
Sizey: Memory-Efficient Execution of
Scientific Workflow Tasks

Jonathan Bader∗, Fabian Skalski∗, Fabian Lehmann†, Dominik Scheinert∗,
Jonathan Will∗, Lauritz Thamsen‡, and Odej Kao∗

∗ {firstname.lastname}@tu-berlin.de, Technische Universität Berlin, Germany
† fabian.lehmann@informatik.hu-berlin.de, Humboldt-Universität zu Berlin, Germany

‡ lauritz.thamsen@glasgow.ac.uk, University of Glasgow, United Kingdom

Abstract—As the amount of available data continues to grow in
fields as diverse as bioinformatics, physics, and remote sensing,
the importance of scientific workflows in the design and im-
plementation of reproducible data analysis pipelines increases.
When developing workflows, resource requirements must be
defined for each type of task in the workflow. Typically, task
types vary widely in their computational demands because they
are simply wrappers for arbitrary black-box analysis tools.
Furthermore, the resource consumption for the same task type
can vary considerably as well due to different inputs. Since
underestimating memory resources leads to bottlenecks and
task failures, workflow developers tend to overestimate memory
resources. However, overprovisioning of memory wastes resources
and limits cluster throughput.

Addressing this problem, we propose Sizey, a novel online
memory prediction method for workflow tasks. During workflow
execution, Sizey simultaneously trains multiple machine learning
models and then dynamically selects the best model for each
workflow task. To evaluate the quality of the model, we introduce
a novel resource allocation quality (RAQ) score based on memory
prediction accuracy and efficiency. Sizey’s prediction models are
retrained and re-evaluated online during workflow execution,
continuously incorporating metrics from completed tasks.

Our evaluation with a prototype implementation of Sizey uses
metrics from six real-world scientific workflows from the popular
nf-core framework and shows a median reduction in memory
waste over time of 24.68% compared to the respective best-
performing state-of-the-art baseline.

Index Terms—Resource Management, Scientific Workflow,
Memory Allocation, Memory Prediction, Machine Learning

I. INTRODUCTION

Scientific workflow management systems (SWMS) such
as Nextflow [1], Pegasus [2], or Snakemake [3] enable the
creation of reproducible data analysis workflows. SWMS help
scientists from various domains, such as genomics, remote
sensing, and material science [4]–[9], to abstract execution-
specific details and to cope with huge amounts of data. Work-
flows are often defined as a directed acyclic graph (DAG),
consisting of a set of black-box task types B and a set of
directed edges E. Each task type b serves as a wrapper for a
black-box analysis tool and as a template for physical task
instances T with concrete inputs. Each individual edge e
connects two tasks and expresses their dependency, dataflow,
and execution order.

SWMS submit physical task instances to a cluster re-
source manager such as Kubernetes [10], Slurm [11], or
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Fig. 1: Distribution of peak memory consumption of four task
types, each executed repeatedly with varying input sizes.

HTCondor [12]. To assign each physical task to a suitable
cluster node, resource managers rely on adequate resource
requirements, such as the number of processor cores and
main memory required. Typically, task type resource require-
ments are provided by users and workflow developers and
are essentially estimates [13]–[15]. However, estimating the
resource requirements of tasks is known to be difficult and
error prone [16]–[19]. At the same time, accurate estimates of
especially the required memory are crucial. The underestima-
tion of memory can result in bottlenecks, costly offloading to
disks, and even task failures. Therefore, users are incentivized
to overestimate resource usage to avoid partial or complete
restarts of workflows. However, requesting more memory than
needed wastes precious cluster resources and effectively limits
parallelism within and across workflow applications.

The memory consumption of executing different physical



2 3 4 5
Input Read in GB

18

19

20

21

22

Pe
ak

 M
em

or
y 

C
on

su
m

pt
io

n 
in

 G
B

Task = MarkDuplicates

0.2 0.4 0.6 0.8 1.0
Input Read in GB

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Task = BaseRecalibrator

Fig. 2: Memory consumption in relation to the input read of
the physical task instances of two different task types, with a
linear regression applied to these data points.

tasks that use the same task template but different inputs
can vary substantially and often depends on the input data.
Figure 1 shows the distribution of memory consumption for
four different task types that were executed repeatedly with
varying input sizes. It can be observed that the memory
consumption for executions of the same task type differs sig-
nificantly. Furthermore, the memory consumption also varies
between the different task types. For example, the lcextrap task
instances consume between 200MB and 1GB with a median
of approximately 550MB. Consequently, the prediction of the
peak memory usage of task instances should be automated,
taking into account the differences between task types, the
variances in memory consumption between their concrete
physical task executions, as well as the impact of input
data. Further, incorporating resource measurements online,
i.e., during the execution of the workflow, allows refining
prediction models during runtime.

The majority of existing methods for predicting memory
requirements in scientific workflows employ machine learning
to address the challenge of memory prediction [19]. How-
ever, these methods neglect that not each workflow task can
be modeled well with the same type of machine learning
model. For instance, while many workflow tasks yield a
linear memory consumption behavior correlating with the
input data size, this is not the case for all. Figure 2 shows
how the memory consumption of tasks depends on input
reads. It can be seen that there is a clear linear correlation
for MarkDuplicates. However, using a linear model for the
BaseRecalibrator task would lead to half of the task instances
failing due to insufficient memory, and the other half would
waste significant memory due to overestimates. Therefore, an
adaptive prediction method is needed that selects an adequate
machine learning model for all task types.

This paper presents Sizey, a novel online task memory
prediction method for scientific workflows that employs the
best out of multiple machine learning models for each task.
Upon submission of a task, Sizey searches a provenance
database for previous task executions of the same task type. If
the task is of an unknown task type, it is submitted directly to
the resource manager, resorting to the user-provided, usually

conservative memory estimate. On completion of the task,
the monitoring data are stored in the provenance database.
Based on the previous executions, Sizey trains a set of diverse
machine learning models in parallel, with each model’s predic-
tion yielding a memory estimate. Subsequently, the prediction
performance of the models is assessed using a new resource
allocation quality (RAQ) score, which measures both the
observed accuracy and the estimated resource efficiency. Based
on the RAQ score, Sizey selects the best-performing prediction
model for each task and adjusts the prediction with a dynamic
fault tolerance offset to minimize costly task failures caused by
underestimates. Finally, as new data become available after the
completion of each task, a lightweight - and thus fast - online
learning step updates the existing models.
Contributions. This paper makes the following contributions:

• We present our novel task memory prediction method,
Sizey, which employs a set of diverse machine learning
models to adaptively predict a task’s memory in order to
reduce memory resource wastage.

• We provide an open-source implementation of our
method Sizey, as an easily extendable interface1.

• We evaluate Sizey using six large-scale workflows from
the nf-core repository [4] and compare it to four state-
of-the-art methods. The experimental results demonstrate
that Sizey outperforms all state-of-the-art baselines with
a median memory wastage reduction of at least 24.68%
compared to all baselines.

II. APPROACH

In this section, we first provide an overview of our proposed
method. Second, we explain the granularity of the prediction
model used by Sizey and the selection of the model classes.
Third, we explain our resource allocation quality (RAQ) score
that combines model accuracy and resource efficiency. Fourth,
we describe how we weight and combine the prediction results
into a final prediction. Lastly, we explain our initial sizing
strategy and handling of task failures due to underprovisioning.

A. Overview

Sizey estimates the peak memory consumption of a submit-
ted task instance in an online manner during the execution of
a workflow. Figure 3 illustrates how this works.

a) Data Retrieval: In Phase 1⃝, a task is submitted for
execution, which causes Sizey to retrieve provenance details
from the provenance database connected to the SWMS, such
as the number of running tasks and information about his-
torical task executions, including the task name and resource
consumption.

b) Memory Prediction: In Phase 2⃝, Sizey estimates the
memory consumption of the task to be executed. For this, in
Step 2.1, a set of diverse machine learning models is used,
where each predictor produces a resource estimate. Next, our
resource allocation quality (RAQ) score compares the accuracy
and efficiency of the individual predictors. In Step 2.2, a gating

1github.com/dos-group/sizey
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Fig. 3: The figure provides an overview of how Sizey (green) is used in a scientific workflow execution environment. Sizey
uses data from a provenance database and trains multiple machine learning models in parallel. The individual predictions are
then combined into a single prediction that also includes an offset to ensure sufficient memory is allocated for tasks executing
on the cluster. During workflow execution and after task completion, the model is retrained and reevaluated.

mechanism selects the models and, depending on the strategy,
decides between aggregating and maximizing the individual
predictions according to their RAQ scores to produce a single
prediction. In Step 2.3, this single prediction is adjusted based
on the selected offset strategy and how often the task exe-
cution was attempted before. Subsequently, the task instance
and resource prediction are submitted to the cluster resource
manager for executing the task with the determined memory.

c) Online Learning: In Phase 3⃝, a task has been com-
pleted and new training data becomes available. Therefore, in
this online learning phase, all models are updated. The update
steps are efficient due to the lightweight inputs and models
used.

d) Assumptions: We make the following assumptions for
predicting the memory consumption of workflow tasks:
A1: We assume that workflows are used on many input files,

thus involving many data-parallel task executions and
repeated executions of the same task type, allowing online
learning during workflow execution.

A2: We assume that scheduling, which involves ordering task
instances and assigning them to cluster nodes, is the
responsibility of the resource manager and is therefore
outside the scope of this work.

A3: We assume that the resource manager enforces strict
resource limits on memory allocations, resulting in a
failed task execution when exceeding these limits.

B. Model Granularity, Classes, and Features

To achieve the goal of memory wastage reduction, precise
models for resource predictions are needed. Sizey uses mul-
tiple fine-granular models to predict the memory consump-
tion. This technique is visualized in Figure 4, differentiat-

ing between a workflow-specific model, a task type specific
model, a task/machine-specific model, and our proposed model
granularity. Sizey employs the most fine-granular model by
incorporating several models for each task-machine configu-
ration. The rationale behind this approach is that tasks exhibit
heterogeneous computational patterns that vary even more
with different machine configurations. This implies that a
model type that performs well on one task type may perform
poorly on another.

Figure 5 shows the model classes incorporated by Sizey.
As stated in [18], [20], [21], tasks frequently yield a linear
relationship between input data size and memory consumption.
We exploit this observation by integrating a linear regression
model class into the pool of used model classes. However, as
presented in the introduction, the relationship between input
data size and memory consumption does not have to be linear.
The k-nearest neighbors (KNN) regression model allows his-
torical observations similar to the task currently estimated to
influence the resource prediction. We include MLP regression
to accurately model more complex, nonlinear relationships,
such as memory usage that grows as the square of the amount
of input data. Incorporating a random forest regression model
makes our method more resistant to overfitting, especially
when there are not many historical task executions.

Since Sizey runs online, there is no classical segmentation
into training and test data during workflow execution. Instead,
the prediction accuracy of individual models is permanently
assessed. When new task resource measurements become
available as tasks finish, each model performs an update step.
Such an update step can also be a complete retraining of the
models if 1) the training time is short, 2) the time until the
next task submission is long enough for a complete retraining,
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or 3) a complete retraining for better performance is desired.

C. Resource Allocation Quality (RAQ)

Sizey makes use of a set of machine learning models. This
poses the question of how to select the best-fitting model or
even a model combination for certain abstract task-machine
configurations.

The RAQ score describes the presumed goodness of the
task’s resource estimate provided by one associated trained
model. The composite score is derived from two subscores:
the accuracy score and the efficiency score. All three scores,
the RAQ score, the accuracy score, and the efficiency score,
are normalized scalars between 0 (worst) and 1 (best).

a) Accuracy Score: The accuracy score expresses a
model’s average prediction performance. Let T = {t(i)|i ∈
N0, and 0 ≤ i ≤ S−1} be the set of historical task instances,
with S denoting the size of the set. The resource estimate for a
historical task instance t(j) given by the i-th model is denoted
as ŷi,t(j) , while yt(j) denotes the actual resource consumption
of t(j). Then, the accuracy score ASi,t∗ of the i-th model
associated with the combination of task type and machine type
for the current task t∗ can be calculated as follows:

ASi,t∗ =
1

S

∑
∀t(j)∈T

(
1−min(|

ŷi,t(j) − yt(j)

yt(j)
|, 1)

)
. (1)

In Equation 1, the individual error terms are bounded at
one to prohibit large estimation outliers from skewing the
computed scores. The resulting accuracy score describes the
mean prediction performance of a model across the set of task
instances. A mean prediction error of zero indicates a perfectly
accurate prediction and would result in an accuracy score of
1, the best possible value. Accuracy scores are updated over
time, while models predict and learn from new task data.

Model N

Model 1

Models available

Fig. 6: Role of resource allocation quality scores in model
selection and weighting

b) Efficiency Score: The efficiency score compares a
model’s individual memory predictions to the other model’s
memory predictions. With N being the number of models
available for the desired combination of a task type and a
machine configuration and ŷi,t∗ the prediction of the i-th
model for the current task t∗, its dynamic efficiency score
ESi,t∗ is calculated as follows:

ESi,t∗ = 1− ŷi,t∗

maxj=1,...,N (ŷj,t∗)
. (2)

Efficiency scores are model output-specific and punish out-
lying resource estimates that are huge in magnitude relative
to other model outputs. These large estimation outliers may
occur in various cases, for instance, when extrapolation occurs
during the early training stages. By validating individual
estimate magnitudes with those from other predictors, the risk
of wasting anomalously large amounts of memory resources
is mitigated. The efficiency score associated with the largest
resource estimate is always 0.

c) Computing the Resource Allocation Quality: Our
RAQ score includes one mandatory hyperparameter α. With
α ∈ [0, 1] and ASi,t∗ and ESi,t∗ being the respective accuracy
and efficiency scores, the resource allocation quality RAQi,t∗

of the i-th model for the current task t∗ can be calculated as:

RAQi,t∗ = (1− α) ·ASi,t∗ + α · ESi,t∗ . (3)

When α is close to zero, accurate models are favored,
whereas values close to one punish large outlying estimates
more strongly.

D. Model Selection Strategy

Figure 6 shows the structure of our proposed gating mech-
anism that is used to select the models that contribute to the
final prediction. Similar to a gating network from the mixture
of experts domain [22], [23], our gating mechanism assigns
individual weights to the outputs of the individual predictors.
These weights depend on our RAQ score that we introduced
before.

Sizey can be used with two different gating strategies.
The gating strategy determines the predictor’s weights from
Figure 6.



a) Argmax Strategy: The first strategy is called Argmax
and weights all predictors with zero except the one corre-
sponding to the highest RAQ score. In that case, the output
of the associated predictor is chosen as the aggregate resource
estimate ŷt∗ .

b) Interpolation Strategy: Whenever the interpolation
strategy is enabled, the hyperparameter β ∈ [1,∞) becomes
mandatory and weights are calculated using softmax:

ŷt∗ =

N∑
i=1

(
ŷi,t∗ · wi,t∗

)
=

N∑
i=1

(
ŷi,t∗ · eβ·RAQi,t∗∑N

j=1 e
β·RAQj,t∗

)
.

(4)
While the Argmax strategy is more opportunistic towards

the presumably best available model, the interpolation strategy
seeks to utilize a model output consensus.

E. Prediction Offset and Failure Handling

Since Sizey aims to predict memory as accurately as pos-
sible, small underpredictions can quickly lead to task failures.
Therefore, we use a dynamic offset strategy that increases
Sizey’s initial memory prediction for the task. As with the
models, our dynamic offset strategy uses several possible
offsets, the standard deviation, the standard deviation of un-
derpredictions, the median prediction error, and the median
prediction error of underpredictions. During online learning,
Sizey selects the offset that would have caused the least
wastage based on the tasks already executed.

If a task instance still fails due to underprediction, the
maximum amount of task memory ever observed is allocated.
For each subsequent attempt to size a previously failed task
instance, the given resource estimate is continuously doubled
until the machine resources are exhausted.

III. EVALUATION

Our evaluation section is divided into five subsections: ex-
perimental setup, baselines, experimental results, Sizey model
insights, and the discussion of the results.

A. Experimental Setup

For our experiments, we executed and measured six real-
world workflows on our cluster infrastructure, five workflows
from the bioinformatics domain, and one workflow from the
field of remote sensing:

1) For the eager workflow [24], we use input data pub-
lished in a study in 2018 by de Barros Damgaard et al.
on the population history of the Eurasian steppe [25].

2) For the rnaseq workflow2, we use data from a bladder
cancer cells study [26].

3) For the mag workflow3, we use input data from a study
of the gut microbiome [27].

4) For the chipseq workflow4 we use data from a prostate
cancer study [28].

2github.com/nf-core/rnaseq
3github.com/nf-core/mag
4github.com/nf-core/chipseq

5) The input data for the methylseq workflow5 are from
a study of human pluripotent stem cells in 2020 by
Thompson et al. [29].

6) The iwd workflow [30] uses more than 300 images
within and around fire scars in Western Alaska and
uses computer vision and graph analysis to examine the
landscapes.

For data collection, we run these workflows on an eight-
node Kubernetes cluster, each equipped with an AMD EPYC
7282 16-core 32-thread processor, 128GB of DDR4 memory,
and two 960GB SATA III SSDs. The Kubernetes cluster uses
a Ceph file system for data storage.

Figure 7 illustrates the memory, CPU, and I/O resource
consumption of the experimental workflows. One can see
that all workflows yield different resource usage patterns. For
instance, the methylseq workflow yields many I/O-intensive
tasks, while being less CPU-intensive. Table I illustrates the
number of task types and the average number of task instances
per task type on a workflow basis. The rnaseq and the chipseq
workflow have the greatest number of task types, yet the lowest
average number of task instances per task type. In contrast,
the iwd workflow has the lowest number of task types, yet
the second highest average number of task instances per task
type. Using such a heterogeneous set of workflows and task
types allows us to test the heterogeneous computing landscape
of shared cluster environments.

To enable a comprehensive evaluation of memory prediction
of large-scale workflow executions with multiple methods,
we simulate an online environment where our measured real-
world metrics from completed task executions can be incorpo-
rated into the learning process, similar to real-world systems.
Simulation parameters can be used to define aspects such
as the amount of historical data, failure strategies, model
parameters, etc. An important parameter we will use in our
experiments is the time-to-failure value, which expresses at
what point in time a task will fail. A time-to-failure value
of 1.0 means that we expect tasks to fail at the end of their
execution. We filter out very short-running tasks and tasks with
a single or few executions.

Our implementation is written in Python 3.11 and uses
scikit-learn, numpy, and scipy as the main libraries and keeps
the models in memory. For our simulation experiments, we
used all four machine learning models: linear regression, knn
regression, MLP regression, and random forest regression. We
have implemented a version that always fully retrains the
models and a version that provides incremental updates and
caches the best hyperparameters over the workflow execution.
In addition, we select an α value of 0.0 and use the Inter-
polation strategy for Sizey. A comparison of the full model
training and the incremental updates, as well as an analysis of
selecting the parameters, can be found in the model insights
evaluation (Section III-D).
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Fig. 7: Distribution of memory, CPU, and I/O utilization of the executed workflows on a logarithmic x-axis scale.

TABLE I: The table shows the average number of task
instances per task type for each experimental workflow.

Workflow # Task Types AVG # Task Instances per Task Type
eager 13 121
methylseq 9 100
chipseq 30 82
rnaseq 30 39
mag 8 720
iwd 5 332

B. Baselines

Our method is evaluated against four state-of-the-art base-
lines along with the default workflow setups provided by the
workflow developers, which serve as a sanity baseline.

Tovar et al. [31] use historical peak memory probabilities
(Tovar-PPM) to determine the initial memory allocation for
workflow tasks. Their strategy aims to reduce the overall
probability that resource peaks will exceed the allocated mem-
ory. Should the initial allocation underestimate the required
resource, resulting in task failure, Tovar et al. allocate a node’s
maximum memory. We used the authors’ source code and
integrated it into our setup.

Witt et al. [18] propose a low-wastage regression that
optimizes the resource wastage instead of the prediction error

5github.com/nf-core/methylseq

and is also applied in an online fashion. Their method is based
on a linear model and doubles the predicted memory upon
task failure. We use the source code provided on the author’s
Github account and refer to the method as Witt-Wastage.

Witt et al. [32] use two different methods using an online
learning mode. The percentile predictor predicts the percentile
peak memory usage of all historical tasks. The authors propose
a conservative estimate, using the 95th percentile to avoid task
failures. As a second method, they propose a linear regression
(LR), using the input size as a feature and adding an offset on
the prediction. We refer to these methods as Witt-Percentile
and Witt-LR. Given the absence of accessible source code, our
implementation of the method was based on the descriptions
provided in the paper.

C. Experimental Results

Figure 8 shows the aggregated results of the memory
prediction for six different workflows, including the memory
wastage over time for two different time-to-failure values, the
number of task failures, and the aggregated task runtimes.

Figure 8a shows the aggregated wastage over time with a
time-to-failure value of 1.0 for all methods in gigabyte-hours.
Among all methods, the Workflow-Presets show the highest
wastage, approximately 17 times higher than Sizey and 6
times higher than the best-performing baseline. Sizey exhibits
the lowest wastage over time for all methods and achieves
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(b) Wastage over time in gigabyte-hours (GBh) aggregated over all
workflows with a time to failure of 0.5 on a logarithmic y-axis scale.

Sizey
Witt-Wastage

Witt-LR
Tovar-PPM

Witt-Percentile

Workflow-Presets

Method

0

10

20

30

40

N
um

be
r o

f T
as

k 
Fa

ilu
re

s

(c) Distribution of the methods’ task failures, aggregated by task type,
with outliers hidden.

Sizey
Witt-Wastage

Witt-LR
Tovar-PPM

Witt-Percentile

Workflow-Presets

Method

0

200

400

600

800

1000

1200

1400

To
ta

l R
un

tim
e 

in
 H

ou
rs

1221.041221.04

1475.40

1369.81 1344.52

1469.23

1323.90

(d) Aggregated workflow task runtimes for each method.

Fig. 8: Experimental results of predicting memory consumption for tasks of six workflows.

a 64.58% lower wastage compared to the best-performing
baseline, Witt-Wastage. Also, all other baselines are able to
outperform the Workflow-Presets but still show significantly
higher wastage over time compared to Sizey.

Figure 8b shows the aggregated wastage over time for all
methods in gigabyte-hours. However, we now configure a
time-to-failure value of 0.5, which means that tasks will fail
earlier during execution. Here we can see that Sizey also shows
the lowest wastage, a decrease of 60.60% compared to the
Witt-Wastage baseline. In contrast to Figure 8a, the relative
difference in wastage between Sizey and the Witt-Wastage
method has slightly decreased. Again, the Workflow-Presets
show the highest wastage and also the same wastage as before
as they are not impacted by the time-to-failure value. It is
also observed that all state-of-the-art methods benefit from
a lower time-to-failure and that Witt-Percentile outperforms

Tovar-PPM with tasks failing faster.

Figure 8c depicts the distribution of task failures aggre-
gated by task type. Witt-Wastage exhibits the highest median
number of task failures followed by Witt-LR and Sizey. The
methods’ whiskers and the difference between the first and
the third quartile indicate a high variability in the number of
failures. Witt-Percentile and Tovar-PPM exhibit a comparable
low number of failures, which is anticipated given that the
Witt-Percentile method employs a highly conservative 95th
percentile predictor and Tovar-PPM uses a very conservative
failure handling. Because workflow defaults are user-defined
estimates set to prevent task failures, task failures do not occur.

Figure 8d exhibits the aggregated task runtimes without
considering the memory wastage. Here, the Workflow-Presets
achieve the lowest aggregate. This is expected as we did
not observe any task failures, resulting in no mandatory task



TABLE II: Aggregated memory wastage over time for all workflows and methods evaluated.

Method methylseq chipseq eager rnaseq mag iwd
Sizey 631.62 79.38 678.19 43.62 251.05 0.36
Witt-Wastage 3565.11 214.60 491.16 176.39 323.62 0.55
Witt-LR 988.90 136.33 3585.19 57.91 301.00 2.94
Tovar-PPM 4080.60 211.02 624.14 195.26 309.36 16.70
Witt-Percentile 4372.19 94.70 860.16 128.90 309.81 1.44
Workflow-Presets 22596.14 260.61 2304.53 1238.62 1955.01 15.86
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Fig. 9: Time required to train Sizey for full retraining and
incremental retraining, including model hyperparameter opti-
mization. y-axis uses a logarithmic scale.

restarts. Sizey achieves the second-lowest aggregated task run-
time, slightly followed by Witt-Percentile. The Witt-Wastage
method shows the highest runtime, which can be explained by
the high number of average task failures.

Table II shows the wastage on a workflow basis for all meth-
ods and experimental workflows. We can observe that in five
out of six workflows, Sizey achieves the lowest wastage over
time and a considerable improvement to the best-performing
competitor. The highest relative difference compared to the
best-performing baseline can be observed for the methylseq
workflow, showing a reduction of memory wastage of 36.13%,
followed by the iwd workflow with a reduction of 34.55%.
Notably, the performance of the baselines fluctuates, and no
baseline is consistently second best after Sizey. Four out of five
times, the Workflow-Presets result in the highest wastage over
time; for the chipseq workflow, Workflow-Presets outperform
Witt-LR.

D. Sizey Model Insights

Doing a complete retraining using Sizey to predict a task’s
memory consumption, including hyperparameter optimization,
we observed a median training time of 1.09 seconds. Using
an incremental approach, we achieved a reduction of 98.39%
with a median training time of 17.5 milliseconds. Figure 9
illustrates these findings and demonstrates that the training
time for full retraining is comparable across all workflows.
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Fig. 10: Impact of the parameter alpha on wastage over time
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Fig. 11: Proportion of model classes selected by Sizey for the
rnaseq workflow.

A comparable behavior can be observed in the context of
incremental training. Further, we observed that using Sizey
with incremental training increased its median wastage over
time by 6.1%.

Figure 10 exemplifies the impact of alpha when Sizey is
executed with an alpha value ranging from 0 to 1.0 for two
rnaseq workflow tasks. We can observe that the FastQC task
shows a tendency for wastage to be lower for a lower alpha
parameter. In contrast, the MarkDuplicates task shows the
opposite pattern with decreasing wastage as alpha increases.
We believe this observation is due to the definition of our
efficiency score, which favors models with lower predictions
and penalizes possible overprediction outliers to achieve more
accurate predictions. However, this may also lead to more task



failures as it favors lower predictions. Also, in general, the
additional data we have analyzed do not show a clear tendency
to choose a higher or lower alpha.

Figure 11 shows the distribution of selected model classes
across all experimental workflows when Sizey is run with the
Argmax strategy. It can be observed that the MLP regressor is
employed for 42.7% of the task memory predictions, followed
by KNN with 29.1%, Random Forest with 19.4%, and Linear
Regression with 8.8%. The linear model is a good fit when
only a few training data points are available, for instance, at the
beginning of a workflow execution. Once more data become
available, Sizey can switch to more complex models.

E. Discussion

In our experimental results, we observed that Sizey is able
to significantly reduce memory wastage compared to all state-
of-the-art baselines. While the largest reduction in memory
wastage compared to the best-performing baseline is observed
for the methylseq workflow with 36.13%, the aggregated
reduction compared to the best-performing baseline is about
60.60%. This is because the performance of the baselines
varies greatly for each workflow, while Sizey achieves low
memory wastage for all workflows.

Our experimental results show that a reduction in memory
wastage is accompanied by an increase in task execution
time, due to the occurrence of failed tasks. Although the
additional time is relatively small, especially when compared
to the memory savings, it is a factor to be considered. One
approach to reducing task failures and therefore time, while
still reducing memory, is to choose a more conservative offset.

Our experiments show that Sizey’s lightweight models allow
a quick training time. Using Sizey with an incremental model
reduces the training time further while still significantly out-
performing the baselines. The analysis of the alpha parameter
showed no clear trend. For some workflow tasks, a lower alpha
results in less wastage, while for others it will be the other
way around. We assume that this is due to the definition of
our efficiency score, which is weighted with 1 when an alpha
of 1 is chosen, leading to lower memory predictions. In some
cases, this can lead to very accurate predictions, while certain
more error-prone tasks, such as those with a high variance in
memory usage, may fail due to underprediction. Switching be-
tween alpha parameters adaptively during workflow execution,
as we do with the models, could address this problem and is
an idea for future work.

IV. RELATED WORK

First, we discuss related methods focusing on workflow task
memory prediction. Second, we discuss related work that is
similar to our proposed method but targets resource managers
in general without a specific focus on workflows.

A. Workflow Task Memory Prediction

Substantial research has been done on predicting the mem-
ory requirements of workflow tasks. We describe seminal work
on this problem and compare each with our own method.

Da Silva et al. [33] present a method that uses an online
feedback loop to predict resource consumption, e.g., peak
memory, of scientific workflow tasks. Its prediction process
uses a regression tree, built offline from historical monitoring
data, that first classifies the workflow, application, and resource
to be predicted. Then, a data subset with high correlation
is identified. Their proposed method, Online-M, predicts the
ratio between the I/O read and the resource metrics for
correlated data and the median for uncorrelated data. The
extended method, Online-P [34], checks for a normal and
gamma probability distribution in case there is no correlation
identified it draws a value from these distributions. Their
online method includes updating task estimates upon comple-
tion of the workflow task. Our method is also applied online
and is able to update the models and thus the prediction
results during the runtime of the workflow. However, we
use multiple models that are also able to capture non-linear
memory consumption patterns and use a more selective failure
handling and offsetting strategy to further reduce failed task
executions caused by underestimation.

Witt et al. [32] propose a feedback-based resource allocation
system for the scheduling of scientific workflows. Their ap-
proach uses an online feedback loop to improve resource usage
predictions and thus sizes resources for the tasks of a scientific
workflow. The authors examine two approaches to estimate the
task’s peak memory usage. The first approach, the percentile
predictor, predicts the task’s peak memory usage by using
certain percentiles, e.g., P50 for the median or P99 for the 99th
percentile. The second method is based on a linear regression
model and estimates the task’s peak memory consumption
based on the relationship between input data size and memory
usage. The predictions of the linear model are then offset by
the expected difference between the actual and the predicted
peak memory usage. Our work addresses a similar problem.
However, instead of relying on a single model class that is
applied to all tasks, our method dynamically switches between
model classes to find the most suitable for each task.

The peak memory allocation problem is also addressed
in [18]. Here, again, the authors use the input data size to
predict peak memory usage and train a prediction model that
minimizes resource wastage instead of the prediction error.
They test quantile regression lines and select the parameters
of the one with the least wastage. Further, the authors examine
different failure-handling strategies. Again, we do not rely
only on a single regression model class. Sizey uses multiple
regression models and includes dynamic switching on a per-
task basis, allowing us to find the best model for heterogeneous
tasks.

Tovar et al. [31] present a job sizing strategy for tasks in sci-
entific workflows that either minimizes wastage or maximizes
throughput. The authors use the probabilities of peak resource
values from the respective historical task traces to initialize
a task. Their goal is to minimize the sum of probabilities of
resource peaks where the resource peak is greater than the
allocated resource value. The scope of our paper is similar
since we also address the sizing of memory for tasks. However,



we also address task heterogeneity by including multiple
parallel predictors while dynamically selecting the one with
the best prediction results for each task. Additionally, we
propose a more selective retry strategy to avoid high resource
wastage once a task fails.

Tovar et al. [17] propose another domain-specific approach
that, instead of sizing the memory for tasks, aims to split the
tasks into subtasks, matching a specific memory requirement.
Without historical task executions, the highest observed mem-
ory consumption is assigned to the first five tasks. Upton task
failure due to insufficient memory, the task is split into smaller
tasks and resubmitted. The initial size of a task is determined
by a linear correlation between chunk size and task resource
usage. Contrary to our and the other presented approaches,
the author’s method does not directly predict the memory but
rather the input size a task needs to consume a certain amount
of memory. The viability of such an approach depends on the
structure and divisibility of the task input data and is thus
not generally applicable to black-box tasks used in scientific
workflows.

Bader et al. [35] proposed two reinforcement learning
methods based on gradient bandits and Q-learning. The object
of their reinforcement learning methods is the minimization
between allocated and used memory while avoiding task
failure. The authors use no offsetting technique, as the reward
functions implicitly discourage the agents from underesti-
mating the resources. One drawback of the proposed rein-
forcement learning methods is that they do not incorporate
the dependency between task input size and resource usage,
leading to higher wastage for tasks with fluctuating memory
usage.

Bader et al. [16] also presented a method to predict the
memory consumption of workflow tasks over time. To do
this, they used time series monitoring data and predicted the
expected task runtime. The expected runtime is then divided
into segments. For each segment, they then trained a linear
regression model that predicts peak memory, resulting in a step
function that models a task’s memory consumption over time.
Both the internal runtime prediction model and the segment-
by-segment peak memory prediction models incorporate an
offset strategy to avoid overall task failure. In contrast to our
method, which is a combination of multiple predictors, the
resultant prediction function is a piecewise linear regression.
The method also requires time-series monitoring data, which
may not be available in many workflow systems, and relies on
the resource manager’s ability to adjust memory allocations
over time, a feature that is widely unavailable.

B. Ensemble Memory Prediction for Resource Managers

There is related work that has focused more generally
on memory prediction for cluster workloads. Similar to our
workflow memory prediction method, closely related methods
employ the best of multiple models.

Tanash et al. [36] proposed a Slurm extension that predicts
a job’s memory usage using machine learning models. Their
method intercepts the submission process by analyzing the job,

predicting the expected memory usage, and adjusting the job
limits. While the prediction is done online, the actual model
training is done offline and the model is not updated using
completed jobs. Tanash et al. decided to use the decision
tree regression as it achieved the best prediction results.
Instead of selecting a single model to apply globally, Sizey
dynamically selects the best performing model for each task.
In addition, Sizey works in a full online fashion, incorporating
and updating the internal model at runtime to improve predic-
tion accuracy by either updating the current model or even
switching to a different model if it performs better with more
data.

Rodrigues et al. [37] present a memory prediction extension
for the popular LSF HPC resource manager. Their predictive
method trains multiple machine learning models based on
online and offline data collection and uses a sliding window
to focus on the most recent submitted and finished jobs.
The machine learning models included are Support Vector
Machines, Random Forests, Multilayer Perceptrons, and k-
Nearest Neighbors. Instead of addressing it as a regression
problem, they discretize the memory predictions and turn it
into a classification problem with memory sizes of 512MiB.
We approach this as a regression problem, which allows for
more fine-grained predictions that can result in less wastage.
Further, our method allows switching between a weighting
mechanism as presented by Rodrigues et al. and an Argmax
strategy where the predictor with the highest resource allo-
cation quality score is used for the prediction. Our results
show that such an Argmax strategy is beneficial in scenarios
where the predictors are divergent, and weighting would
bias the result. Instead of relying solely on the accuracy of
the validation data, we introduced an efficiency score that
measures the deviations of the models from each other.

V. CONCLUSION

This paper presented Sizey, a novel online workflow task
memory prediction method that employs multiple machine
learning models. The method dynamically selects the best-
fitting model for each task based on assessing the model’s
accuracy and memory prediction efficiency. To this end, Sizey
incorporates monitoring information during the workflow ex-
ecution and updates its prediction models while continuously
re-evaluating the models’ performance based on gathered data.

We implemented a prototype of Sizey and compared it to
four state-of-the-art methods from the literature, using metrics
from six real-world nf-core Nextflow workflows. The results
demonstrate that Sizey is able to significantly outperform the
baselines, with a reduction in memory wastage of 24.68%
compared to the best state-of-the-art baseline. Moreover, our
experiments offer insights into the parameter selection of our
method, thereby facilitating its deployment in other systems.

We plan to integrate our method into state-of-the-art online
scheduling by considering the predicted required memory
already during scheduling.
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