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Abstract—Scientific workflows typically comprise a multitude
of different processing steps which often are executed in parallel
on different partitions of the input data. These executions, in turn,
must be scheduled on the compute nodes of the computational
infrastructure at hand. This assignment is complicated by the
facts that (a) tasks typically have highly heterogeneous resource
requirements and (b) in many infrastructures, compute nodes
offer highly heterogeneous resources. In consequence, predictions
of the runtime of a given task on a given node, as required by
many scheduling algorithms, are often rather imprecise, which
can lead to sub-optimal scheduling decisions.

We propose Reshi, a method for recommending task-node
assignments during workflow execution that can cope with
heterogeneous tasks and heterogeneous nodes. Reshi approaches
the problem as a regression task, where task-node pairs are
modeled as feature vectors over the results of dedicated micro
benchmarks and past task executions. Based on these features,
Reshi trains a regression tree model to rank and recommend
nodes for each ready-to-run task, which can be used as input
to a scheduler. For our evaluation, we benchmarked 27 AWS
machine types using three representative workflows. We compare
Reshi’s recommendations with three state-of-the-art schedulers.
Our evaluation shows that Reshi outperforms HEFT by a mean
makespan reduction of 7.18% and 18.01% assuming a mean task
runtime prediction error of 15%.

Index Terms—Resource Management, Scientific Workflow,
Profiling, Heterogeneous Cluster Resources, Scheduling

I. INTRODUCTION

The popularity of scientific workflows increases and has
become essential in many scientific domains like bioinfor-
matics, geoinformatics, or physics [1]-[8]. For example, as
new genome sequencing machines, satellites, and microscopes
produce more and fine-granular data, workflows become more
complex and have to deal with larger datasets. Accordingly,
the execution of a single workflow can take multiple days or
even weeks on big clusters [2], [6], [8].

Scientific workflows consist of a set of black box tasks
and a set of directed edges which describe the dependencies
between the tasks. Accordingly, a predecessor task has to finish
before the successor task can start. The tasks communicate
via files and the output of a predecessor task is the input
of its successor. Workflows following this definition can be
represented as a Directed Acyclic Graph (DAG).

As workflows can comprise thousands of black box task
instances, scientific workflow management systems (SWMS)

like Pegasus [4] or Nextflow [3] are used to reduce a scien-
tist’s manual configuration effort by, for example, execution
monitoring, automatic parallelization, or improved reusability.
With the help of resource managers like Kubernetes [9] or
Slurm [10], the SWMS schedule the tasks to the available
cluster nodes.

Some clusters support multiple purposes and, therefore,
consist of heterogeneous nodes. Other clusters get upgraded
over time or get partially replaced with newer components
once hardware failures occur, leading to a heterogeneous
infrastructure [6], [8], [11]-[13]. However, even nodes with the
same amount of CPU cores, memory, or disk space can yield
highly different runtimes, for example when memory latencies,
clock speeds, or read/write rates differ. Furthermore, different
tasks often have different resource demands. For instance,
some tasks are very CPU-heavy or memory-intensive, while
others mostly read and write to the disk [2], [6], [14]. Hence,
cluster resource heterogeneity can be exploited by schedulers
for optimized task placements.

Despite the extensive research on scheduling algorithms
that incorporate heterogeneity aspects, there is a lack of use
in existing real-world systems. The missing uptake can be
explained with a lack of accurate task runtime estimates since
even state-of-the-art estimators yield a median prediction error
between 10% and 20% [8], [14]-[17]. In practice, popular
resource managers handle tasks as black boxes and, therefore,
often resort to simpler scheduling approaches like Round-robin
or fair scheduling [6], [8], [18], [19]. For example, Kubernetes
uses a Round-robin strategy to assign tasks to nodes [18],
while YARN does it in a fair fashion [19].

In this paper, we propose a recommender system for hetero-
geneous infrastructures (Reshi) to rank machines for scientific
workflow tasks without being affected by error-prone runtime
estimates. Our approach consists of four steps. During the
first step, we profile the existing cluster hardware with a set
of benchmarks to gather detailed performance insights. Then,
Reshi analyzes existing task performance metrics from histor-
ical workflow executions. In case of no existing executions a
quick workflow profiling with highly reduced inputs can be
conducted to gather task execution metrics [8], [20]. Based
on the infrastructure details and the task-performance data,
we train a regression tree model for our recommender system



to dynamically rank the nodes for each task. Through these
ranks, we avoid relying on accurate runtime estimates and
data-dependent resource usage predictions. The ranks can then
be used to schedule workflow tasks without assuming accurate
runtime knowledge.

We provide a practical implementation of our approach
as a prototype, comprising a cluster benchmarking tool for
heterogeneous clusters and the recommender system for rank-
ing the tasks to the infrastructure. For our evaluation, we
benchmarked and profiled 27 different AWS EC2 machines
to evaluate our prototype using three real-world scientific
workflows from the popular nf-core framework [3]. Further,
we provide a WorkflowSim extension! that enables the lookup
of actually measured runtimes and the inclusion of prediction
errors in the simulation. Based on this simulation extension,
our comparison with the state-of-the-art schedulers HEFT,
MinMin, and Round-robin shows that Reshi helps the SWMS
to achieve low workflow makespans while being independent
from task prediction errors.

II. RELATED WORK

In this section, we first cover the scheduling of scien-
tific workflows on heterogeneous clusters. Then, we focus
on runtime prediction approaches since their task runtime
estimates frequently serve as the input for related scheduling
approaches [8].

A. Scheduling Scientific Workflows on Heterogeneous Clusters

Existing approaches either consider workflow scheduling
in a statically or dynamically manner [21]. Static scheduling
heuristics like HEFT [22] or HCPPEFT [23] assign a set
of tasks to compute resources before workflow execution.
Dynamic approaches like P-HEFT [24] map tasks to infras-
tructure components at runtime or are able to adjust their
scheduling plan dynamically. Therefore, these techniques are
more flexible to changes in the actual execution, e.g., node
failures. However, the presented state-of-the-art scheduling ap-
proaches have in common that they need extensive knowledge
about the physical DAG, execution times on all machines, and
communication times between dependent tasks. Accordingly,
these approaches are often not feasible in real-world systems
due to the comprehensive knowledge that is required.

In our approach, the employed and trained recommender
system ranks machines for task instances on demand. These
ranks can then be used by a more sophisticated scheduler to
reduce the dependence from task runtimes, e.g., a scheduling
approach that works with ranks and avoids the usage of error-
prone task runtime estimates.

B. Task Runtime Prediction

Some approaches predict the runtime of tasks in a work-
flow [8], [14]-[17]. The papers employ several prediction
models to find a reasonable runtime estimate. Therefore,
they use regression, decision trees, neural networks, or other
statistical approaches to create prediction models. As we use
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the runtime estimation approaches as a reference for state-of-
the-art task runtime prediction errors, we will describe them
in more detail in Section IV-B.

Our approach explicitly avoids predicting runtimes or re-
lying on runtime predictions. Instead, our aim is to rank
machines for a task, which can work as a substitute for the
exact runtime. Therefore, different input parameters, like larger
datasets, would influence the runtime but not necessarily the
rank.

III. RESHI APPROACH

This section gives an overview of our proposed system.
The numbering matches the circled numbers in Fig. 1.

In the (@ Cluster Profiling step, we profile the available
nodes in the cluster with a test suite that contains several
benchmarks. Additionally, we add and align available data
from historical workflow executions and the contained tasks
to the data repository. If there are no existing workflow execu-
tions, an additional short workflow execution with highly re-
duced data inputs can be conducted to gather initial traces [8].
In the ) Model Creation step, we create a regression tree
model based on the previously gathered infrastructure at-
tributes like CPU speed, memory speed, or I/O. We enrich the
model with task monitoring data from the historical workflow
executions. This model is intended to rank and recommend
nodes for a certain task in a heterogeneous cluster. The ranking
is done in the 3 Ranking and Recommendation step.
Thereby the model uses one submitted task as the input and
then creates a ranking of fitting nodes. This ranking is used
in the @ Scheduling step, serving as a recommendation for
the scheduler to place a task in the cluster.

(D Cluster Profiling

We assume the compute cluster consists of several nodes
with different kinds of hardware. Initially, we gather perfor-
mance characteristics. For this, we use various benchmarks to
measure CPU, memory, and disk I/O characteristics. Bench-
marking the heterogeneous cluster can be done in parallel and
has to be conducted only once for each node. Once failures
or changes are detected in the cluster, the cluster resource
manager, e.g. Kubernetes or Slurm, can rerun the profiling
on the changed nodes. Instead of working with the absolute



measurement values, we rank the nodes for each benchmarked
feature.

The task performance data originates from historical work-
flow executions or workflow profiling that uses the monitoring
part of the SWMS. The data contains CPU, memory, disk I/O
characteristics.

@ Model Creation

The recommender system uses a subset Cl,.. of all possible
task-node combinations C' of task executions on the possibly
heterogeneous infrastructure, i.e., Cepe C C. This input
enables Reshi to learn an effective mapping and allow for
recommendations of promising combinations. Based on user-
defined conditions, e.g., a change in the cluster architecture,
the recommender system can be scheduled for retraining.

In a next step, the data obtained from profiling the i-th
cluster node and executing the j-th task is consolidated into an
input vector ¢;; € R, where v denotes the number of task-
related metrics and w the number of resource-related metrics
respectively. We hereby obtain a vector for each executed
combination entry c;; € Ceye. The gathered information is
then transformed into a matrix X™*!, with n = |C¢,.| and
l = v+ w. We use this matrix as a training input for our
regression tree model.

(B Ranking and Recommendation

Each node m; in the set of nodes M has ¢ € @) available
resources, e.g. CPU, memory, I/O, GPU, denoted as rmgq). At
the same time, each task ¢; in the set of tasks 7' formulates
requirements with respect to the different resources, denoted
as rt§Q). Therefore, our goal is to establish a ranking of nodes
and to select the best fitting one for each given task.

First, we filter the set of nodes M to select all nodes that
fulfill the task’s resource requirements. We define the set of
allocatable nodes as

Malloc = {mz € M|Vq c Q : Tml(Q) > Tt§Q)},

i.e., in order to be considered as allocatable, the nodes need to
have enough available resources to fulfill the resource request
of the respective task ?;. Then, we pass the physical task
t; together with the set of allocatable nodes Mgo. to our
regression tree model. The model then ranks the task ¢; for
each node m; € Mg, and creates a node priority list P in
ascending order according to the ranking. The node with the
lowest list index is the most recommended node. However,
the priority list P can be used by the scheduling unit to,
for example, optimize over a list of available tasks inside the
queue and their ranks.

@ Usage in Scheduling

In the last step, a scheduler has to assign the tasks to the best
fitting node. We propose two simple prioritizing approaches
that use Reshi’s recommendations.

The first task prioritizing strategy, Reshi-C, compares the
number of children tasks and prefers tasks with many children.
The second strategy, Reshi-M, orders all tasks by the average

runtime from historical executions descending. Both strategies
then allocate nodes to the tasks using the recommendations and
the ordered queue.

These prioritizing strategies serve as simple examples as
we intend to show how the ranking could be used. More so-
phisticated schedulers could substitute their dependence from
runtimes per task-node pair through our provided ranking.

IV. EXPERIMENT SETUP

In this section, we describe profiling benchmarks for het-
erogeneous clusters, our WorkflowSim [25] extension that can
incorporate prediction errors, the evaluation workflows, and
the baselines.

A. Prototype Implementation

This subsection shortly explains the infrastructure profiler
and the recommender implementation.

a) Infrastructure Profiler: For profiling and benchmark-
ing, we build on the Phoronix Test Suite2. The Phoronix Test
Suite supports the installation, execution, and monitoring of a
large variety of benchmarks.

To determine the CPU’s maximum throughput of hashes
per second, we use John the Ripper (JtR)?. Additionally, as a
second metric of CPU performance, we use the time required
to build the Linux kernel (BLK)*. While JtR is fully CPU-
bound, BLK is largely CPU bound but can be impacted by
the I/O for extremely low build times.

For memory performance measurements, we use RAM-
speed® and StreamS. Both tools run four different operations,
namely COPY, SCALE, ADD, and TRIAD. We combine both
tools for higher accuracy in measuring the performance of the
RAM.

Lastly, fio measures the data transfer rate and IOPS of the
storage medium for sequential and random access. We chose
block sizes of 4KB and 2MB for the random and sequential
tests, respectively.

b) Recommender Implementation: For our recommender
implementation, we use a regression tree model. The profiling
values from the nodes, CPU, memory, and I/O metrics, serve
as the first part of the input vector. The second part of the
input vector contains the task traces, for example, the CPU
usage, read/written bytes, peak memory, and average memory
usage.

B. Workflow Simulation

Established simulation tools, like WorkflowSim [25] or
WRENCH [26] assume accurate task runtime knowledge.
However, task runtime predictions inherently yield a certain
prediction error. We want to incorporate such a systematic
prediction error into our simulations.

Further, they define a certain number of MIPS (millions
of instructions per second) to a node in the cluster and

2phoronix—test—suite.corn, Accessed: June 2022
3github.com/openwall/john, Accessed: June 2022
4kernel.org, Accessed: June 2022

5 alasir.com/software/ramspeed, Accessed: June 2022
°cs.virginia.edu/stream, Accessed: June 2022



use this value to calculate the runtime depending to the
node. However, this oversimplification neglects that tasks show
different resource access patterns, e.g., particular applications
run faster or slower on different CPUs architectures, while
other tasks are solely I/O bound.

To overcome these limitations, we extend the popular Work-
flowSim simulation environment in our simulation setup.

First, to incorporate the systematic task runtime prediction
error, we evaluated the papers from Section II in order to
derive realistic prediction errors. Nadeem et al. [15] report a
normalized average absolute prediction error of 10%, 11%,
and 15% for three different workflows. For the tasks in two
workflows, the error is normally distributed, while the third
workflow yields that the majority of tasks show higher error
rates. Hilman [17] report the prediction errors for all tasks in
a single workflow. They show that their technique is able to
provide a task runtime estimation error below 5% for two tasks
but also errors above 30% for three other workflow tasks. They
are able to outperform the Two-stages baseline [16], where
the authors report a slightly higher relative absolute error. In
our own previous work, Lotaru [8], we achieved a median
prediction error between 14% and 22% for heterogeneous
cluster infrastructures, while the prediction error for the best
performing baseline yielded a median error of 31%. Further,
our results showed that the prediction errors of tasks over a
workflow are frequently distributed according to a long-tailed
exponential distribution.

Accordingly to these observations, we introduce a pre-
diction error noise to the scheduler input in our Work-
flowSim fork. Therefore, the predicted runtime 7, is defined
as r, =7*(1£N(1,0.5) xerr) for a normal distribution
and as 7, as r, = r* (1 £ Exp(1l) * err) for an exponential
distribution where 7 is the true runtime and err the prediction
error.

The respective prediction error is sampled from either a
normal or an exponential distribution. However, the actual task
runtimes remain unchanged and are not influenced by the error.

Second, instead of relying on the runtime extrapolation by
simply using the MIPS, our WorkflowSim fork looks up the
real runtimes of a given task on a certain machine. For our
setup, we used 27 real instance types from AWS EC2, using
the sizes large, xlarge, and 2xlarge, where applicable. We run
all evaluation workflows on these machines to gather detailed
task runtimes.

Out of these 27 machines, we created 200 random hetero-
geneous clusters comprising of 40 nodes each. All approaches
run once on each of the 200 clusters.

C. Evaluation Workflows

We selected three publicly available real-world Nextflow [3]
workflows from the popular nf-core [1] repository: Viralrecon’
— variant calling for viral samples, Eager — ancient DNA
analysis [27], and Chipseq® — peak-calling. The workflows

7 github.com/nf-core/viralrecon, Accessed: June 2022
8 github.com/nf-core/chipseq, Accessed: June 2022

TABLE I: Workflow runtimes with different schedulers assum-
ing a normally distributed runtime prediction error of 15%.

Mean % | 90p % | 95p % | Max %

HEFT 5.58 59.43 70.79 129.62

Reshi-C 0.00 7.53 7.58 27.97

Chipseq Reshi-M 14.32 7.85 35.39 45.35
MinMin 8.71 22.44 28.70 42.76

RR 69.41 116.35 119.21 122.61

HEFT 10.47 3547 39.53 54.07

Reshi-C 14.53 27.33 29.07 30.81

Eager Reshi-M 0.00 6.40 6.40 16.28
MinMin 12.21 29.07 33.72 56.40

RR 52.33 99.42 119.19 119.77

HEFT 25.25 82.47 115.77 104.02

Reshi-C 10.72 23.24 37.60 38.48

viralrecon | Reshi-M 0.00 15.30 18.55 29.08
MinMin 18.88 37.73 41.54 45.84

RR 4471 63.73 65.24 80.90

have different resource usage patterns, and different Directed-
Acyclic-Graph (DAG) structures.

To feed our WorkflowSim extension with actual task-
machine runtimes, we collect real trace information from real
executions, which then can be extrapolated. We run each
workflow five times on the 27 instance types. Further, we
extended Nextflow in a way that it stores the traces in a
WorkflowSim readable file. The runtime is then extrapolated
to simulate long-running workflows.

D. Baselines

We compare Reshi with three baselines, namely, Round-
Robin, MinMin, and HEFT (Heterogeneous Earliest Finish
Time).

The first baseline, Round-Robin, is a frequently used
scheduling technique by resource managers, e.g., Kubernetes
uses a round-robin like approach [18]. MinMin is a popular
dynamic job scheduling algorithm that orders the queue to
be scheduled ascending by the task runtime and then selects
the fastest machine [28]. HEFT [22] is a static list scheduling
algorithm that incorporates different task-machine runtimes,
communication times, and the structure of the directed acyclic
graph (DAG). Except for Round-Robin, all baselines require
a-priori knowledge about task-machine runtimes.

Since Reshi itself recommends machines and does not aim
to schedule the tasks, e.g., prioritize the tasks by runtime or
number of descendants, we show Reshi in combination with
two simplified task prioritizing techniques. Reshi-C compares
the number of children tasks and prefers tasks with many
children. The second strategy, Reshi-M, orders all tasks by
the average runtime from historical executions descending.

V. EVALUATION RESULTS

We evaluate two different use-cases in our experiments us-
ing the same 200 clusters and three workflow setups each. For
both use-cases, we assume that the task runtime is predicted
from historical execution traces [14]—[17]. In the first use-
case, we assume a prediction error that is normally distributed.
The second use-case incorporates an exponentially distributed
prediction error. We test both scenarios with different mean
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Fig. 2: Makespans of the Eager workflow for different schedulers with normally distributed runtime prediction errors.

TABLE II: Workflow runtimes with different schedulers as-
suming an exponentially distributed runtime prediction error
of 15%.

Mean % | 90p % | 95p % | Max %

HEFT 21.86 76.56 92.49 229.37

Reshi-C 0.00 4.98 5.03 24.94

Chipseq Reshi-M 11.61 31.63 32.18 41.90
MinMin 15.41 41.40 51.86 115.54

RR 65.39 111.22 114.01 117.33

HEFT 23.84 54.65 87.79 119.77

Reshi-C 14.53 27.33 29.07 30.81

Eager Reshi-M 0.00 6.40 6.40 16.28
MinMin 29.07 83.72 99.42 119.77

RR 52.33 99.42 | 119.19 119.77

HEFT 35.83 73.37 86.69 198.87

Reshi-C 10.53 23.24 37.60 38.48

viralrecon | Reshi-M 0.00 15.30 18.55 29.08
MinMin 28.17 57.91 62.18 71.78

RR 4471 63.73 65.24 80.90

error rates that are based on reported research results,
elaborated in Section IV-B.

Due to the high number of evaluation setups, the following
sections report detailed results for the Eager workflow with
different error assumptions and results for all workflows with
a systematic over- or under-prediction of 15%.

as

A. Normally Distributed Error

In our first scenario, we compare Reshi’s resource allo-
cation with Round-Robin and two state-of-the-art schedulers
assuming a normally distributed prediction error. Figure 2
shows the makespan of the Eager workflow with different
normally distributed runtime prediction errors. Reshi-M and
HEFT achieve the same median makespans assuming a totally
accurate task runtime, i.e., no prediction error. However, once
the error increases, all schedulers except for Reshi-C, Reshi-
M, and Round-Robin lead to higher makespans. With an error
of 15%, HEFT yields a 75th percentile that has a 9.81% higher
makespan compared to the 75th percentile of Reshi-M. Reshi-
M’s percentile is always below the respective 75th percentile
of the competitors. For all the baseline approaches, except for
Round-Robin, an increased error leads to longer workflow run-
times and more cases where outliers, i.e., workflow executions
with significantly longer makespans, can be detected.

Table I summarizes all workflow makespans assuming a
normally distributed task prediction error of 15%. For each
workflow, we set the lowest mean value to 0 and depict the
relative change according to that value. One can see that two
out of three times, Reshi-M achieves the lowest workflow
runtimes and for the other workflow Reshi-C. For Eager and
viralrecon, Reshi-M achieves the best results. This is, for
example, due to the Eager workflow structure, where the
maximum depth is two, and, therefore, strategies that prefer
long graph dependencies, e.g., Reshi-C, yield to a higher
makespan. Reshi’s 95th percentile is below the competitors’
90th percentile in all workflows. Further, HEFT’s maximum
values are frequently more than two times higher compared to
Reshi’s maximum reported value. For the Chipseq workflow,
the maximum value is more than 4.5 times higher

B. Exponentially Distributed Error

In our second experiment we assume an exponentially
distributed task runtime prediction error. Again, Figure 3
shows the Eager workflow makespan for the different sched-
ulers assuming various prediction error levels. The maximum
reported makespan of Reshi-M and Reshi-C is below the 75th
percentile of HEFT. Table II shows that Reshi’s maximum
value is always below the 90th percentile of the baseline
approaches. Further, the mean and the percentiles differences
are much more considerable now. Compared to the experiment
with a normally distributed error from the section before,
the baseline schedulers react stronger to an increase in the
error rate, assuming an exponential error distribution. Here, a
higher error rate necessarily leads to higher makespans for the
baselines, except for Round-Robin. Since Reshi-C and Reshi-
M do not rely on predicted runtimes or estimated resource
usages, they constantly achieve the same results.

VI. CONCLUSION

This paper presented an approach to dynamically map
scientific workflow tasks onto heterogeneous infrastructures
using our recommender systems. Through the task-node ranks,
Reshi does not rely on error-prone runtime estimates and has
not to cope with data-dependent resource predictions.

Our experimental evaluation with three real-world Nextflow
workflows from the popular nf-core framework shows that
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Reshi provides efficient task-machine allocations without re-
quiring accurate task runtime estimates, while we show that
in comparison the performance of state-of-the-art schedulers
is highly dependent on accurate task-runtime predictions.

Pairing Reshi’s recommendations with a simple scheduler,
Reshi is able to outperform HEFT by a mean makespan
reduction of 7.18% for a normally distributed error of 15% and
a mean makespan reduction of 18.01% for an exponentially
distributed error of 15%. Further, the baseline schedulers
yield significantly higher 90th percentile quarterlies and a
significantly higher variance.
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