

Carbon-Conscious Scalable Data Analysis w/ the *Ichnos* Carbon Footprint Estimator

FONDA Workshop – 25 Nov 2025

Dr Lauritz Thamsen

University of Glasgow

https://lauritzthamsen.org

General Motivation

Computing's carbon footprint is rising rapidly

 Big data analytics are routinely identified as one driver of computing's rising emissions

 There is often limited insight into the footprint of specific applications

Carbon-Conscious Computing Lab at the University of Glasgow

Computer systems research on

- Performance profiling & prediction
- Adaptive resource management
- Carbon-aware computing
- Carbon footprint estimation

for data-intensive systems on distributed compute infrastructure

Website: https://lauritzthamsen.org/lab/

Lauritz Thamsen

Kathleen West

James Nurdin

Youssef Moawad

Max MacDonald

Tobias Fröhlich

Acknowledgements

- This talk presents joint work with:
 - Kathleen West, Youssef Moawad,
 Magnus Reed, Yehia Elkhatib UofG
 - Vasilis Bountris, Philipp Thamm, Ulf Leser HU Berlin
 - Giulio Attenni Sapienza Rome

- Initial results were presented at the 1st International Workshop on Low Carbon Computing (LOCO 2024)
- The work was supported by EPSRC (UKRI154)

Starting Point: Linear Power Models

 Many carbon footprint assessment methodologies (e.g. CCF and GA) estimate energy consumption based on resource utilization using linear power models

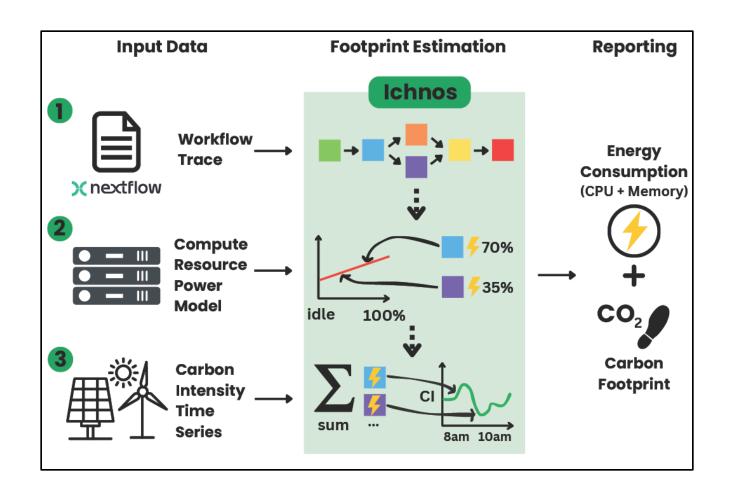
 Relatedly, much of the research on energy-efficient and carbon-aware scheduling – including ours – relies on such methodologies

Alternatives: Monitoring & Estimating

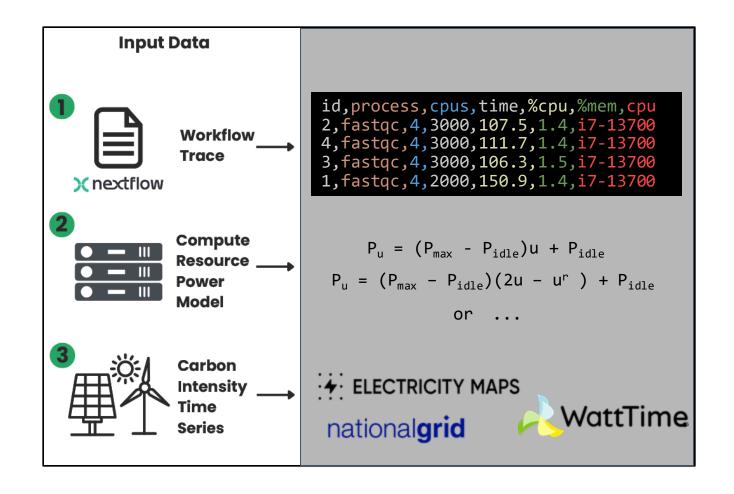
 Workflow and analytics systems do not automatically track energy and emissions, leaving two options:

1. *Monitor* energy consumption (and then translate to emissions)

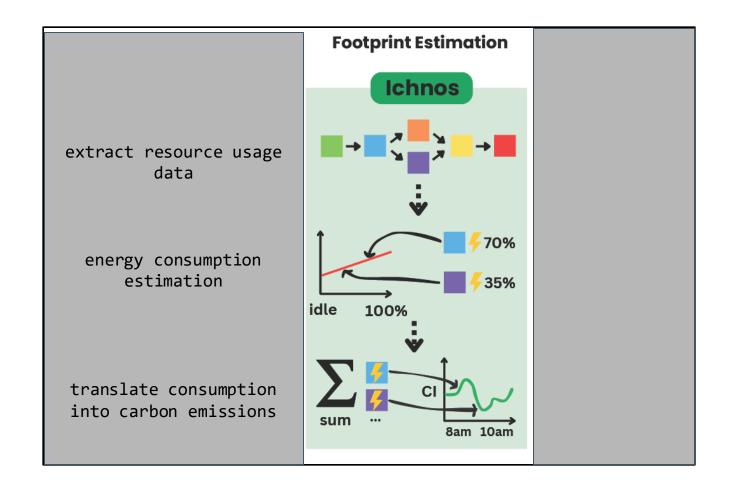
- Record energy usage using external or use built-in power meters (e.g. RAPL)
- Use carbon intensity data to estimate emissions
- Requires setup before application execution
- May not have access to power meters on shared resources

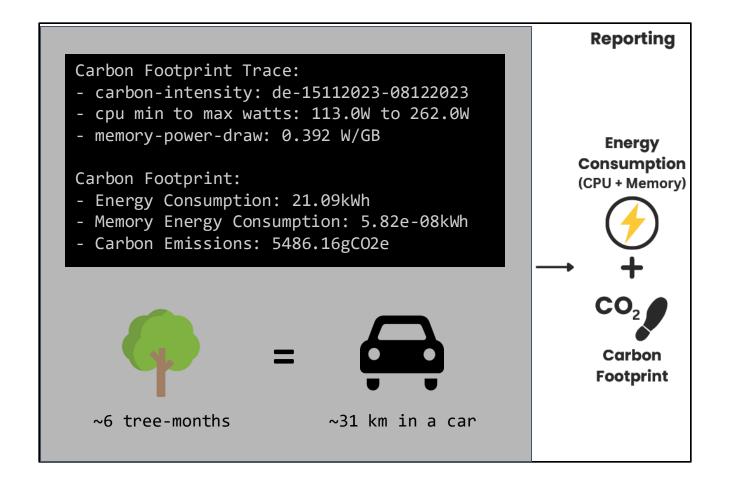

2. Estimate energy consumption (and then translate to emissions)

- 1. Record resource utilization metrics (e.g. CPU usage)
- 2. Use methodologies (e.g. GA or CCF) to estimate energy consumption using resource utilization metrics and carbon intensity data
- Can often be done afterwards and without full access


Our Own Estimator and Experiments

- Objective 1: Build an estimator tool Ichnos that works for Nextflow (and possibly other systems)
 - Enabling post-hoc estimation, using resource utilization data (e.g. from existing traces)
 - Estimating CPU and memory energy consumption as well as operational emissions at task-level
- Objective 2: Understand how accurate resource utilization-based estimates are for our workloads
 - How accurate are these estimates for scalable data analysis on compute clusters?
 - Can estimates be improved without requiring access to low-level hardware counters or measurement devices?


Ichnos: Design


Ichnos: Input Data

Ichnos: Footprint Estimation

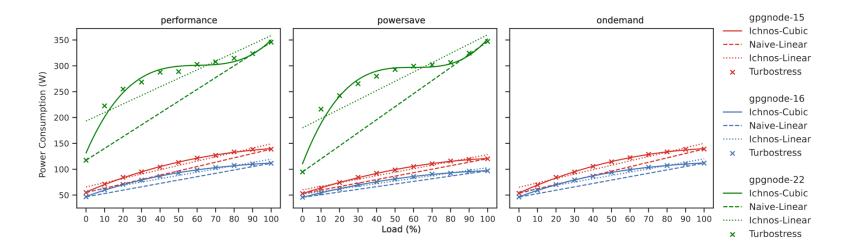
Ichnos: Outputs

Experiments: Power Model Fitting

 RAPL measurements taken at different CPU loads on cluster nodes, using different Intel governors

GPG nodes 01-20: 2 * Intel Xeon E5-2640 2GHz, 64Gb RAM, 2 HDDs

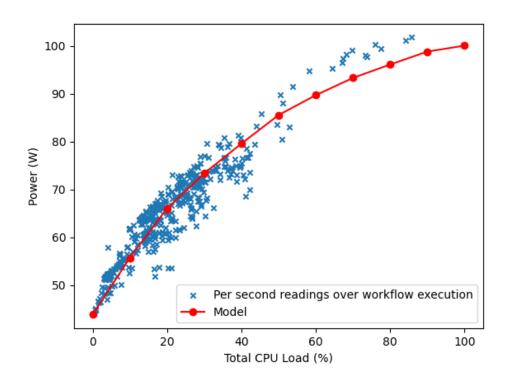
GPG nodes 21-22: 2 * Intel Xeon Gold 6426Y 2.5GHz, 128 Gb RAM, 1 SSD + 2 HDDs


Experiments: Estimates Using Models

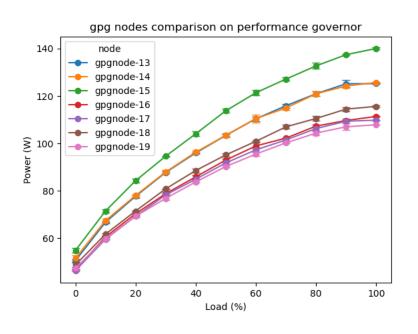
 Estimating nf-core Ampliseq's energy consumption using the different power models on our cluster nodes

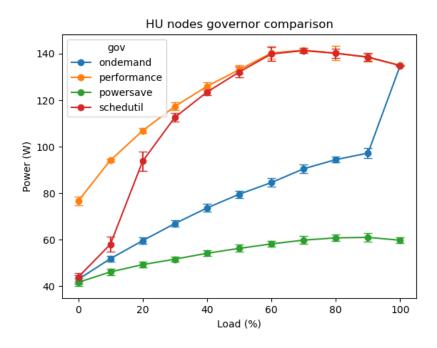
Node	Governor	Perf	Ichnos-Cubic	Error	Ichnos-Linear	Error	Naive-Linear	Error	GA	Error
		(kWh)	(kWh)	(%)	(kWh)	(%)	(kWh)	(%)	(kWh)	(%)
gpgnode-13	ondemand	0.161	0.135	16.1	0.144	10.3	0.121	24.7	0.28	82.9
gpgnode-14	performance	0.161	0.138	14.2	0.146	9.1	0.124	22.8	0.026	83.7
TT.	powersave	0.159	0.143	9.8	0.150	5.6	0.136	14.4	0.029	81.4
gpgnode-15	performance	0.168	0.147	12.4	0.155	7.4	0.134	19.9	0.027	83.6
"	powersave	0.178	0.157	11.7	0.165	7.3	0.148	16.7	0.031	82.4
gpgnode-16	ondemand	0.139	0.124	10.8	0.131	5.4	0.113	18.8	0.026	81.4
gpgnode-22	performance	0.165	0.131	20.7	0.159	3.9	0.101	38.7	0.003	98.0
"	powersave	0.163	0.031	81.0	0.150	8.0	0.085	47.9	0.003	98.0

The Impact of Non-Linearity


Again, 11 RAPL data points fitted for the GPG nodes:

- → Issue 1: Using non-linear models with coarse-grained utilization averages
- → Issue 2: Non-linear power draw depends on overall load on shared resources


Model Accuracy Is Inherently Limited


 CPU power draw depends on more than utilization, so utilization-based estimation accuracy is inherently limited

Why Still Fit Power Models?

 Power draw of even homogeneous nodes and of different processor settings can vary drastically

More Results: Distributed Execution

 Various workflows executed over multiple nodes on both the GPG and HU clusters:

cluster	workflow	run	ichnos (kWh)	rapl (kWh)	error (%)
hu	rnaseq	1	2.27	2.11	7.13
hu	rnaseq	2	2.27	2.44	6.77
hu	chipseq	1	3.66	3.85	5.1
hu	chipseq	2	3.68	3.87	4.9
hu	sarek	1	3.08	3.05	0.92
hu	sarek	2	3.1	3.09	0.38
hu	rangeland	1	0.45	0.53	15.78
hu	rangeland	2	0.38	0.38	1.58
gu	rnaseq	1	1.59	1.78	10.76

Outlook

 Support for additional systems via a general trace format (such as for Spark)

 Support for embodied emissions estimates (via the Boavizta API)

 Support for additional impacts (such as water and land use)

Conclusion

- Linear power models allow estimates with ≤ 20% error
- CPU%-based estimates are inherently limited, but it is still important to fit node-specific models
- Ichnos, as a practical tool, is ongoing work

Contact

Lauritz.Thamsen, Kathleen.West, & Youssef.Moawad @ glasgow.ac.uk

https://lauritzthamsen.org/lab/

https://casperproject.gitlab.io/

LOCO'24 paper: https://arxiv.org/abs/2411.12456

Ichnos code:

https://github.com/GlasgowC3lab/ichnos