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Abstract—Distributed dataflow systems like Spark or Flink
enable users to analyze large datasets. Users create programs
by providing sequential user-defined functions for a set of well-
defined operations, select a set of resources, and the systems
automatically distribute the jobs across these resources. However,
selecting resources for specific performance needs is inherently
difficult and users consequently tend to overprovision, which
results in poor cluster utilization. At the same time, many
important jobs are executed recurringly in production clusters.

This paper presents Bell, a practical system that monitors job
execution, models the scale-out behavior of jobs based on previous
runs, and selects resources according to user-provided runtime
targets. Bell automatically chooses between different runtime
prediction models to optimally support different distributed
dataflow systems. Bell is implemented as a job submission tool for
YARN and, thus, works with existing cluster setups. We evaluated
Bell’s runtime prediction with six exemplary data analytics jobs
using both Spark and Flink. We present the learned scale-
out models for these jobs and evaluate the relative prediction
error using cross-validation, showing that our model selection
approach provides better overall performance than the individual
prediction models.

Index Terms—Scalable Data Analytics, Distributed Dataflows,
Runtime Prediction, Resource Allocation, Cluster Management

I. INTRODUCTION

Distributed data-parallel processing systems like MapRe-
duce [1], Spark [2], and Flink [3] allow users to analyze large
datasets in parallel using clusters of computers. Users often use
multiple of these systems: different ones for different tasks and
use cases. Multiple jobs from different analysis frameworks
consequently run side-by-side in shared clusters, managed by
resource management systems like YARN [4] and Mesos [5].

With these frameworks users essentially create programs
from sequential building blocks, which are then automatically
parallelized and distributed. Thus, the frameworks handle both
task parallelization and distribution. Yet, users still need to
specify the amount of resources the jobs should be executed
on. Predicting the runtime behavior that a specific resource
allocation yields for a given analysis job is, however, inher-
ently difficult. This is due to the many factors the perfor-
mance depends on such as user-defined functions (UDFs),
task dependencies, data characteristics, system configurations,
and the execution environment. For example, without detailed
knowledge of data characteristics such as key value distribu-
tions, it is unclear how well the data partitioning will work
for a specific level of parallelism. For this reason, studies of
production clusters often show that users tend to overprovision

significantly to ensure minimal performance goals, leading to
underutilized clusters. For example, a utilization analysis for
a data analysis cluster at Twitter [6] shows that the aggregate
CPU utilization was consistently below 20%, even though
the reservations reached close to 80% of the total capacity.
Memory utilization for the cluster was between 40–50% but
still differed significantly from the reserved capacity. Similarly,
a production cluster at Google managed by the company’s
Borg system [7] achieved aggregate CPU utilization of 25–
35% and aggregate memory utilization of 40%, while resource
reservations exceeded 75% and 60% of the available CPU and
memory capacities [8].

At the same time, many batch jobs are executed periodically
on updated or similar datasets [9]–[11]. For example, it was
reported that recurring jobs make up 40.32% of the jobs as
well as 39.71% of the cluster hours for a production cluster
used at Microsoft [10]. These recurring jobs were also noted
as the ones for which users have particular performance re-
quirements [11]. Moreover, data-parallel processing jobs often
exhibit relatively predictable scaling behavior—often close to
linear speedup for many of the use cases the systems were
built for [12]–[16]. Therefore, previous job executions can be
used to model the performance of jobs depending on provided
resources, which in turn allows to select resources for specific
performance targets based on these models. Then, users only
need to specify their target runtimes instead of having to select
specific sets of resources themselves.

Previous efforts based on this idea make at least one of
three assumptions. First, a lot of these systems were designed
for specific processing frameworks [9], [11], [17]–[20]. Sec-
ond, multiple approaches require dedicated isolated training
runs [6], [19], [21]. Third, some solutions go beyond resource
allocation and also assume control over, for instance, job
execution order [9] or container placement [6]. Yet, even for a
single framework, there is some inherent variance in job run-
time in shared clusters due to factors like data locality, caching,
hardware failures, and interference between jobs [11], [22]–
[25]. These factors render even detailed models built from
isolated profiling runs imprecise. Moreover, incorporating lots
of statistics like detailed data statistics into estimation models
requires extensive instrumentation. Such instrumentation can
impose additional overheads on job execution. Switching to
entirely different schedulers or resource managers on the other
hand is often just impractical for organizations.

This paper presents Bell, a practical system that models



the scale-out behavior of jobs using previously observed
runs and performs automatic resource allocation based on
these models. Bell is a general solution for multiple analytics
frameworks, acknowledging the fact that users need to choose
the best tool for the task at hand. Bell is also not based on
dedicated isolated training runs, but aims to make the most
of available historic data. For this, Bell uses regression to
learn how the runtime of a job depends on the scale-out. To
be able to effectively learn the scale-out behavior of different
distributed dataflow frameworks and jobs, Bell automatically
selects between different scale-out models. In particular, Bell
uses either parametric or nonparametric regression depending
on the available workload data and the prediction task.
For parametric regression, Bell utilizes a simple model of
distributed computation, which is applicable to distributed
dataflows and can provide reasonable predictions from a
few data points. Nonparametric regression on the other hand
allows to interpolate more arbitrary scale-out behaviors from
many data points. Since we implemented Bell as a job
submission tool for YARN, it can be used with existing
Hadoop clusters, including different schedulers.

Contributions. The contributions of this paper are:
• A broadly applicable solution to predicting the runtime

of distributed dataflow jobs from available workload data,
which selects a specific prediction model automatically.

• A practical application of the runtime prediction in a job
submission tool for YARN, which we call Bell, which
selects resources according to user-defined performance
requirements, and which can be used with existing setups.

• An evaluation of our approach to runtime prediction
using six exemplary data analysis jobs—three in Spark
and three in Flink—showing how different models
perform for different sets of available previous runtimes.

Outline. The remainder of the paper is structured as follows.
Section II provides background on distributed dataflow sys-
tems and resource management for these. Section III presents
our approach to runtime prediction and resource selection
for different distributed dataflow systems. Section IV shows
our evaluation. Section V discusses related work. Section VI
concludes this paper.

II. BACKGROUND

This section describes how distributed dataflow systems
process large datasets and how resource managers enable users
to utilize different dataflow systems in single shared clusters.

A. Distributed Dataflow Systems
Distributed dataflow systems process data through graphs of

tasks. Figure 1 shows such a graph. The tasks are configured
versions of pre-defined operators. These operators include Map
and Reduce, which both execute UDFs. Specific variants of
these two operators are operators like Filter and pre-defined
aggregations for computing, for example, sums. Two dataflows
can be combined using operators like Join or Cross.

Each of the tasks is executed data-parallely. That is, each
task instance processes a partition of the data. In the dataflow
graph in Figure 1, each task has two data-parallel instances
each. A partition can be created by reading parts of the input
from disk, for example from a distributed file system. It can
also be received from a predecessor task in the dataflow
graph. Operators for group-based aggregations or joining two
dataflows require all elements of the same group or with the
identical join key to be available at the same task instance.
Therefore, if the data is not already partitioned by these keys,
the dataflow needs to be shuffled: all elements with the same
key need to be moved to the same task instance, leading
to all-to-all communication. This pattern of communication
is visible before the Join and Reduce tasks in Figure 1.
Other data exchange patterns include all-to-one and one-to-
one communication.
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Fig. 1. A dataflow graph with two data-parallel instances for each task.

Task instances run on networked worker nodes. Each worker
provides execution slots, representing the compute capabilities.
Such a slot can execute a task or a chain of tasks. Except for
certain operators, chained tasks can in principle be executed
in parallel, adding pipeline parallelism. Pipelining breaking
operators are those that require all elements with certain keys
to be available.

How many parallel instances of each task are executed is
usually decided by the user as the Degree of Parallelism (DoP).
However, all instances need to receive data. Especially if
partitions are key-based, the parallelism is thus limited by the
number of different values. Furthermore, if value distributions
are not equal but skewed, using a higher DoP also does
not necessarily lead to decreased runtimes. This is because
pipeline breaking operators basically synchronize all parallel
threads of the dataflow. As these operators need to wait for
all elements of a group or key, they need to wait for all
predecessor tasks to finish. Consequently, the slowest task
instances determine the overall runtime.

For some operators there are multiple implementation strate-
gies, which require different synchronization and communica-
tion. For example, if two dataflows should be joined, one side
can be broadcast to all parallel task instances, allowing the
other side to be pipelined without any shuffling. This strategy
is, however, only feasible when one side is relatively small.
Another strategy involves shuffling both sides, so all elements
with the same key are received by the same task instances.



B. Resource Management Systems

Resource management systems allow fine-grained sharing of
cluster resources. Instead of permanently running a single data-
processing framework on cluster nodes, a resource manage-
ment system runs permanently while individual frameworks
run on a per-job basis. Users make reservations for their jobs in
terms of containers. Containers are leases of resources, bound
to a specific node and allocated to particular jobs. Containers
bundle a number of cores and an amount of main memory.
Depending on the size of containers and node capabilities
multiple containers can run on a single node. Figure 2 shows
managed cluster nodes that host containers of two different
applications.
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Fig. 2. Managed cluster nodes hosting containers of two applications.

Containers can also provide resource isolation. Without
resource isolation though, they only represent computing ca-
pabilities. Therefore, a worker running in a container can use
more resources than reserved with the container. Different
workers that run in containers on the same node can conse-
quently interfere with each other. At the same time, this allows
statistical multiplexing as jobs often do not stress resources
continuously.

Which jobs are co-located in this manner is decided by the
scheduler component of the resource manager. Often resource
manager allow to use multiple different schedulers that focus
on different scheduling goals like fairness, throughput, or data
locality.

III. RUNTIME PREDICTION AND RESOURCE ALLOCATION

This section presents how Bell is integrated with existing
systems and how Bell predicts job runtimes to choose re-
sources for user-provided runtime targets.

A. System Overview

Bell automatically allocates resources according to user-
defined performance targets. In particular, users submit their
jobs along with a runtime target and minimal and maximal
scale-out constraints to Bell. Bell then translates these argu-
ments into a scale-out to be used for the job. For this, Bell
models the scale-out behavior of a job based on previously ob-
served runtimes. Using these models, Bell selects the minimal
scale-out with a shorter predicted runtime than the target.
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Fig. 3. Bell’s main components and integration with YARN, Spark, and Flink.

Figure 3 shows how Bell is integrated with existing systems.
Bell is essentially a tool for submitting jobs to YARN. It
wraps existing clients and converts arguments expressing user-
level performance requirements to arguments expressing a
concrete reservation. In particular, Bell’s Allocation Assistant
component translates a target runtime into a reservation of
containers while respecting scale-out limits. Users can provide
a fallback reservation to be used when not enough previous
runs are available to effectively model the scale-out behavior
of a job. For previous runs, Bell takes those executions into
account that ran the same program on input datasets of a
similar size. This requires basic information on previously
executed jobs to be available. For this, Bell uses a component
we call Freamon. Freamon monitors the execution of YARN
applications. For each job, Freamon stores basic information
on both the program and the inputs, including the hash of the
JAR file and the size of input datasets. As previous executions
of a job, Bell uses all jobs with the same JAR that processed
datasets within 10% of the sizes of the current inputs.

Implementing Bell as a wrapper around YARN clients
allows the system to be used for different processing systems
that run on YARN. Currently Bell supports Spark and Flink,
but adding more clients is straightforward. Furthermore, this
design decision allows Bell to be added to existing YARN
setups, including different YARN schedulers.

B. Runtime Prediction Models

To create a runtime behavior model, Bell uses parametric
and nonparametric regression. Formally, regression is the task
to predict some target ŷ, given the input x such that ŷ is close
to the true value y given some error measure. Such a regression
model is represented by a function f : X ! Y , learned by the
applied regression algorithm. Parametric regression requires
a parameterized model to be fitted by choosing the optimal
weights, while nonparametric regression constructs the model
from the data. Bell stores data for each executed job, including
the job’s scale-out and runtime. This data is used as training
data for the regression models.

1) Parametric Regression: Given training data and a pa-
rameterized model, parametric regression learns the model’s
parameters such that the model optimally fits the training



data regarding some error measure. As model for parametric
regression, Bell uses Equation 1, which is based on the model
for distributed processing presented in [21].

f = ✓0 + ✓1 ·
1

containers
+✓2 · log(containers)

+✓3 · containers

(1)

Equation 1 consists of four additive terms, each representing
aspects of parallel computation and communication of a cer-
tain number of containers. In particular and in the order shown
in the equation, the four terms represent: serial computation,
parallel computation, communication patterns for step-wise
aggregation, and overheads that scale with the number of
containers such as from all-to-one communication. Since all
four terms represent costs, the parameters are chosen such that
they are non-negative. Therefore, the model is estimated using
non-negative least square (NNLS).

2) Nonparametric Regression: To enhance the capabilities
of Bell, we also included nonparametric regression, since
parametric regression based on the given model might not fit
all possible scale-out behaviors well. Nonparametric regres-
sion infers the model automatically by assuming defined local
behavior in the dataset. Bell estimates the regression function
through local linear kernel regression (LLKR) with Gaussian
kernel [26]. The kernel width is selected via cross-validation.
In order to apply LLKR, a dense training dataset is needed
due to the locally optimized fitted curves.

C. Resource Allocation

For resource allocation, Bell selects one of the two regres-
sion models described above. Since nonparametric regression
requires a dense set of training samples, using parametric re-
gression might provide better results when only few historical
data points are available. Therefore, Bell first performs a model
selection strategy to decide which prediction model to use.

1) Model Selection: Bell selects one of the two described
regression learners using cross-validation. By repeating a fixed
number of steps, first the models are learned and then evalu-
ated. The best performing model is selected for the process of
choosing the number of resources.

This is done by first selecting n data points where failed
runs and extreme outliers are removed from the historical
dataset. Assuming k+2 unique scale-outs in the data set, Bell
performs k-fold cross-validation where each test fold contains
all points of a single scale-out. Since the aim is to assess the
interpolation performance, the 2 test folds for the smallest and
largest scale-out are omitted. As a last step, the model with
the smallest cross-validation error is selected for interpolation.

Note that nonparametric regression is only usable for inter-
polation and not for extrapolation, due to the local optimization
criterion. Therefore, Bell only performs parametric regression
for estimating the runtime for lower or higher number of
resources than previously used.

2) Resource Allocation Approach: As Bell selects the num-
ber of resources to be allocated, it must conform to the
user-provided constraints. These constraints are the maximum
running time for the job as well as a minimum and a maximum
for the scale-out. The scale-out limits can be provided by
the user or can be inferred by the system. Natural limits are
the maximal resources the system can provide and at least a
single resource. Given these constraints and regression model,
Bell uses a straightforward greedy approach by choosing the
smallest number of resources satisfying the constraints.
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Fig. 4. Process of selecting resources in Bell.

Figure 4 depicts the process of selecting resources. The ini-
tial conditions are shown in A�. As shown in B�, we intercept
the constraints with the runtime prediction function to create
a set of potential recommendations. From the resulting set
of potential recommendations the smallest set of resources is
selected, assuming resources have high costs. This solution can
be computed by moving the minimum resources constraint in
the direction of the maximum as shown in C�. For each of the
discrete scale-outs we compute the predicted runtime, selecting
the first that is in the set of potential recommendations.

IV. EVALUATION

This section presents our experimental setup, the test work-
load, and benchmark results.

A. Experimental Setup

All experiments were done using a cluster of 60 machines.
Each of the nodes is equipped with a quad-core Intel Xeon
CPU 3.30 GHz (4 physical cores, 8 hardware contexts), 16 GB
RAM, and three 1 TB disks (RAID 0). All nodes are connected
through a single switch and 1 Gigabit Ethernet. Each node runs
Linux (Kernel 3.10.0) and Java 1.8.0. We used Spark 2.0.0
(GraphX 1.6.0 and MLLib 1.1.0), Flink 1.0.3, and Hadoop
2.7.1.

B. Test Workload

We evaluated Bell using six jobs and five datasets. The
jobs cover different domains: search, relational queries, graph
processing, and machine learning. The datasets cover different
types of data, various data sizes, and range from simple to
realistic data characteristics.



1) Jobs: We used six different benchmark jobs, three Spark
jobs and three Flink jobs, as shown by Table I. For Stochastic
Gradient Descent (SGD) we used the implementation of
Spark’s MLib1, a library for scalable machine learning. For
PageRank we used GraphX [14], a graph processing system
built on top of Spark. All other implementations are taken
from the examples provided with the frameworks.

TABLE I
OVERVIEW OF BENCHMARK JOBS

Job System Dataset Input Size Parameters
Grep Spark Wiki 250 GB filtering for

word “Berlin”
WordCount Flink Wiki 250 GB —
TPC-H Query 10 Flink Tables 200 GB —
K-Means Flink Points 50 GB 5 clusters,

10 iterations
SGD Spark Features 10 GB 100 iterations,

step size = 1.0
PageRank GraphX Graph 3.4 GB 5 iterations

2) Datasets: We used five different data generators. For
graph and text data, we used generators from the Big Data
Generator Suite (BDGS) [27], which effectively scale real
datasets while preserving key characteristics of the data. For
relational data we used the data generator of the TPC-H bench-
mark suite2. In addition, we implemented two generators, one
for three-dimensional points and one for multi-dimensional
feature vectors. We generated the following five datasets:

• Wiki: The Wiki dataset was generated using the text gen-
erator of BDGS, which applies latent dirichlet allocation
(LDA) [28] to create large datasets based on articles from
the English Wikipedia, while preserving topic and word
distributions. We created 250 GB of text data.

• Graph: The Graph dataset was generated with the graph
generator of BDGS, which uses the Kronecker graph
model [29] and a real graph of linked Web pages. Using
25 Kronecker iterations we created a 3.4 GB large graph
with 33,554,432 nodes and 213,614,240 directed edges.

• Tables: The Tables dataset was generated using the TPC-
H data generator, which generates tables representing
customers, nations, orders, and line items. We set the
Scale Factor to 200, resulting in around 200 GB of table
data.

• Features: The Features dataset was generated using our
own generator, explicitly creating a Vandermonde matrix
to generate multi-dimensional feature vectors that fit a
polynomial model of a certain degree with added Gaus-
sian noise. We generated 20,000,000 points, each with 20
features, yielding 10 GB.

• Points: The Points dataset was generated using our own
generator to produce 4,216,562,650 three-dimensional
points following a Gaussian mixture model (GMM) of
five normal distributions with random cluster centers and
equal variances, resulting in 50 GB.

1http://spark.apache.org/mllib/, accessed 2016-08-26
2http://www.tpc.org/tpch/spec/tpch2.16.0v1.pdf, accessed 2016-08-25

C. Benchmark Results
To assess the prediction performance, we acquired runtime

data for the six benchmark jobs. In particular, each job was
executed using 15 different and equally spaced scale-outs
ranging from 4 to 60 nodes. For every scale-out the job was run
7 times, out of which we dropped the fastest and the slowest
runs, resulting in a total of 75 data points per job.

Fig. 5. Runtimes of 75 runs of the six benchmark jobs along with the fitted
curves, where NNLS and LLKR are the parametric and nonparametric models,
respectively.

To begin with, every dataset was fitted using the parametric
and nonparametric regression models. Figure 5 summarizes
the results for each of jobs. The parametric model provides
a good fit for Grep, K-Means, and Word Count. Yet, it falls
short when jobs exhibit more complicated runtime behaviors.
This is the case for SGD, PageRank, and TPC-H Query 10. In
these cases, the nonparametric model provides the better fit.

However, while the nonparametric model seems superior in
the presence of lots of data, it might suffer from high variance
when interpolation is done using only a few data points.
For this reason, we evaluated the prediction performance of
the models with different numbers of available training data
points. In particular, for each model and number of training
data points we calculated the mean relative prediction error
using random sub-sampling cross-validation. For every fixed
amount of training data points, random training points are
selected from the dataset such that the scale-outs of the data
points are pairwise different. Then, to perform an interpolation
benchmark, a test point is randomly selected such that its
scale-out lies in the range of the training points. The runtime
prediction at the test scale-out is then compared with the

http://spark.apache.org/mllib/
http://www.tpc.org/tpch/spec/tpch2.16.0v1.pdf


true runtime, calculating the relative prediction error. This
random sub-sampling procedure is repeated 2000 times for
every amount of training points used and the mean relative
prediction error is reported. Figure 6 shows the results.

Fig. 6. Mean relative prediction error for each job as reported by repeated
random sub-sampling cross-validation. NNLS and LLKR are the parametric
and nonparametric models, respectively.

As expected, with increasing amounts of training data points
and hence higher density of the dataset, the nonparametric
method outperforms the parametric one. On the other hand, the
nonparametric model is often outperformed by the parametric
one for smaller datasets. Therefore, to combine the flexibility
of the nonparametric model and the robustness of the paramet-
ric model it is crucial to incorporate mechanisms that switch
optimally between the two models.

By using cross-validation to select between models, our
approach is able to detect the better performing model with
increasing amount of training points. At the same time, our
approach keeps the relative error for small amounts of training
data within reasonable bounds. In particular, for datasets where
the parametric model already provides a good fit, Bell achieves
an error that is close to the one of the parametric model.

To evaluate the overhead that Bell introduces to the sub-
mission and execution of jobs, we fitted the 75 data points of
each of the six benchmark jobs 10 times. The median runtime
for this ranges from 91 to 100 ms per job. Depending on
the deployment of Bell and the workload repository, there
is additional overhead for fetching the runtimes of previous
runs, yet both overheads are relatively small compared to the
seconds that it takes for a job to be scheduled and deployed
as well as the minutes to hours that many jobs run.

V. RELATED WORK

This section first summarizes related work on distributed
dataflow systems and resource management for such frame-
works. It then discusses work on selecting resources for data
processing jobs according to runtime targets.

A. Distributed Dataflow Systems
MapReduce [1] proposed a programming and execution

model for scalable and fault-tolerant data processing using
parallel dataflows over interconnected commodity hardware.
In MapReduce’s execution model data is exchanged through
a fault-tolerant distributed file system such as the Google File
System [30] in-between alternating stages of Map and Reduce
tasks. Systems like Dryad [12] and Nephele [31] extended this
execution model by allowing arbitrary directed acyclic graphs
of user-defined tasks. In Dryad and Nephele data can also be
exchanged directly over network connections, without storing
data on disk between subsequent tasks.

Systems like SCOPE [32], Nephele/PACTs [33], and
Spark [2] provided larger sets of pre-defined operators includ-
ing, for example, Joins. They also added declarative SQL-
like programming languages and other features of parallel
databases like automatic plan optimizations as, for example,
the Stratosphere project [13] did for Nephele/PACTs.

Spark added an alternative to disk- and replication-
based fault tolerance with its Resilient Distributed Datasets
(RDDs) [34]. RDDs maintain enough linage information to
recompute specific partitions in case of failures.

Systems like Flink [3], Spark, and Google’s Dataflow [35]
provide batch and stream processing in a single system. Flink
also provides dedicated support for incremental processing for
programs with sparse computational dependencies [36].

In summary, the available distributed dataflow frameworks
provide considerably different feature sets. Therefore, different
use cases match better to some systems than to others.

B. Resource Management Systems
Resource management systems for data processing frame-

works such as YARN [4] and Mesos [5] allow users to run
jobs of multiple data analytics frameworks on a single shared
cluster. Users reserve parts of the clusters by specifying the
required number and size of containers. Different distributed
data processing frameworks can then run in these containers.
YARN’s design also moves scheduling functions towards per-
job components for increased scalability.

Mesos [5] is a similar system, also enabling users to run
jobs from multiple dataflow frameworks efficiently in a single
shared cluster. Mesos offers a scheduling mechanism, in which
the central scheduler offers individual frameworks a number
of nodes, while the frameworks decide which of these offers
to accept and which tasks to run on these resources. Therefore,
Mesos also delegates some of the scheduling work to the
frameworks. A key advantage of delegating container place-
ment to processing systems is that the systems can optimize
for goals like data locality with considerably more assumptions
regarding the execution model.



C. Resource Allocation for Runtime Targets
Much of the work towards automatic resource allocation for

analytics jobs has been specific to particular processing sys-
tems, while only a few works provide more general solutions.

1) Solutions For Specific Data Processing Systems: Aria [9]
and Bazaar [19] both use simple MapReduce performance
models to select resources for soft completion deadlines. Aria
estimates the amount of execution slots necessary, Bazaar
selects the number of instances and network bandwidth to
assign to jobs. Bazaar uses short sample runs to profile jobs
for its performance model. Aria was presented to work with
both historic data and dedicated profiling, yet the authors
later proposed using profiling to capture the impact of input
sizes [17].

Elastisizer [18], which is part of the Starfish [37] system for
automatically tuning MapReduce analytical clusters, answers
cluster sizing queries of users for MapReduce jobs. Given
a user’s specification of the search space such as available
resource types and framework configuration options as well
as detailed job profiling information, Elastisizer simulates the
runtime and costs using relative modeling [38].

AROMA [20] clusters previously executed MapReduce jobs
based on their resource utilization. It then trains a performance
model for each of these clusters that can be used to select from
heterogenous resources and to configure different Hadoop
MapReduce parameters. Incoming jobs are consequently pro-
filed on subsets of the input data in a staging cluster and
matched against one of the clusters to be used for provisioning
and configuration.

The Jockey scheduler [11] was built for SCOPE. It au-
tomatically selects resources according to user-provided job
utility functions that model deadlines and penalties. Jockey
uses a simulator and detailed job statistics from previous runs
to predict the runtime of a job’s stages. Using precomputed
simulations and online estimation of a job’s progress, Jockey
adapts resource allocations at runtime if a job is not performing
as predicted.

Compared to these solutions, Bell does not assume a specific
underlying execution model and therefore does not require
detailed profiling information to be available.

2) General Solutions for Data Processing Systems: Bell is
most related to systems such as Quasar [6] and Ernest [21].

Quasar models the performance implications of scale-up,
scale-out, and job interference using both previously observed
and dedicated sample runs. Quasar then jointly performs re-
source allocation and job placement. Further, Quasar monitors
performance and adjusts resource allocation at runtime. In
contrast, Bell leaves container placement to existing resource
managers, is not based on dedicated isolated training, and does
not expect systems to scale dynamically.

Ernest is a job submission tool that automatically allo-
cates cloud resources for given runtime targets. When a job
is submitted, Ernest runs the job on subsets of the inputs
and different sets of resources, training a simple model of
distributed computation. The combinations are selected using
ideas from optimal experiment design [39]. In comparison,

Bell is not based on isolated training runs, but aims to make the
most of available workload data of recurring jobs. Moreover,
while Bell’s parametric regression model is based on the
model proposed with Ernest, Bell automatically switches to
nonparametric regression if the available data and prediction
task allow this.

VI. CONCLUSION

This paper presented Bell, a submission tool for distributed
dataflow jobs that automatically selects resources according to
runtime targets. For this, Bell models the scale-out behavior
of different jobs based on previous job executions. Therefore,
Bell does not require isolated training runs in a staging cluster.
It also does neither require instrumentation of the processing
frameworks nor changes to the resource management system.
Instead, since we implemented Bell as a job submission client
for YARN, it can be used with existing Hadoop clusters.

Bell’s technical core is its runtime prediction using para-
metric regression and nonparametric regression. Bell automat-
ically chooses between these two methods depending on the
available workload data for a job. As shown by our evaluation,
Bell provides acceptable results for different analytics frame-
works: the model selection approach we implemented overall
outperforms the individual prediction models for the six data
analytics jobs we implemented in Spark and Flink.

In the future, we also want Bell to decide the size of
containers. Furthermore, since co-located jobs can interfere
with each other in shared cluster setups, we need to incorporate
job interference and container placement into predictions.

Nevertheless, Bell already helps users in making scale-
out decisions for their runtime targets. Instead of effectively
guessing the amount of resources, users can explicitly state
their performance goals and have Bell perform the resource
allocation.
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