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Diverse Computing Infrastructures

Heterogeneous and dynamic distributed computing 
environments from devices to data centers
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Research Questions

Given a job and objectives/constraints for its execution:

1x / 15s ?
3. How to set system configurations?

1. What resources to use for a job? 10 x ?

2. When and where to run the jobs?
?
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Vision: Adaptive Resource Management

Select resource allocations to meet specific 
performance objectives and constraints

Adaptive Resource 
Allocation

Adjust resource configurations at runtime as 
workloads change or components fail

Scheduling & 
Dynamic Scaling

Tune system configurations using monitoring 
data, profiling, and performance models

Automatic System 
Tuning

CloudCom’18, EDGE’19, BigData’20, IPCCC’20, ICFEC’21, EdgeSys’21, 
IC2E’21, CLUSTER’21, SAC’22, Euro-Par’22, SSDBM’22, IC2E’22

CloudCom’17, BigData’18, BigDataCongress’18, CCPE journal’20, IC2E’21,
IPCCC’21, ACSOS’21, BigData’21, SPE’21, Middleware’21, ISORC’22

BigData’19, BigData’20, IC2E’22, FedCSIS’22, ICWS’22
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Resource Allocation for Workflows

Tarema: Adaptive Resource Allocation for Scalable Scientific 
Workflows in Heterogeneous Clusters. Bader, Thamsen, Kulagina, 
Will, Meyerhenke, Kao. Big Data 2021.

Lotaru: Locally Estimating Runtimes of Scientific Workflow Tasks in 
Heterogeneous Clusters. Bader, Lehmann, Thamsen, Will, Leser, 
Kao. SSDBM 2022.

Reshi: Recommending Resources For Scientific Workflow Tasks on 
Heterogeneous Infrastructures. Bader, Lehmann, Groth, Thamsen, 
Scheinert, Will, Leser, Kao. Under review. 2022.
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Starting Point

• Clusters are commonly 
heterogeneous 

• Scheduling research, has 
put forward many 
interesting methods

• However, widely used 
cluster resource managers 
apply simple methods

• So, why is that?
• Lack of historical 

executions
• Knowledge about task 

runtimes on each machine 
is required

Schedule
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Our Approach “Lotaru”
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Our Approach “Lotaru”
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Our Approach “Lotaru”
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Our Approach “Lotaru”
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Our Approach “Lotaru”
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1. Infrastructure Profiling 1/2

• Resources not only differ in capacities (# CPUs / cores 
or amount of memory), but have different performances

• Idea: Use microbenchmarks (< 1min) to gather node 
performance

• CPU
• Memory
• read/write I/O

• Rerun profiling when changes are detected
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1. Infrastructure Profiling 2/2

• All resources (local machine and cluster nodes) 
profiled using sys-bench, fio, and LINPACK

• Results for a local machine and five cluster nodes:
Lotaru: Locally Estimating Runtimes of Scientific Workflow Tasks in Heterogeneous Clusters SSDBM 2022, July 6–8, 2022, Copenhagen, Denmark

Table 2: The results from applying the infrastructure pro�ling on the six di�erent nodes.

Machine # CPUs Memory Storage CPU events/s LINPACK RAM score read IOPs write IOPS
Local 8 16 GB HDD 458 3,959,800 18,700 414 415
A1 2 x 4 32 GB HDD 223 - 11,000 306 301
A2 2 x 4 32 GB HDD 223 - 11,000 341 336
N1 8 16 GB HDD 369 3,620,426 13,400 481 483
N2 8 16 GB HDD 468 4,045,289 17,000 481 483
C2 8 32 GB HDD 523 4,602,096 18,900 481 483

Table 3: The work�ows used in our experiments with their input data and key characteristics.

Work�ow # Abstract Task De�nitions Sample Size Uncompressed Size Work�ow Runtime One Input

Eager 13 1 1.52 GB 8.33 GB 148 min
2 4.34 GB 25.71 GB 211 min

Methylseq 8 1 3.61 GB 17.03 GB 90 min
2 4.75 GB 22.50 GB 117 min

Chipseq 14 1 1.33 GB 4.81 GB 140 min
2 8.71 GB 32.98 GB 948 min

Atacseq 14 1 3.26 GB 14.09 GB 184 min
2 2.40 GB 11.81 GB 104 min

Bacass 5 1 1.23 GB 3.64 GB 237 min
2 1.45 GB 4.35 GB 253 min

The Naive Approach estimates the ratio AC =
AD=@
3@

for each train-
ing data tuple @ (uncompressed input size 3@ , runtime AD=@) and
takes the mean ĀC for task C over these ratios. It then uses this mean
ratio to predict the runtime of a task C with uncompressed target
input size 3C , using ĀC ⇤ 3C . Online-P and Online-M use density-
based clustering to identify high-density areas. Then, a cluster is
determined according to the I/O read value of the estimated task.
Since the clustering is not possible with the sparse data from the
local executions, we take the data point closest to the task being
estimated. Then, a pearson correlation between all input and output
parameters is calculated. If the data correlates, the ratio between
output and input parameter is computed and used for the prediction.
If the data is uncorrelated, Online-M directly estimates the mean,
while Online-P �rst tries to sample from a Normal or Gamma distri-
bution. Both approaches monitor the work�ow execution and can
update the estimates as more information becomes available. How-
ever, this is not implemented since we focus on the out-of-the-box
prediction accuracy without historical data.

5 EVALUATION RESULTS
We run three types of experiments. First, we test di�erent downsam-
pling combinations and sizes to evaluate their impact on Lotaru’s
prediction errors. In the second experimental scenario, we train the
task models on a similar machine as the target environment to get
an unbiased view of the prediction models’ capabilities. The third
scenario evaluates the setup in the heterogeneous target cluster.
Here, we have to adjust the runtime predictions from our local
machine to the di�erent nodes in the target cluster using the ad-
justment factor.

For our evaluation, we introduce the median prediction error
(MPE). This metric is calculated for every work�ow and aggregates

the prediction error of the tasks inside the work�ow. To this end,
we compute the prediction error for a single task as:

4AAC = 01B

✓
?A4382C43_AD=C8<4 � 02CD0;_AD=C8<4

02CD0;_AD=C8<4

◆
, (7)

.

5.1 Impact of the Downsampling on Prediction
Accuracy

Lotaru takes one of the many work�ow inputs and downsamples
or slices this input for local work�ow execution to gather training
data. This is a crucial step in our approach since the number and
sizes of the chosen partitions highly in�uence the prediction error
and the local work�ow runtime.

Therefore, we �rst want to evaluate how many samples Lotaru
should create from one original input and which sizes in relation to
it are necessary to achieve good prediction results. The experiment
results can be generalized for genomic work�ows. Other domains,
such as remote-sensing or material science, need a separate analysis.
Consequently, we designed our experiment the following:
For each pair of work�ow and input, we cut one of the original input
�les with a size of - into ten partitions for the Eager, Methylseq,
Atacseq, and Bacass work�ow and 16 partitions for the Chipseq
work�ow. The size of the �rst partition, B1, is set to B1 = -

2 , and
B= = B=�1

2 , so that B1 has half, B2 a quarter of the original size, and
so on. Then, we apply our prediction model to all possible partition
combinations. Therefore, ten possible input partitions, result inÕ10
:=2

10!
:!(10�:)! = 1, 013 combinations for each task and prediction

method.
Due to the high number of evaluated work�ows with two dif-

ferent datasets used for each work�ow, we decided to highlight
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2. Sampling and Local Execution

• Possibly hundreds of input files
• Select one and sample it down

• Create several small input files to 
generate training data

• More samples can lead to better 
models (but longer profiling)

• Run workflow locally with samples
• Decrease the CPU frequency and 

run the workflow again locally
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3. Local Prediction Model Training

• Estimate runtimes given a certain input data size
• Linear correlation between uncompressed input data 

size and workflow task runtime?

Predict median runtime Learn Bayesian Linear Regression 
model (expresses uncertainty)

No Yes
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4. Adjusting to Target Node

• Local machine (e.g. a scientist’s computer) is different from 
target cluster nodes

• However, we want estimates for all task-node combinations 
à Translate runtimes based on measured performance

• Deviation:

• Weighting:

• Factor:

SSDBM 2022, July 6–8, 2022, Copenhagen, Denmark Bader et al.
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Figure 2: The process of Lotaru’s local runtime prediction approach.

measure the di�erences, we conduct a short pro�ling phase to
gather detailed infrastructure characteristics. Therefore, Lotaru
analyzes all target nodes’ dynamic performance characteristics like
CPU speeds, memory speed, and random and sequential I/O. For
this, we use microbenchmarks, which can be executed in parallel
and take very short time, typically less than a minute, for each
node. This step could be rerun automatically whenever a cluster’s
resource manager detects hardware changes.

2� Data Sampling and Local Work�ow Execution
In the next step, Lotaru trains a Bayesian regressionmodel to predict
task runtimes based on input size. To this end, it picks one of the
input �les and downsamples it further to obtain task runtimes for
diverse yet small (and hence fast) inputs as input for the learner.
For image data used in remote sensing or astronomic work�ows,
this means dividing a single image into smaller ones keeping the
resolution, or decreasing the resolution while leaving the image
section the same. In genomics, downsampling means splitting one
of the many samples with millions of short sequence reads into
multiple smaller partitions.

Next, Lotaru measures local runtimes over multiple di�erent
partitions. While using a large set of such partitions covering a large
range of data sizes tend to improve the accuracy of the prediction

model, fewer and smaller partitions can be executed faster and lead
to quicker but mostly more imprecise runtime estimates.

If, for instance, the data sampling process described before cre-
ated �ve partitions, Lotaru runs the work�ow with these �ve input
�les. This step delivers monitoring data for each task-partition pair
but gives no direct insights whether, i.e., a task is CPU-intense. To
identify which hardware resource the task mostly depends on, we
decrease the CPU frequency of the local machine by 20% and run
the work�ow again with the �ve created partitions. Thereby, we
expect CPU-intense tasks to take around 25% longer.

The sizes of the samples obviously are an important hyperpa-
rameter of Lotaru whose e�ect will be studied in Section 5.1.

3� Local Prediction Model Training
Most existing approaches use the �le size on disk as the input or part
of the input vector for their predictions or statistical models. We
argue that Lotaru should use the uncompressed input data size for
compressed �les, which scienti�c work�ows frequently use due to
the large amount of data. For example, in bioinformatics work�ows,
the de facto standard �le format for storing biological sequences is
fastq which is compressed with Gzip. Gzip can compress larger �les
e�ciently, especially when dealing with repetitive data, leading to a
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Evaluation – Setup

• 6 different nodes

• 5 real-world workflows
(nf-core repository)

• Baselines:
• Naive
• Toward fine-grained online task characteristics estimation in 

scientific workflows [1] - Online-M
• Online task resource consumption prediction for scientific 

workflows [2] - Online-P
[1] Da Silva et al., Toward Fine-Grained Online Task Characteristics Estimation in Scientific Workflows. WORKS. 2013.
[2] Da Silva et al., Online Task Resource Consumption Prediction for Scientific Workflows. Par. Proc. Letters 25. 2015.

Lotaru: Locally Estimating Runtimes of Scientific Workflow Tasks in Heterogeneous Clusters SSDBM 2022, July 6–8, 2022, Copenhagen, Denmark

Table 2: The results from applying the infrastructure pro�ling on the six di�erent nodes.

Machine # CPUs Memory Storage CPU events/s LINPACK RAM score read IOPs write IOPS
Local 8 16 GB HDD 458 3,959,800 18,700 414 415
A1 2 x 4 32 GB HDD 223 - 11,000 306 301
A2 2 x 4 32 GB HDD 223 - 11,000 341 336
N1 8 16 GB HDD 369 3,620,426 13,400 481 483
N2 8 16 GB HDD 468 4,045,289 17,000 481 483
C2 8 32 GB HDD 523 4,602,096 18,900 481 483

Table 3: The work�ows used in our experiments with their input data and key characteristics.

Work�ow # Abstract Task De�nitions Sample Size Uncompressed Size Work�ow Runtime One Input

Eager 13 1 1.52 GB 8.33 GB 148 min
2 4.34 GB 25.71 GB 211 min

Methylseq 8 1 3.61 GB 17.03 GB 90 min
2 4.75 GB 22.50 GB 117 min

Chipseq 14 1 1.33 GB 4.81 GB 140 min
2 8.71 GB 32.98 GB 948 min

Atacseq 14 1 3.26 GB 14.09 GB 184 min
2 2.40 GB 11.81 GB 104 min

Bacass 5 1 1.23 GB 3.64 GB 237 min
2 1.45 GB 4.35 GB 253 min

The Naive Approach estimates the ratio AC =
AD=@
3@

for each train-
ing data tuple @ (uncompressed input size 3@ , runtime AD=@) and
takes the mean ĀC for task C over these ratios. It then uses this mean
ratio to predict the runtime of a task C with uncompressed target
input size 3C , using ĀC ⇤ 3C . Online-P and Online-M use density-
based clustering to identify high-density areas. Then, a cluster is
determined according to the I/O read value of the estimated task.
Since the clustering is not possible with the sparse data from the
local executions, we take the data point closest to the task being
estimated. Then, a pearson correlation between all input and output
parameters is calculated. If the data correlates, the ratio between
output and input parameter is computed and used for the prediction.
If the data is uncorrelated, Online-M directly estimates the mean,
while Online-P �rst tries to sample from a Normal or Gamma distri-
bution. Both approaches monitor the work�ow execution and can
update the estimates as more information becomes available. How-
ever, this is not implemented since we focus on the out-of-the-box
prediction accuracy without historical data.

5 EVALUATION RESULTS
We run three types of experiments. First, we test di�erent downsam-
pling combinations and sizes to evaluate their impact on Lotaru’s
prediction errors. In the second experimental scenario, we train the
task models on a similar machine as the target environment to get
an unbiased view of the prediction models’ capabilities. The third
scenario evaluates the setup in the heterogeneous target cluster.
Here, we have to adjust the runtime predictions from our local
machine to the di�erent nodes in the target cluster using the ad-
justment factor.

For our evaluation, we introduce the median prediction error
(MPE). This metric is calculated for every work�ow and aggregates

the prediction error of the tasks inside the work�ow. To this end,
we compute the prediction error for a single task as:

4AAC = 01B
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5.1 Impact of the Downsampling on Prediction
Accuracy

Lotaru takes one of the many work�ow inputs and downsamples
or slices this input for local work�ow execution to gather training
data. This is a crucial step in our approach since the number and
sizes of the chosen partitions highly in�uence the prediction error
and the local work�ow runtime.

Therefore, we �rst want to evaluate how many samples Lotaru
should create from one original input and which sizes in relation to
it are necessary to achieve good prediction results. The experiment
results can be generalized for genomic work�ows. Other domains,
such as remote-sensing or material science, need a separate analysis.
Consequently, we designed our experiment the following:
For each pair of work�ow and input, we cut one of the original input
�les with a size of - into ten partitions for the Eager, Methylseq,
Atacseq, and Bacass work�ow and 16 partitions for the Chipseq
work�ow. The size of the �rst partition, B1, is set to B1 = -

2 , and
B= = B=�1

2 , so that B1 has half, B2 a quarter of the original size, and
so on. Then, we apply our prediction model to all possible partition
combinations. Therefore, ten possible input partitions, result inÕ10
:=2

10!
:!(10�:)! = 1, 013 combinations for each task and prediction

method.
Due to the high number of evaluated work�ows with two dif-

ferent datasets used for each work�ow, we decided to highlight

Lotaru: Locally Estimating Runtimes of Scientific Workflow Tasks in Heterogeneous Clusters SSDBM 2022, July 6–8, 2022, Copenhagen, Denmark

Table 2: The results from applying the infrastructure pro�ling on the six di�erent nodes.

Machine # CPUs Memory Storage CPU events/s LINPACK RAM score read IOPs write IOPS
Local 8 16 GB HDD 458 3,959,800 18,700 414 415
A1 2 x 4 32 GB HDD 223 - 11,000 306 301
A2 2 x 4 32 GB HDD 223 - 11,000 341 336
N1 8 16 GB HDD 369 3,620,426 13,400 481 483
N2 8 16 GB HDD 468 4,045,289 17,000 481 483
C2 8 32 GB HDD 523 4,602,096 18,900 481 483

Table 3: The work�ows used in our experiments with their input data and key characteristics.

Work�ow # Abstract Tasks Sample Size Uncompr. Size Runtime Per Input

Eager 13 1 1.52 GB 8.33 GB 148 min
2 4.34 GB 25.71 GB 211 min

Methylseq 8 1 3.61 GB 17.03 GB 90 min
2 4.75 GB 22.50 GB 117 min

Chipseq 14 1 1.33 GB 4.81 GB 140 min
2 8.71 GB 32.98 GB 948 min

Atacseq 14 1 3.26 GB 14.09 GB 184 min
2 2.40 GB 11.81 GB 104 min

Bacass 5 1 1.23 GB 3.64 GB 237 min
2 1.45 GB 4.35 GB 253 min

The Naive Approach estimates the ratio AC =
AD=@
3@

for each train-
ing data tuple @ (uncompressed input size 3@ , runtime AD=@) and
takes the mean ĀC for task C over these ratios. It then uses this mean
ratio to predict the runtime of a task C with uncompressed target
input size 3C , using ĀC ⇤ 3C . Online-P and Online-M use density-
based clustering to identify high-density areas. Then, a cluster is
determined according to the I/O read value of the estimated task.
Since the clustering is not possible with the sparse data from the
local executions, we take the data point closest to the task being
estimated. Then, a pearson correlation between all input and output
parameters is calculated. If the data correlates, the ratio between
output and input parameter is computed and used for the prediction.
If the data is uncorrelated, Online-M directly estimates the mean,
while Online-P �rst tries to sample from a Normal or Gamma distri-
bution. Both approaches monitor the work�ow execution and can
update the estimates as more information becomes available. How-
ever, this is not implemented since we focus on the out-of-the-box
prediction accuracy without historical data.

5 EVALUATION RESULTS
We run three types of experiments. First, we test di�erent downsam-
pling combinations and sizes to evaluate their impact on Lotaru’s
prediction errors. In the second experimental scenario, we train the
task models on a similar machine as the target environment to get
an unbiased view of the prediction models’ capabilities. The third
scenario evaluates the setup in the heterogeneous target cluster.
Here, we have to adjust the runtime predictions from our local
machine to the di�erent nodes in the target cluster using the ad-
justment factor.

For our evaluation, we introduce the median prediction error
(MPE). This metric is calculated for every work�ow and aggregates

the prediction error of the tasks inside the work�ow. To this end,
we compute the prediction error for a single task as:
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5.1 Impact of the Downsampling on Prediction
Accuracy

Lotaru takes one of the many work�ow inputs and downsamples
or slices this input for local work�ow execution to gather training
data. This is a crucial step in our approach since the number and
sizes of the chosen partitions highly in�uence the prediction error
and the local work�ow runtime.

Therefore, we �rst want to evaluate how many samples Lotaru
should create from one original input and which sizes in relation to
it are necessary to achieve good prediction results. The experiment
results can be generalized for genomic work�ows. Other domains,
such as remote-sensing or material science, need a separate analysis.
Consequently, we designed our experiment the following:
For each pair of work�ow and input, we cut one of the original input
�les with a size of - into ten partitions for the Eager, Methylseq,
Atacseq, and Bacass work�ow and 16 partitions for the Chipseq
work�ow. The size of the �rst partition, B1, is set to B1 = -

2 , and
B= = B=�1

2 , so that B1 has half, B2 a quarter of the original size, and
so on. Then, we apply our prediction model to all possible partition
combinations. Therefore, ten possible input partitions, result inÕ10
:=2

10!
:!(10�:)! = 1, 013 combinations for each task and prediction

method.
Due to the high number of evaluated work�ows with two dif-

ferent datasets used for each work�ow, we decided to highlight
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Evaluation on a Heterogeneous Cluster
Lotaru: Locally Estimating Runtimes of Scientific Workflow Tasks in Heterogeneous Clusters SSDBM 2022, July 6–8, 2022, Copenhagen, Denmark

Figure 6: Prediction Errors for a homogeneous cluster where no model adjustments are required.

Table 4: Median di�erence between the actual factor and the
factor calculated through Lotaru for Eager-1.

Node A1 A2 N1 N2 C2
Median Factor Di�erence 0.15 0.14 0.17 0.06 0.03

where Lotaru achieves an MPE of 9.54% while Online-P results in
an MPE of 19.40%. An exception is the Ataqseq-1 work�ow, where
Online-M and Online-P can achieve a lower MPE of 4.27% compared
to Lotaru’s 6.03%, however, our max error is 55.00% lower. In three
out of �ve work�ows, Lotaru achieves a lower max error, while for
two work�ows similar max error values are achieved.

5.3 Model Adjustment
A critical point in Lotaru’s approach is the mapping of the local
predictions to the heterogeneous target nodes. With the model
adjustment, we want to adapt the predicted runtime for hardware
di�erences on the target machines. First, Table 4 compares the
di�erences between the actual runtime factor and the factor Lotaru
calculated.

The term di�erence refers to the absolute di�erence between
actual factor and calculated factor. One can see that for C2 and N2
the di�erence is the lowest. This is expected since our infrastructure
pro�ling showed that these nodes are the closest to the local node
regarding performance characteristics. In contrast, a di�erence of
0.14 or 0.15 for A1 and A2 seems high, however, both machines
have a signi�cant di�erence in the actual hardware characteristics

and thus, only score half of the CPU events/s and much lower I/O
values.

For Table 5, we continue to take the Eager-1 work�ow as an
example. The table compares the estimated adjustment factor with
the actual factor between the local machine and the C2 machine for
all 13 tasks in the Eager-1 work�ow. One can see that for only three
out of 13 tasks, the di�erence is greater than 0.05, while the median
di�erence between our estimated factor and the actual ratio is 0.03.

The task fastqc from Table 5 is a common bioinformatics task
that spots potential problems in sequences data and occurs in all
�ve work�ows. Therefore, we chose the task fastqc for our analysis
across all machines.

The actually calculated factor for fastqc on C2 shows a di�erence
of only 0.03 and N2 shows an even lower di�erence of 0.02. Simi-
larly as in Table 4, again, the outlier is node A1. Node A1 yields a
di�erence of 0.31, whereby one has to consider that the actual factor
of 2.37 is much higher than for the other machines. Therefore, an
absolute di�erence of 0.31 for an actual factor of 2.37 corresponds
to a relative di�erence of 13.08%.

Concluding, our used adjustment strategy is able to accurately
re�ect hardware di�erences.

5.4 Predictions for a Heterogeneous Cluster
In the third experiment, we use our local machine and predict the
runtimes for all target nodes A1, A2, N1, N2, and C2 for all tasks
in all �ve evaluation work�ows. Table 6 gives an overview of the
median prediction errors from all four prediction approaches. Over
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Outcomes

• New online task runtime estimation method with 
15.99% error (vs. 30.90% error of the best baseline)

• Working prototype implementation for Nextflow, 
https://github.com/CRC-FONDA/Lotaru

• Trace repository with more than 9,000 task executions 
from 5 different scientific workflows on 6 different 
machine types, https://github.com/CRC-
FONDA/Lotaru-traces

https://github.com/CRC-FONDA/Lotaru
https://github.com/CRC-FONDA/Lotaru-traces
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Outlook

• Application domain-specific microbenchmarks: 
experimenting with common bioinformatics tasks

• How well do our runtime estimates work for SotA
scheduling methods that rely on knowing task runtimes 
upfront (e.g. HEFT)?

• Our own scheduling that takes into account estimates, 
uncertainty, and resource performance profiles
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