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Adaptive Resource Management for 
Data-Intensive Systems

Allocate compute resources to meet specific 
performance objectives and constraints

Adaptive Resource 
Allocation

Adjust resource configurations at runtime as 
workloads change or components fail

Scheduling & 
Dynamic Scaling

Tune system configurations using monitoring 
data, profiling, and performance models

Automatic System 
Tuning

e.g. BigData’20 & '22, Cluster’21, ICFEC’21, IC2E’21 & 22, EuroPar’22, SSDBM’22

e.g. CCPE journal’20, Middleware’21, ACSOS’21, SPE journal’21, CCGrid’23

e.g. BigData’19 & ’20, IC2E’22, ICWS’22
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Scalable Data Processing Systems

Many data-intensive applications run on top of scalable 
and fault-tolerant distributed processing systems

Distributed Batch / 
Stream Processing

Machine 
Learning

Scientific
Workflows
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Research Questions

Given a job and objectives/constraints for its execution:

1x / 15s ?
3. How to set system configurations?

1. What resources to use for the job? 10 x ?

2. When and where to run the tasks?
?
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Computing’s Growing Footprint

• Data centers already consume > 1% of the globally 
produced energy, a share that is projected to rise 
sharply over the next decades

• More and more large-scale, long-running, resource-
intensive data processing jobs (e.g. Big Data, ML/AI, 
and IoT)

• Emissions depend on the energy consumption, yet 
also the specific sources of energy
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Carbon-Conscious Computing

• Objective: Reducing the carbon footprint of large-
scale data processing applications on today’s diverse 
distributed computing infrastructure 

1. Compute when and where low-carbon energy is 
going to be available

2. Allocate resources for high resource utilization and 
highly utilize allocated resources

3. Save computation and communication through 
distributed and dynamic architectures



Carbon-Aware Cloud 
Workload Shifting

Let's Wait Awhile: How Temporal Workload Shifting Can Reduce Carbon Emissions in the Cloud. 
Wiesner, Behnke, Scheinert, Gontarska, Thamsen. Middleware’21.
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Motivation

• Emissions of power grids are determined by the energy 
mix and demand

• Low-carbon objective: 
Compute when and
where low-carbon 
energy is available

workload workload
shift by 

time t 
low CO2high CO2
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Changing Carbon Intensity (1/2)

• What are the most promising times to shift work to?

• Average carbon intensity (== CO2-equiv. greenhouse 
gas emissions per kilowatt hour of energy) in 2020
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Changing Carbon Intensity (2/2)

• What are the most promising days to shift work to?
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Simulations

• Evaluation of two scenarios using our simulator 
(https://github.com/dos-group/leaf)

• Scenario 1 – Periodic Jobs: Nightly builds, integration 
tests, recurring generation of business reports, …

• Scenario 2 – Ad Hoc Jobs: ML training jobs, data 
analysis pipelines, scientific simulations, …
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Scenario 1: Periodic Jobs

• Baseline: All jobs 
scheduled at 
1 am in the night

• Increasing the window by 
+- 1h to allow scheduling 
between

• 00:00 to 3:00 (+- 1h)
• 23:00 to 4:00 (+- 2h)
• …
• 17:00 to 9:00 (+- 8h)



2023 University of Glasgow – Lauritz Thamsen 19

Scenario 2: Large Ad Hoc Jobs

• Based on an NVIDIA research project, which ran 3387 ML 
training jobs using 145.76 GPU years and 325 MWh

• Baseline: Instant scheduling of jobs that arrive randomly 
during working hours 
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Simplifications in our First Simulations

• Exact knowledge of job runtimes  and no overhead for 
interrupting jobs repeatedly

• Given and static resource configuration for jobs

• Uniform low-error emissions forecasts and no 
hardware/software failures slowing down processing
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Task Runtime Estimation for Scientific 
Workflows

Our “Lotaru” method for estimating the task runtimes of 
scientific workflows on a scientist’s personal machine: 

Lotaru: Locally Estimating Runtimes of Scientific Workflow Tasks in Heterogeneous Clusters. Bader, Lehmann, Thamsen, Will, Leser, and Kao. SSDBM’22.
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Realistic Estimations to Shift Scientific 
Workflows

• Shifting bioinformatics workflows (nf-core) on Google’s 
cloud based on locally estimated runtimes using Lotaru

Results by next morning Results by next Monday

[Work in progress – for an extended TPDS article on the estimation method]



Edge Computing on 
Renewable Energy

Cucumber: Renewable-Aware Admission Control for Delay-Tolerant Cloud and Edge Workloads. 
Wiesner, Scheinert, Wittkopp, Thamsen, Kao. EuroPar’22.
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Renewable Excess Energy

The output from renewables such as solar and wind 
varies, and there can be more energy than demand
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Solar Energy Curtailment in California

• Around 7% of solar power is being curtailed already

FedZero: Leveraging Renewable Excess Energy in
Federated Learning

Anonymous Authors

Abstract—Federated Learning (FL) is an emerging machine
learning technique that enables distributed model training across
data silos or edge devices without sharing data. Yet, FL inevitably
introduces inefficiencies compared to centralized model training,
which will further increase the already high energy usage and
associated carbon emissions of machine learning in the future.
Although the scheduling of workloads based on the availability of
low-carbon energy has received considerable attention in recent
years, it has not yet been investigated in the context of FL.
However, FL is a highly promising use case for carbon-aware
computing, as training jobs constitute of energy-intensive batch
processes scheduled in geo-distributed environments.

We propose FedZero, a FL system that operates exclusively
on renewable excess energy and spare capacity of compute
infrastructure to effectively reduce the training’s operational
carbon emissions to zero. Based on energy and load forecasts,
FedZero leverages the spatio-temporal availability of excess
energy by cherry-picking clients for fast convergence and fair
participation. Our evaluation, based on real solar and load data,
shows that FedZero converges considerably faster under the
mentioned constraints than random client selection, is highly
scalable, and robust against forecasting errors.

Index Terms—Federated learning, client selection, green AI,
on-site renewable energy, carbon-aware computing, scheduling.

I. INTRODUCTION

The majority of today’s machine learning (ML) solutions
perform centralized learning, where all required training data
are gathered in a single location, usually an energy-efficient
data center with specialized hardware. Yet, in many practical
use cases, it is not feasible to collect data across a distributed
system due to security and privacy concerns or because large
amounts of raw data cannot be migrated from the deep edge
to the cloud. As governments are pushing data protection
regulations, there is a growing need for systems that allow data
processing directly at end devices. Federated Learning (FL)
was introduced to address this issue by enabling distributed
training of ML models without transmitting training data over
the network [1]. However, FL approaches require consider-
ably more training rounds than traditional ML and are often
executed on infrastructure that is less energy-efficient than
centralized GPU clusters, resulting in a significant increase
in overall energy usage and associated emissions [2]–[4].

Even without the application of FL, the training of large
ML models is known to be an energy-hungry process and
has increasingly raised concerns in recent years [5]–[7]. As
models keep growing in size and complexity, this problem
is expected to aggravate, which is why there are numerous
efforts towards more energy-efficient algorithms and hardware
to reduce the carbon footprint of AI. Yet, when focussing

on reducing emissions, “using renewable energy grids for
training neural networks is the single biggest change that can
be made” [8], [9].

In this work, we study how the operational carbon emissions
of FL trainings can be reduced to zero by operating under the
hard constraint of only leveraging renewable excess energy
and spare computational capacity at edge and cloud resources.
Excess energy, also called stranded energy, occurs in electric
grids when more power is generated than demanded or when
the grid does not have sufficient capacity for transmission.
If the oversupply cannot be stored in batteries (which are
expensive and only available in limited capacity) or traded
with neighboring grids (who’s excess energy patterns often
correlate) the last resort is curtailment, the deliberate re-
duction in production. Through curtailment, the California
Independent System Operator wasted more than 27 million
megawatt-hours of utility-scale solar energy in 2022, which is
around 7 % of their entire solar production [10]. Due to the
increasing penetration of variable renewable energy sources,
the amount of curtailed energy is only expected to grow, as
shown in Figure 1. At the same time, many existing computing
infrastructures are frequently underutilized or could be over-
clocked if the occurrence of excess energy justifies reduced
energy efficiency [11]. To make better use of these resources,
carbon-aware computing, i.e. considering the spatio-temporal
availability of low-carbon energy during in scheduling, has
attracted high attention in recent years [12]–[18].

FL training is a very promising candidate for carbon-aware
computing, as it (i) constitutes of energy-intensive batch jobs,
(ii) scheduled in geo-distributed environments, (iii) without
strict runtime requirements. However, as excess energy and

Fig. 1: Quarterly wind and solar curtailments by the California
ISO [10]. The increasing penetration of renewable energy
sources requires consumers to better align to the varying
availability of power to avoid curtailments.

Source: California Independent System Operator (CAISO)
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“Cucumber” Overview
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Cucumber Admission Control

• Given the size and deadlines 
of jobs, we admit jobs to use 
predicted excess energy and 
spare capacity

• Through probabilistic 
forecasts, admission can be 
tuned to be

• conservative (low acceptance 
rate, low grid power usage) or

• optimistic (vice versa)
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Simulation Setup

• Two weeks of solar production forecasts for 400W 
panels across three sites (using https://solcast.com/)

• Two workload traces

ML Training based on Alibaba GPU cluster traces 
(deadlines set to midnight)
Edge Computing based on a NYC taxi trip dataset 
(deadlines derived from trip lengths)
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Simulation Results
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Where are the Flexible Low-Priority 
Jobs Coming From?

A recent trend in distributed ML is Federated Learning 
(FL), improving data privacy

FL seems a very promising candidate for carbon-aware 
computing:
• constitutes energy-intensive batch jobs
• scheduled in geo-distributed environments
• without strict runtime requirements
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Newest Work: “FedZero”

• Scalable client selection strategy for Zero-Carbon 
Federated Learning with fast convergence and fair 
client participation based on forecasts
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pating clients
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excess resources
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Fig. 2: FedZero Overview

information on past participation or statistical utility of clients
for ensuring performance and fairness (Section IV-D). Next,
the selected clients locally train on spare capacity and, via
continuous exchange with the power domain controller, excess
energy (Section IV-E, 4 ). Finally, all participating clients
send their updated model back to the server which aggregates
them and documents the participated batches and local loss
for future decisions ( 5 ). The following sections explain these
steps and components in detail.

A. Client Registration

Before starting the training, FedZero requires the following
information per client:

1) The maximum computational capacity of a client is de-
noted as mc (batches/timestep) and can be derived from
its FLOPS (floating point operations per second), the
model’s MACs (multiply–accumulate operations), and
the batch size. Alternatively it can also be benchmarked
before or during execution of the training. For variable
capacity datacenters [11], mc should describe the actual
maximum with overclocking.

2) The energy efficiency is denoted as �c (energy/batch) and
can be obtained through measurements or derived from
the client’s system performance and power consumption
characteristics. Linear power modeling is a meaning-
ful simplification if we can assume power-proportional
clients or sequential processing of workloads. If not,
�c can also change from round to round depending on
the system utilization, which is especially relevant in
variable-capacity datacenters [11].

3) The number of available training samples is required to
derive the amount of work a client needs to perform
to reach its user-defined lower and upper bound for
computation per round (mmin

c ;mmax
c ).

4) The control plane addresses define a client’s power do-
main, as well as where to query load and excess energy
forecasts from. Load forecasts can be provided by the
client itself or its cluster manager/container orchestrator.
Typical providers for energy forecasts are electricity
providers, microgrid control systems, or Ecovisors [36].

B. Forecasting Excess Energy and Load

To avoid picking clients with access to little or no resources
during a round, FedZero relies on multistep-ahead forecasts of
excess energy at power domains and spare capacity at clients.

Power production forecasts for variable renewable energy
sources like solar [39], [40] and wind [41], [42] are usually
based on weather models for mid- and long-term predictions
as well as, in case of solar, satellite data for short-term
predictions that enable qualitative forecasts with up to 5
minute resolution. For on-site installations, there exist a large
number of companies providing power production forecasts as
a service that usually also come with uncertainty estimations.
In case of time-based power purchase agreements, its the
responsibility of the utility provider to inform their customers
of future energy budgets. For determining future excess energy,
operators furthermore need to take load forecastsfor co-located
consumers into account, like other compute units, cooling, or
lighting, as well as the capacity, state and expected usage
of energy storage systems such as batteries or flywheels.
Load predictions can be used to estimate the energy usage
of IT infrastructure. We define rp,t to be the forecasted excess
energy of power domain p at time t.

Load prediction is a widely researched field covering fore-
casts related to application metrics, such as requests per
second, as well as the utilization of (virtualized) hardware
resources like CPU, GPU or RAM. They usually entail time
series forecasting models trained on historical data but can
also take additional context information into account. For

[Currently under review]
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FedZero Evaluation Setup

• Discrete-event simulation on top of Flower (https://flower.dev)
• 100 clients with different Nvidia GPUs in terms of throughput and 

energy consumption – emulated on six actual cards
• Two scenarios with real solar forecasts and baseload derived from 

an Alibaba trace dataset

TABLE II: Training performance and max energy consumption
of the three simulated client types.

client type samples per minute max energy

ResNet-18 DenseNet-121 LSTM

small 110 73 276 70 W
mid 384 256 956 300 W
large 742 495 1856 700 W

Clients. We model heterogeneity among clients by randomly
assigning them to one of three types, small, medium, and large,
that are roughly based on the performance3 and energy usage
characteristics of T4, V100, and A100 GPUs, respectively.
However, for our simulation we downscaled their actually
compute capabilities (samples per minute), as shown in Ta-
ble II. Client load and load forecasts are modeled based on
the real and planed GPU utilization of 100 randomly selected
machines from the Alibaba GPU cluster trace dataset [47].

Scenarios and baselines. For modeling power domains, we
focus on on-site energy generation of solar energy in two
scenarios based on real solar and solar forecast data provided
by Solcast4: A global scenario5 and a co-located scenario6,
both displayed in Figure 3. The solar data is available in 5
minute resolution and we assume constant power supply for
steps within this period. Clients are randomly distributed over
the ten power domains, which each have a maximum output
of 800 W. If there is little sun, or multiple clients are selected
within a domain, energy becomes a limiting resource.

Fig. 3: Solar power production (in watt) during the first day
for both scenarios.

For each experiment, we train an Unconstrained baseline,
which uses random client selection, but is not subject to any
energy constraints or existing load on clients (clients are still
heterogenous). This defines our upper bound in convergence
speed and performance. For both scenarios, we also train a
Constrained baseline, which only trains on excess resources.
The client selection randomly picks from the subset of clients
that currently have access to excess energy and spare capacity.

3https://developer.nvidia.com/deep-learning-performance-training-inference
4https://solcast.com
5ten globally distributed cities from 2022-06-08 until 2022-06-15
6ten biggest cities in Germany from 2022-07-15 until 2022-07-22

Finally, we use FedZero, which trains under the same condi-
tions as the Constrained baseline.

Datasets, models, parameters. We evaluate our approach on
three datasets and models commonly used in FL evaluations.

Image datasets CIFAR-10 and CIFAR-100 [48] contain
60,000 32x32 color images across 10/100 classes. We train7

CIFAR-10 on the convolutional neural network model ResNet-
18 [49] and CIFAR-100 on DenseNet-121 [50]. Both models
were pretrained on ImageNet. We run experiments for iid and
non-iid data distributions, where non-iid is modeled using a
Dirichlet distribution with ↵ = 0.5, which skews the number
of samples as well as the number of samples per class and
client8. iid experiments use FedAvg [1] for aggregation, non-
iid experiments use FedProx [38] with µ = 0.1. Moreover,
we perform next character prediction on the Sheakespare [51]
dataset using a two-layer LSTM9 using FedProx with µ =
0.001 as in [38]. Here, we only observe the non-iid10 case
where each node represents a speaking role in a play.

The amount of samples that can be computed per timestep
by the different types of clients were obtained through bench-
marking runs and are stated in Table II. All simulations use
a timestep t = 1min and a max round duration d = 60min.
We select n = 10 clients each round which have to compute
1 to 5 local epochs, so mmin and mmax depend on the
locally available number of samples. Clients locally train on
minibatches of size 10. We run each experiment five times over
the course of seven simulated days and report mean values.

B. Training Speed and Energy Usage

We first investigate how FedZero improves the time-to-
accuracy and energy-to-accuracy of FL under energy and
resource constraints. For this, we define the best accuracy
of the Constrained baseline as our target accuracy for a
specific experimental setup. Table III reports the time and
energy required for FedZero and the baselines to reach this
target accuracy. Figure 4 shows the convergence behavior of
the training runs, for all non-iid cases (iid convergences in a
similar manner, but to slightly higher target accuracies). Note,
that the Unconstrained baseline is not operating under energy
constraints and hence does not only rely on renewable energy.

For CIFAR-100, FedZero has an average round duration
14.0±8.8 min, compared to 31.3±19.8 min for Constrained,
and 7.0±0.4 min for Unconstrained. This results in an im-
proved time-to-accuracy of around two days on average, which
is more than 30 % – even though FedZero has about the
same energy usage as the Constrained baseline. Results are
similar for CIFAR-10. Although experiments on the co-located
scenario cannot progress for around 8 hours every night, they
reach a slightly better target accuracy that the ones on the
global scenario. This is, because in the global scenario only
certain sets of clients are available at the same time for training

7SDG, learning rate = 0.001, weight decay = 5e-4, momentum = 0.8
8450± 187 samples per client on CIFAR-10 and 450± 65 on CIFAR-100
9100 hidden units, 8D embedding layer, SDG, learning rate = 0.8, see [38]
102365± 4674 samples per client (min = 730; max = 27950)

TABLE III: Time-to-accuracy and energy-to-accuracy of FedZero and the baselines.

Dataset & model Data distribution &
aggregation strategy Approach Global Co-located

Target
accuracy

Time-to-
accuracy

Energy-to-
accuracy

Target
accuracy

Time-to-
accuracy

Energy-to-
accuracy

CIFAR-10
ResNet-18

iid
FedAvg

Constrained
83.26 %

7.0 d 72.1 kWh
84.04 %

6.6 d 101.5 kWh
FedZero 4.6 d 74.5 kWh 5.6 d 109.7 kWh

Unconstrained 1.5 d 85.1 kWh 2.2 d 128.1 kWh

non-iid
FedProx

Constrained
79.11 %

6.7 d 71.3 kWh
80.53 %

6.6 d 86.9 kWh
FedZero 4.3 d 67.4 kWh 4.8 d 88.0 kWh

Unconstrained 1.4 d 68.7 kWh 2.1 d 105.6 kWh

CIFAR-100
DenseNet-121

iid
FedAvg

Constrained
57.85 %

6.7 d 78.6 kWh
58.90 %

6.7 d 101.2 kWh
FedZero 4.4 d 82.1 kWh 4.5 d 94.3 kWh

Unconstrained 1.5 d 89.0 kWh 2.0 d 119.6 kWh

non-iid
FedProx

Constrained
56.32 %

6.7 d 76.6 kWh
57.63 %

6.8 d 102.1 kWh
FedZero 4.5 d 82.7 kWh 4.6 d 99.5 kWh

Unconstrained 1.5 d 88.3 kWh 2.2 d 128.7 kWh

Shakespeare
LSTM

non-iid
FedProx

Constrained
52.14 %

5.7 d 79.3 kWh
52.57 %

6.7 d 77.2 kWh
FedZero 1.4 d 27.7 kWh 2.2 d 37.8 kWh

Unconstrained 1.4 d 46.7 kWh 1.9 d 65.0 kWh

Fig. 4: Convergence behavior of FedZero and the baselines for
all experiments on non-iid data distributions.

which seem to harm the training performance. Interestingly,
we observe no significant differences in runtime or energy
usage between the iid (FedAvg) and non-iid (FedProx) exper-
iments to reach their specific target accuracy.

For the language model, FedZero used 33.2 % less energy
for the global scenario and 46,6 % for the co-located scenario,

while improving the runtime by factor 4 and factor 3, re-
spectively. In fact, the convergence behavior of FedZero is
almost identical with the Unconstrained baseline. However,
it uses only 58.2 to 59.3 % of its energy. The reason why
FedZero performs especially well in the Shakespeare scenario,
is because of the high variability in samples per client. As
FedZero has access to information on the amount of samples
at clients as well as their system utility, it avoids combining
clients with vastly different expected round durations. The
system utility of clients is commonly exploited in selection
strategies like Oort [43]. However, better integrating FedZero
with such strategies to, for example, also consider statistical
utility, remains future work and can so far only be achieved
by exchanging the utility function introduced in Section IV-D.

C. Fairness of Participation

Next, we examine fairness of participation of FedZero in
comparison to the Constrained baseline. Figure 5a displays
the average percentage of rounds in which clients have partic-
ipated in the training for the global scenario, grouped by power
domain. As we select 10 out of 100 clients per round, we
expect an average client participation of 10 %. Already in this
example, we can observe that FedZero exhibits a significantly
lower standard deviation, hence fairer participation, within
(marked by the error bar) as well as between power domains
(stated on each figure).

To further demonstrate how FedZero maintains this fairness
of participation, even if the availability of excess resources is
highly imbalanced, we introduce a modification of the global
scenario, in which the power domain Berlin provides infinite
energy and all clients within Berlin have infinite computational
resources. The results of this experiment are displayed in
Figure 5b, where Berlin is colored in red. FedZero leverages
the additional resources by increasing the mean participation
of clients in the domain from 11.2±0.2 to 11.8±0.2 %. The
Constrained baseline, however, introduces a heavy bias to-

Day 1 solar power production (in Watt) Energy/client availability over seven days

[Currently under review]
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FedZero Overall Results

TABLE III: Time-to-accuracy and energy-to-accuracy of FedZero and the baselines.

Dataset & model Data distribution &
aggregation strategy Approach Global Co-located

Target
accuracy

Time-to-
accuracy

Energy-to-
accuracy

Target
accuracy

Time-to-
accuracy

Energy-to-
accuracy

CIFAR-10
ResNet-18

iid
FedAvg

Constrained
83.26 %

7.0 d 72.1 kWh
84.04 %

6.6 d 101.5 kWh
FedZero 4.6 d 74.5 kWh 5.6 d 109.7 kWh

Unconstrained 1.5 d 85.1 kWh 2.2 d 128.1 kWh

non-iid
FedProx

Constrained
79.11 %

6.7 d 71.3 kWh
80.53 %

6.6 d 86.9 kWh
FedZero 4.3 d 67.4 kWh 4.8 d 88.0 kWh

Unconstrained 1.4 d 68.7 kWh 2.1 d 105.6 kWh

CIFAR-100
DenseNet-121

iid
FedAvg

Constrained
57.85 %

6.7 d 78.6 kWh
58.90 %

6.7 d 101.2 kWh
FedZero 4.4 d 82.1 kWh 4.5 d 94.3 kWh

Unconstrained 1.5 d 89.0 kWh 2.0 d 119.6 kWh

non-iid
FedProx

Constrained
56.32 %

6.7 d 76.6 kWh
57.63 %

6.8 d 102.1 kWh
FedZero 4.5 d 82.7 kWh 4.6 d 99.5 kWh

Unconstrained 1.5 d 88.3 kWh 2.2 d 128.7 kWh

Shakespeare
LSTM

non-iid
FedProx

Constrained
52.14 %

5.7 d 79.3 kWh
52.57 %

6.7 d 77.2 kWh
FedZero 1.4 d 27.7 kWh 2.2 d 37.8 kWh

Unconstrained 1.4 d 46.7 kWh 1.9 d 65.0 kWh

Fig. 4: Convergence behavior of FedZero and the baselines for
all experiments on non-iid data distributions.

which seem to harm the training performance. Interestingly,
we observe no significant differences in runtime or energy
usage between the iid (FedAvg) and non-iid (FedProx) exper-
iments to reach their specific target accuracy.

For the language model, FedZero used 33.2 % less energy
for the global scenario and 46,6 % for the co-located scenario,

while improving the runtime by factor 4 and factor 3, re-
spectively. In fact, the convergence behavior of FedZero is
almost identical with the Unconstrained baseline. However,
it uses only 58.2 to 59.3 % of its energy. The reason why
FedZero performs especially well in the Shakespeare scenario,
is because of the high variability in samples per client. As
FedZero has access to information on the amount of samples
at clients as well as their system utility, it avoids combining
clients with vastly different expected round durations. The
system utility of clients is commonly exploited in selection
strategies like Oort [43]. However, better integrating FedZero
with such strategies to, for example, also consider statistical
utility, remains future work and can so far only be achieved
by exchanging the utility function introduced in Section IV-D.

C. Fairness of Participation

Next, we examine fairness of participation of FedZero in
comparison to the Constrained baseline. Figure 5a displays
the average percentage of rounds in which clients have partic-
ipated in the training for the global scenario, grouped by power
domain. As we select 10 out of 100 clients per round, we
expect an average client participation of 10 %. Already in this
example, we can observe that FedZero exhibits a significantly
lower standard deviation, hence fairer participation, within
(marked by the error bar) as well as between power domains
(stated on each figure).

To further demonstrate how FedZero maintains this fairness
of participation, even if the availability of excess resources is
highly imbalanced, we introduce a modification of the global
scenario, in which the power domain Berlin provides infinite
energy and all clients within Berlin have infinite computational
resources. The results of this experiment are displayed in
Figure 5b, where Berlin is colored in red. FedZero leverages
the additional resources by increasing the mean participation
of clients in the domain from 11.2±0.2 to 11.8±0.2 %. The
Constrained baseline, however, introduces a heavy bias to-

[Currently under review]
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Carbon-Aware Edge/Cloud Computing

• Fluctuations in grid carbon intensities can be leveraged to 
reduce the footprint of flexible workloads by 5-20%

• Renewable excess energy and spare capacity can drive 
down the footprint of e.g. ML and FL substantially

• Interesting research ahead of us to realize the potential 
carbon savings – e.g. dynamic scheduling and scaling 
based on performance models and forecasts

• Contact: lauritz.thamsen@glasgow.ac.uk
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