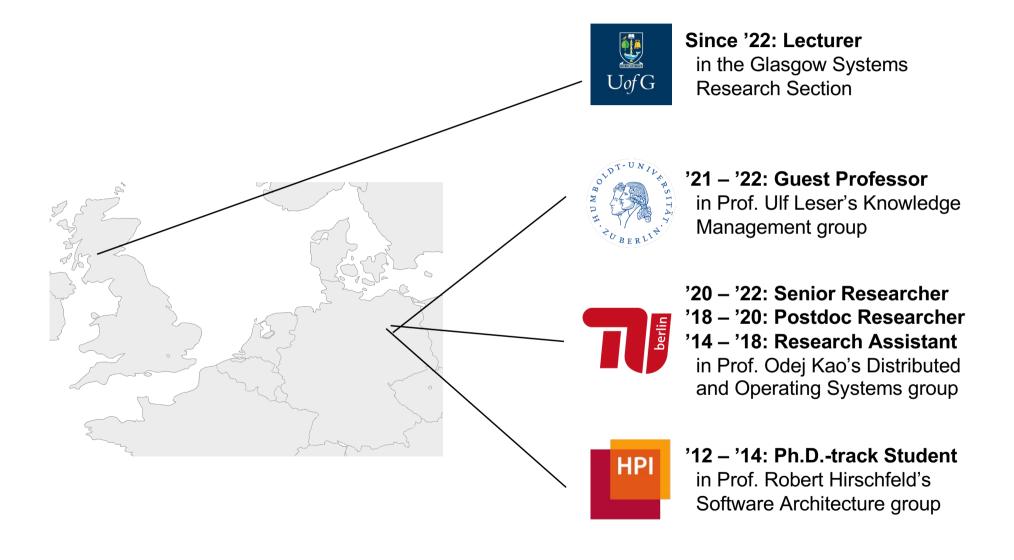


Leveraging Low-Carbon Energy for Flexible Cloud and Edge Workloads


HPI Research Symposium 2024

Dr Lauritz Thamsen

University of Glasgow

https://lauritzthamsen.org

My Path from HPI to Glasgow

Adaptive Resource Management

Allocate compute resources to meet specific performance objectives and constraints

e.g. Cluster'21, ICFEC'21, IC2E'21 & 22, EuroPar'22, BigData'22 & '23, FGCS'24

Adjust resource configurations at runtime as workloads change or components fail

e.g. CCPE'20, Middleware'21, SPE'21, IPCCC'23, CCGrid'23, e-Energy'24

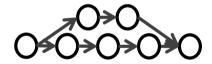
Tune system configurations using monitoring data, profiling, and performance models

e.g. BigData'19 & '20, IC2E'22, ICWS'22, ICPE'24

Data-Intensive Systems

Many data-intensive applications run on top of scalable and fault-tolerant distributed processing systems

Distributed Batch / Stream Processing



Scientific Workflows

Machine Learning

Computing's Growing Footprint

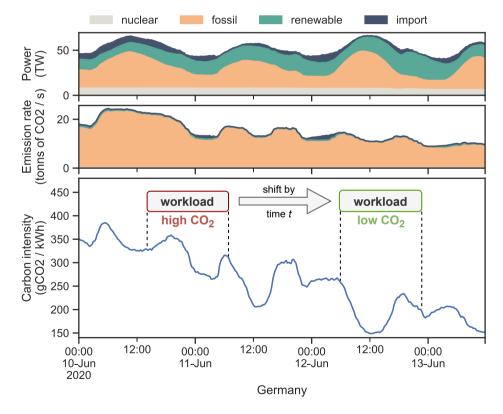
 Data centers already consume > 1% of the globally produced energy, a share that is projected to rise sharply over the next decades

 More and more large-scale, long-running, resourceintensive data processing jobs (e.g. Big Data, Al/ML, and IoT)

 Emissions depend on the energy consumption, yet also the specific sources of energy

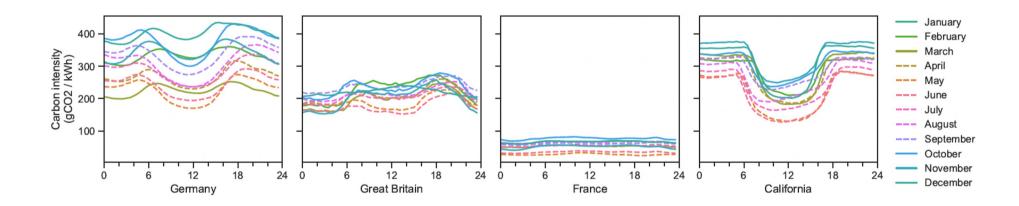
Carbon-Conscious Computing (GC)

- Objective: Reducing the carbon footprint of largescale data processing applications on today's diverse distributed computing infrastructure
- 1. Compute when and where low-carbon energy is going to be available
- 2. Allocate resources for high resource utilization and highly utilize allocated resources
- 3. Save computation and communication through distributed and dynamic architectures


Carbon-Aware Cloud Workload Shifting

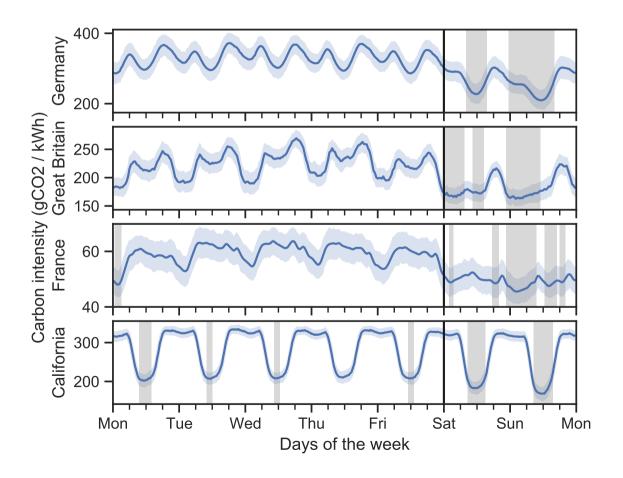
Let's Wait Awhile: How Temporal Workload Shifting Can Reduce Carbon Emissions in the Cloud. Wiesner, Behnke, Scheinert, Gontarska, Thamsen. ACM/IFIP Middleware 2021.

Motivation


 Emissions of power grids are determined by the energy mix and demand

 Low-carbon objective: Compute when and where low-carbon energy is available

Changing Carbon Intensity (1/2)

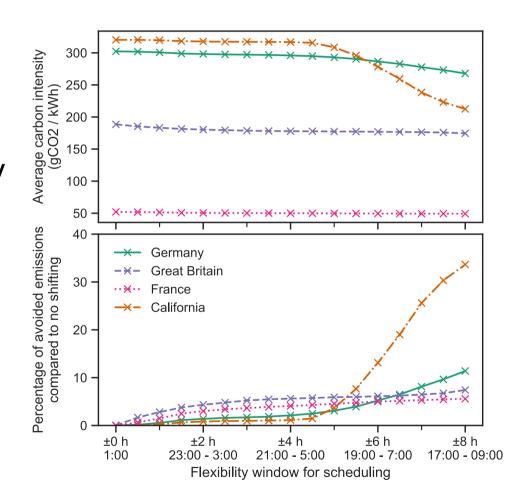

What are the most promising times to shift work to?

 Average carbon intensity (== CO2-equiv. greenhouse gas emissions per kilowatt hour of energy) in 2020

Changing Carbon Intensity (2/2)

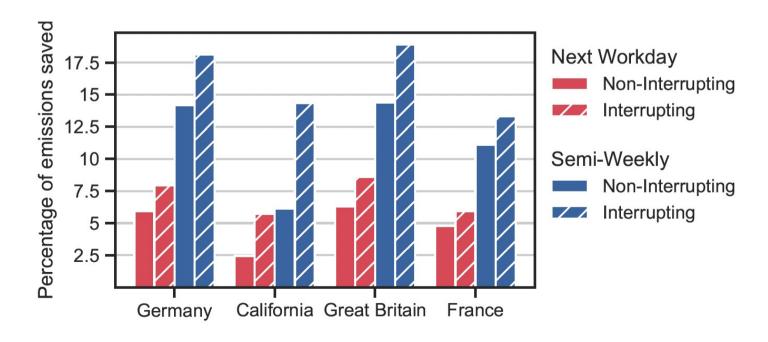
What are the most promising days to shift work to?

Simulations


 Evaluation of two scenarios using our simulator (https://github.com/dos-group/leaf)

 Scenario 1 – Periodic Jobs: Nightly builds, integration tests, recurring generation of business reports, ...

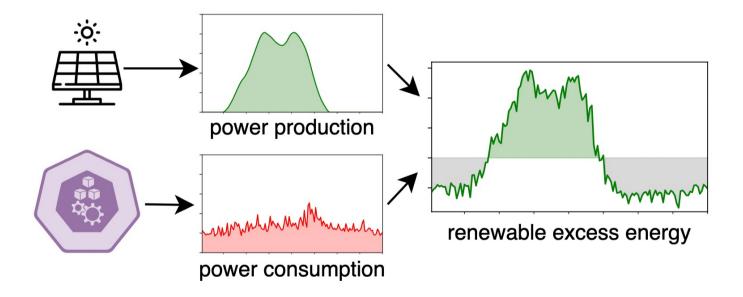
 Scenario 2 – Ad Hoc Jobs: ML training jobs, data analysis pipelines, scientific simulations, ...


Scenario 1: Periodic Jobs

- Baseline: All jobs scheduled at 1 am in the night
- Increasing the window by
 +- 1h to allow scheduling
 between
 - 00:00 to 3:00 (+- 1h)
 - 23:00 to 4:00 (+- 2h)
 - •
 - 17:00 to 9:00 (+- 8h)

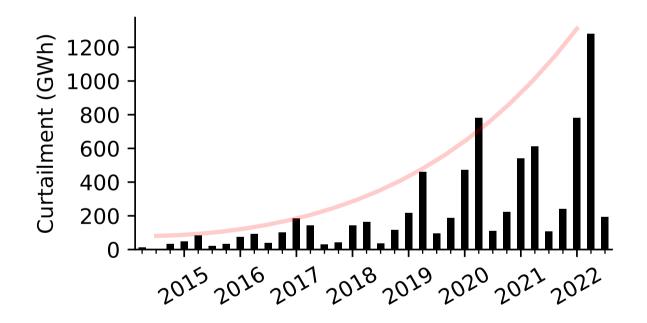
Scenario 2: Large Ad Hoc Jobs

- Based on an NVIDIA research project, which ran 3387 ML training jobs using 145.76 GPU years and 325 MWh
- Baseline: Instant scheduling of jobs that arrive randomly during working hours

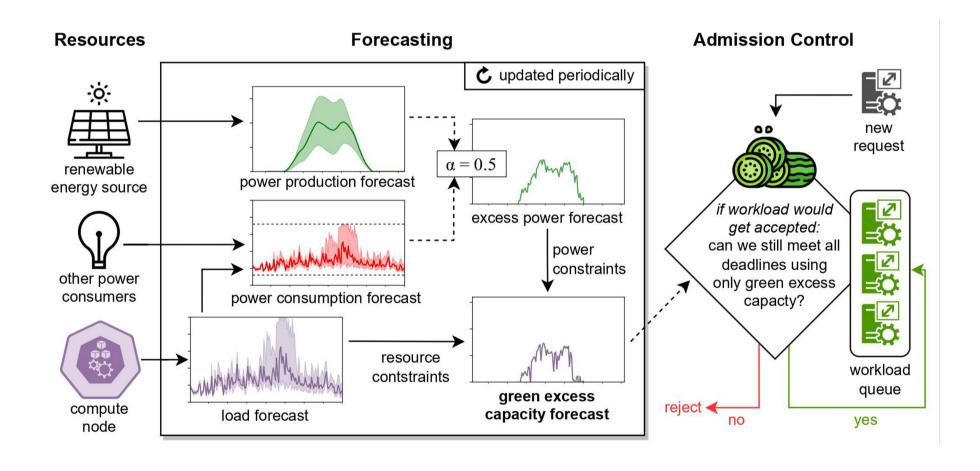

Edge Computing & FL on Renewable Excess Energy

Cucumber: Renewable-Aware Admission Control for Delay-Tolerant Cloud and Edge Workloads. Wiesner, Scheinert, Wittkopp, Thamsen, Kao. EuroPar 2022.

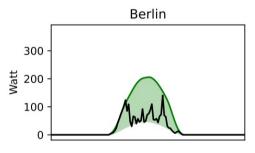
FedZero: Leveraging Renewable Excess Energy in Federated Learning. Wiesner, Khalili, Grinwald, Pratik Agrawal, Thamsen, Kao. ACM e-Energy 2024.

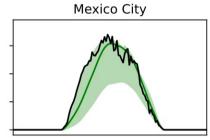

Renewable Excess Energy

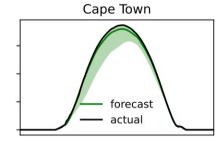
The output from renewables such as solar and wind varies, and there can be more energy than demand


Solar Energy Curtailment in California

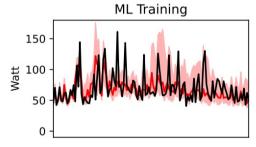
Around 7% of solar power is being curtailed already

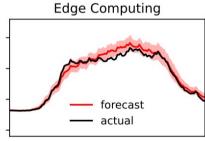

Source: California Independent System Operator (CAISO)


"Cucumber" Overview

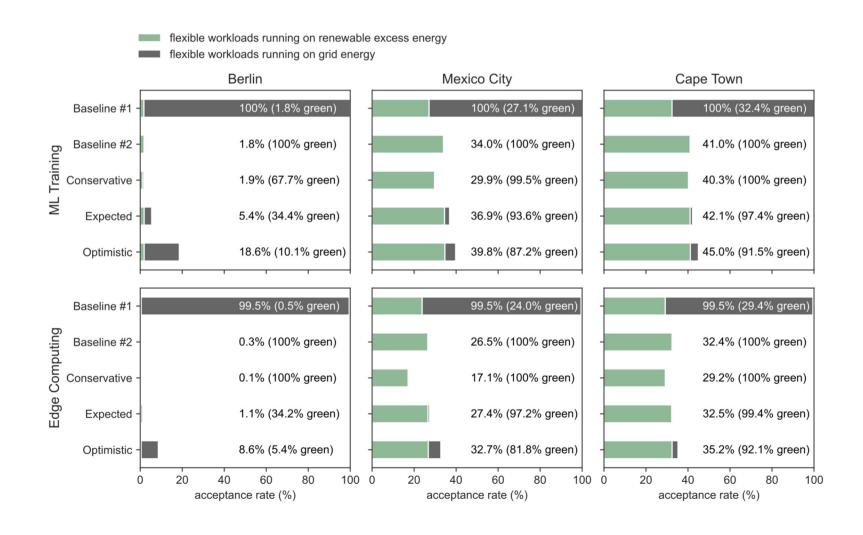


Simulation Setup


Two weeks of solar production forecasts for 400W panels across three sites (using https://solcast.com/):



Two workload traces:

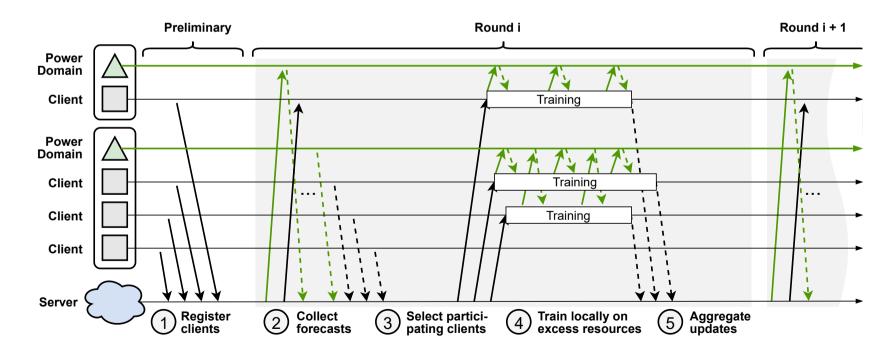


ML Training based on Alibaba GPU cluster traces (deadlines set to midnight)

Edge Computing based on a NYC taxi trip dataset (deadlines derived from trip lengths)

Simulation Results

Where are the Flexible Low-Priority Jobs Coming From?


A recent trend in distributed ML is Federated Learning (FL), improving data privacy

FL is a promising candidate for carbon-aware computing:

- It constitutes energy-intensive batch jobs
- It is scheduled in geo-distributed environments
- It is rather flexibility (e.g. in terms of which clients participate in an iteration and iteration deadlines)

FedZero Client Selection Protocol

Scalable client selection strategy for Zero-Carbon Federated Learning with fast convergence and fair client participation based on forecasts

FedZero Overall Results

Dataset & model	Data distribution & aggregation strategy	Approach	Global			Co-located		
			Target accuracy	Time-to-accuracy	Energy-to-accuracy	Target accuracy	Time-to-accuracy	Energy-to- accuracy
CIFAR-10 ResNet-18	iid FedAvg	Constrained FedZero Unconstrained	83.26 %	7.0 d 4.6 d 1.5 d	72.1 kWh 74.5 kWh 85.1 kWh	84.04 %	6.6 d 5.6 d 2.2 d	101.5 kWh 109.7 kWh 128.1 kWh
	non-iid FedProx	Constrained FedZero Unconstrained	79.11%	6.7 d 4.3 d 1.4 d	71.3 kWh 67.4 kWh 68.7 kWh	80.53 %	6.6 d 4.8 d 2.1 d	86.9 kWh 88.0 kWh 105.6 kWh
CIFAR-100 DenseNet-121	iid FedAvg	Constrained FedZero Unconstrained	57.85 %	6.7 d 4.4 d 1.5 d	78.6 kWh 82.1 kWh 89.0 kWh	58.90 %	6.7 d 4.5 d 2.0 d	101.2 kWh 94.3 kWh 119.6 kWh
	non-iid FedProx	Constrained FedZero Unconstrained	56.32 %	6.7 d 4.5 d 1.5 d	76.6 kWh 82.7 kWh 88.3 kWh	57.63 %	6.8 d 4.6 d 2.2 d	102.1 kWh 99.5 kWh 128.7 kWh
Shakespeare LSTM	non-iid FedProx	Constrained FedZero Unconstrained	52.14%	5.7 d 1.4 d 1.4 d	79.3 kWh 27.7 kWh 46.7 kWh	52.57 %	6.7 d 2.2 d 1.9 d	77.2 kWh 37.8 kWh 65.0 kWh

Summary

Carbon-Aware Edge/Cloud Computing

- Fluctuations in grid carbon intensities can be leveraged to reduce the footprint of flexible workloads (e.g. by 5-20% in some cases)
- Renewable excess energy and spare compute capacity can drive down the operational footprint of e.g. ML and FL substantially
- Interesting open questions for realizing the potential:
 - Which signal to use? e.g. carbon intensity or curtailed energy?
 - How best to profile and predict application performance?
 - How to conduct experiments? e.g. (hybrid) simulations, real data?
- Contact: <u>lauritz.thamsen@glasgow.ac.uk</u>