schedulers are used in popular systems
like Kubernetes, Yarn, or Slurm, this shows the improvements
that can be achieved by adaptively allocating resources for
workflows. Further, through the profiling and monitoring ex-
tension, Tarema also enables the use of scheduling strategies
like the heuristic SJFN. Our comparison for isolated workflows
with SJFN shows a geometric mean runtime decrease of 4.54%
over all workflows and runtimes, while the cluster usage using
Tarema is better balanced over the different nodes. Moreover,
executing two workflows in parallel and on restricted resources
shows that Tarema is able to reduce the runtimes even more
while providing a fair cluster usage.

In the future, we plan to investigate how Nextflow can be
extended to enable the support of multiple disk volumes to be
able to allocate I/O intensive tasks more precisely.

ACKNOWLEDGMENTS

Funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) as FONDA (Project
414984028, SFB 1404).

10

REFERENCES

[1] P. Di Tommaso, M. Chatzou, E. W. Floden, P. P. Barja, E. Palumbo,
and C. Notredame, “Nextflow enables reproducible computational work-
flows,” Nature biotechnology, vol. 35, no. 4, 2017.

[2] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling,
R. Mayani, W. Chen, R. F. Da Silva, M. Livny et al., “Pegasus, a work-
flow management system for science automation,” Future Generation
Computer Systems, vol. 46, 2015.

[3] J. Köster and S. Rahmann, “Snakemake—a scalable bioinformatics
workflow engine,” Bioinformatics, vol. 28, no. 19, pp. 2520–2522, 2012.

[4] M. Bux and U. Leser, “Parallelization in scientific workflow manage-
ment systems,” arXiv preprint arXiv:1303.7195, 2013.

[5] E. Deelman, K. Vahi, M. Rynge, R. Mayani, R. F. da Silva, G. Pa-
padimitriou, and M. Livny, “The evolution of the pegasus workflow
management software,” Computing in Science & Engineering, vol. 21,
no. 4, pp. 22–36, 2019.

[6] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and K. Vahi,
“Characterizing and profiling scientific workflows,” Future Generation
Computer Systems, vol. 29, no. 3, 2013.

[7] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg,
omega, and kubernetes,” Queue, vol. 14, no. 1, 2016.

[8] A. B. Yoo, M. A. Jette, and M. Grondona, “Slurm: Simple linux utility
for resource management,” in Workshop on Job Scheduling Strategies
for Parallel Processing. Springer, 2003.

[9] D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing in
practice: the condor experience,” Concurrency and computation: prac-
tice and experience, vol. 17, no. 2-4, 2005.

[10] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth et al., “Apache hadoop
yarn: Yet another resource negotiator,” in Proceedings of the 4th annual
Symposium on Cloud Computing, 2013, pp. 1–16.

[11] C. Witt, D. Wagner, and U. Leser, “Feedback-based resource allocation
for batch scheduling of scientific workflows,” in 2019 HPCS. IEEE,
2019.

[12] P. Maechling, E. Deelman, L. Zhao, R. Graves, G. Mehta, N. Gupta,
J. Mehringer, C. Kesselman, S. Callaghan, D. Okaya et al., “Scec
cybershake workflows—automating probabilistic seismic hazard analysis
calculations,” in Workflows for e-Science. Springer, 2007.

[13] D. Turner, D. Andresen, K. Hutson, and A. Tygart, “Application per-
formance on the newest processors and gpus,” in Proceedings of the
Practice and Experience on Advanced Research Computing. Associa-
tion for Computing Machinery, 2018.

[14] M. Bux, J. Brandt, C. Lipka, K. Hakimzadeh, J. Dowling, and U. Leser,
“Saasfee: scalable scientific workflow execution engine,” Proceedings of
the VLDB Endowment, vol. 8, no. 12, 2015.

[15] C. Witt, M. Bux, W. Gusew, and U. Leser, “Predictive performance
modeling for distributed batch processing using black box monitoring
and machine learning,” Information Systems, vol. 82, pp. 33–52, 2019.

[16] T. L. Casavant and J. G. Kuhl, “A taxonomy of scheduling in general-
purpose distributed computing systems,” IEEE Transactions on Software
Engineering, vol. 14, no. 2, 1988.

[17] H. Topcuoglu, S. Hariri, and M.-y. Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,” IEEE
transactions on parallel and distributed systems, vol. 13, no. 3, 2002.

[18] J. G. Barbosa and B. Moreira, “Dynamic scheduling of a batch of parallel
task jobs on heterogeneous clusters,” Parallel computing, vol. 37, no. 8,
2011.

[19] M. A. Rodriguez and R. Buyya, “A taxonomy and survey on scheduling
algorithms for scientific workflows in iaas cloud computing envi-
ronments,” Concurrency and Computation: Practice and Experience,
vol. 29, no. 8, 2017.

[20] C. Delimitrou and C. Kozyrakis, “Paragon: Qos-aware scheduling for
heterogeneous datacenters,” ACM SIGPLAN Notices, vol. 48, no. 4,
2013.

[21] ——, “Quasar: resource-efficient and qos-aware cluster management,”
ACM SIGPLAN Notices, vol. 49, no. 4, 2014.

[22] L. Xu, A. R. Butt, S.-H. Lim, and R. Kannan, “A heterogeneity-aware
task scheduler for spark,” in 2018 IEEE International Conference on
Cluster Computing (CLUSTER). IEEE, 2018, pp. 245–256.

[23] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “Starpu:
A unified platform for task scheduling on heterogeneous multicore
architectures,” in Euro-Par 2009 Parallel Processing, H. Sips, D. Epema,

and H.-X. Lin, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2009, pp. 863–874.

[24] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and
M. Zhang, “Cherrypick: Adaptively unearthing the best cloud config-
urations for big data analytics,” in 14th {USENIX} ({NSDI} 17), 2017.

[25] C.-J. Hsu, V. Nair, T. Menzies, and V. Freeh, “Micky: A cheaper
alternative for selecting cloud instances,” in 2018 IEEE 11th CLOUD.
IEEE, 2018.

[26] C.-J. Hsu, V. Nair, V. W. Freeh, and T. Menzies, “Arrow: Low-level
augmented bayesian optimization for finding the best cloud vm,” in 38th
ICDCS. IEEE, 2018.

[27] L. Thamsen, I. Verbitskiy, F. Schmidt, T. Renner, and O. Kao, “Selecting
resources for distributed dataflow systems according to runtime targets,”
in 2016 IEEE 35th IPCCC. IEEE, 2016.

[28] J. Will, J. Bader, and L. Thamsen, “Towards Collaborative Optimization
of Cluster Configurations for Distributed Dataflow Jobs,” in 2020 IEEE
International Conference on Big Data. IEEE, 2020.

[29] S. Venkataraman, Z. Yang, M. Franklin, B. Recht, and I. Stoica, “Ernest:
Efficient performance prediction for large-scale advanced analytics,” in
13th {USENIX} ({NSDI} 16), 2016.

[30] J. Will, L. Thamsen, D. Scheinert, J. Bader, and O. Kao, “C3O:
Collaborative Cluster Configuration Optimization for Distributed Data
Processing in Public Clouds,” in IEEE International Conference on
Cloud Engineering. IEEE, 2021, p. to appear.

[31] Q. Wu and V. V. Datla, “On performance modeling and prediction
in support of scientific workflow optimization,” in 2011 IEEE World
Congress on Services. IEEE, 2011, pp. 161–168.

[32] F. Nadeem and T. Fahringer, “Using templates to predict execution time
of scientific workflow applications in the grid,” in 2009 9th IEEE/ACM
International Symposium on Cluster Computing and the Grid. IEEE,
2009, pp. 316–323.

[33] B. Cirou and E. Jeannot, “Triplet: A clustering scheduling algorithm
for heterogeneous systems,” in Proceedings International Conference
on Parallel Processing Workshops, 2001, pp. 231–236.

[34] G. Lee and R. H. Katz, “Heterogeneity-aware resource allocation and
scheduling in the cloud.” HotCloud, vol. 11, pp. 4–8, 2011.

[35] C. Lin and S. Lu, “Scheduling scientific workflows elastically for
cloud computing,” in 2011 IEEE 4th International Conference on Cloud
Computing. IEEE, 2011, pp. 746–747.

[36] L. Kaufman and P. J. Rousseeuw, Finding groups in data: an introduc-
tion to cluster analysis. John Wiley & Sons, 2009, vol. 344.

[37] L. P. Michael, Scheduling: theory, algorithms, and systems. Springer,
2018.

[38] F. Xhafa and A. Abraham, Metaheuristics for scheduling in distributed
computing environments. Springer, 2008, vol. 146.

[39] G. Sumathi and N. P. Gopalan, “Priority based scheduling for heteroge-
neous grid environments,” in 2006 10th IEEE Singapore International
Conference on Communication Systems, 2006, pp. 1–5.

[40] A. Abraham, “Rule-based expert systems,” Handbook of measuring
system design, 2005.

[41] O. Mutlu and T. Moscibroda, “Stall-time fair memory access scheduling
for chip multiprocessors,” in 40th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO 2007). IEEE, 2007, pp.
146–160.

[42] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale, and J. Wilkes,
“Cpi2: Cpu performance isolation for shared compute clusters,” in Pro-
ceedings of the 8th ACM European Conference on Computer Systems,
2013, pp. 379–391.

[43] L. Thamsen, J. Beilharz, V. T. Tran, S. Nedelkoski, and O. Kao,
“Mary, hugo, and hugo*: Learning to schedule distributed data-parallel
processing jobs on shared clusters,” Concurrency and Computation:
Practice and Experience, p. e5823, 2020.

11

