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Abstract—Parallel dataflow systems like Apache Flink allow
analysis of large datasets with iterative programs. However,
allocating a cost-effective set of resources for such jobs is a
difficult task as the resource utilization depends on many factors
such as dataset size, key value distributions, computational
complexity of programs, and the underlying hardware. What’s
more, some of these factors are not well known before the
execution. There are, for example, often no data statistics such
as key value distributions available beforehand.

For this reason, we propose to improve the resource utilization
at runtime using the repetitive nature of iterative dataflow
programs. Based on runtime statistics gathered in previous
iterations, the resource allocation is adapted dynamically at
the synchronization barriers between iterations. This approach
has two advantages: First, at barriers detailed statistics can be
available, even for parallelly executed task pipelines. Second, at
barriers dataflows can be adapted without complex handling of
intermediate task state.

This paper presents a prototype integrated with Apache Flink
and an evaluation on a cluster with 480 cores. One experiment
shows a 57% reduction of the job runtime by allocating more
resources for a shorter time, another experiment a release of up
to 40% surplus resources without significantly extending the job
runtime.

Keywords-Parallel Dataflows, Scalable Data Processing, Re-
source Utilization, Dynamic Scaling

I. INTRODUCTION

Parallel dataflow systems like Apache Flink1 and Naiad [2]
allow to iteratively analyze large-scale datasets. The same
dataflow is repeatedly executed until a termination criterion
is met. Examples of these often long-running and compute-
intensive programs include graph computations such as Page-
Rank and Connected Components as well as machine learning
programs such as k-means and Stochastic Gradient Descent
(SGD). Cost-effective execution of such iterative dataflow
programs requires a good utilization of allocated resources.
This differs from underprovisioning, in which case the runtime
could be decreased considerably by using more resources,
and overprovisioning, in which case the allocated resources
are not utilized well and the runtime would not increase
significantly with fewer resources. Overprovisioning resources
for a single job is a problem when the performance of entire
workloads should be optimal, when resources are paid-per-use,
or energy consumption is of importance. Additionally, using
more resources often entails more synchronization. Therefore,
overprovisioning can even extend the runtime of jobs.

1http://flink.apache.org, accessed 2016-02-05, originated from [1].

Choosing a cost-effective set of resources is inherently
difficult as the performance of parallel dataflows depends
on many factors such as the logic of arbitrary User-defined
Functions (UDFs), the datasets in which key values often have
unknown distributions, as well as the specifications of the
underlying hardware. The most cost-effective set of resources
can also change at runtime. Many iterative programs can, for
example, be computed incrementally, so that the size of the
data that needs to be considered in each iteration decreases
over time.

There has been a lot of work on dynamically scaling
the resource usage of stream processing systems, including
recent work on automatically scaling distributed stream pro-
cessing systems [3]–[6], yet this requires complex handling
of intermediate program state. Other approaches focus on
learning and predicting resource requirements for jobs based
on previously executed workloads or short sample runs [7],
[8]. However, these approaches require similar jobs to have
been executed before or dedicated sample runs, which have
to be representative for the actual job. There is work on
actually optimizing the execution of batch jobs at runtime
with Scope [9], which continuously adapts both the Degree
of Parallelism (DoP) and partitioning, but only based on data
statistics.

We propose to continuously improve the resource utilization
at runtime by explicitly using the iterative nature of many
dataflow jobs. Based on system statistics gathered in previous
iterations, the resource allocation is adapted automatically
for a cost-effective job execution. The recorded statistics are
well applicable for upcoming iterations as the same par-
allel dataflow is executed on at least highly related data.
Furthermore, the barriers between iterations provide a good
opportunity to re-configure the execution without the necessity
to migrate intermediate task state.

This paper presents an evaluation of both the impact of
resource allocation on the runtime of exemplary iterative
dataflow programs as well as of a prototype that iteratively
adapts the resource allocation towards a target utilization. For
the evaluation we used a 60-nodes cluster with 480 cores in
total, Apache Flink, and PageRank as well as k-means.

Outline. The remainder of the paper is structured as follows.
Section II presents the motivation for our research. Section III
explains our approach. Section IV presents first results, in-
cluding our prototype and an evaluation of it. Section V

http://flink.apache.org


summarizes the related work. Section VI concludes this paper.

II. PROBLEM STATEMENT

Many important programs are iterative. This includes many
graph algorithms such as PageRank and machine learning
programs such as k-means or SGD. As with other dataflow
programs, key to a cost-effective execution of iterative pro-
grams is achieving a good resource utilization. For this, an
appropriate set of resources needs to be selected for each job.

A. Cost-effective Resource Usage by Dataflow Jobs

Selecting a good set of resources is crucial for costs in
terms of resource usage and energy consumption. Provision-
ing too many results in low resource utilization. In case of
overprovisioning compute nodes, for example, for an ingestion
rate that is bound by the network or by the read speed of
disks there is not enough work to fully utilize the cores of
all workers. However, in case of underprovisioning compute
nodes the CPUs or memory become the bottleneck. Either
CPU utilization is at 100% or out-of-core processing becomes
necessary as, for example, hash tables for joins do not fit
the main memory anymore. Underprovisioning results in poor
application performance, overprovisioning in poor resource
utilization with unnecessarily high costs and energy consump-
tion.

0

10

20

30

40

50

60

70

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

R
un

tim
e

(i
n

m
in

ut
es

)

Nodes

K-means (50 GB points)

Fig. 1: Runtime of computing k-means of 50 GB of three-
dimensional points using different scale-outs.

Figure 1 and 2 show two experiments that highlight the
impact of resource allocations on the runtime of two parallel
dataflow jobs using the experimental setup described in IV-A.
The graphs each show a Flink job that is executed multiple
times using different shares of the cluster, from four to 60
nodes. The job shown in Figure 1 is finding five clusters in
50 GB of three-dimensional points2 using Lloyd’s algorithm
for k-means clustering [10]. k-means groups elements into k

2Equally many points were generated around five randomly placed cluster
centers following a uniform distribution for the job.
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Fig. 2: Runtime of computing PageRanks of 1 GB of twitter
follower relations using different scale-outs.

clusters in which each element belongs to the cluster with
the nearest mean. The job shown in Figure 2 is computing
the importance of twitter users from the follower graph of
1 GB of the twitter.rv dataset [11], using PageRank and 50
iterations. PageRank is an iterative algorithm for ranking nodes
(pages) in a graph based on the link structure. Figure 1
shows that the benefit of using more nodes for computing
the k-means decreases with larger cluster shares. Looking at
Figure 2, however, running the PageRank job on increasingly
large cluster shares is not just a waste of resources but
actually increases the runtime significantly from a certain scale
onwards.

Choosing the optimal set of resources is a difficult task.
Programs may, for example, be more I/O-bound (i.e. operators
are mostly waiting for incoming elements) or more CPU-
bound (i.e. elements are not processed as fast as they come
in) [12]. Moreover, even for a fixed ingestion rate, knowing
which DoP is most effective for the different operators and
arbitrary UDFs of program plans is not trivial.

Furthermore, without detailed data statistics, which often
are not available for data processed directly from distributed
file systems, it is unclear how well the data partitioning will
work for a resource reservation. Also, the upper bound of
parallel execution threads also depends on the distribution of
key values when elements are grouped.

How this translates to actual hardware, especially when jobs
are executed in virtualized environments, is also difficult to
know beforehand.

B. Changing Factors with Delta Iterations

Which set of resources is most cost-effective can also
change over time. One important factor for the optimal set
of resources for a job is, for example, the dataset size. The
data that has to be analyzed in each iteration can, however,
change over time.



Figure 3 shows an experiment, in which 25 GB of the
twitter.rv dataset are processed by a PageRank Flink job, using
the same experimental setup as before and a cluster share of 20
nodes. PageRank computes the ranks of pages iteratively and
converges when the ranks do not change anymore. The ranks
do not necessarily converge at the same speed. Therefore, only
pages that did change in the last iteration have to be considered
in the next iteration. What is considered a significant change
in the rank between iteration can be configured by the user.
The user provides this threshold as a parameter with the job.
The graphs in Figure 3 show how many pages are processed in
each iteration for three different thresholds. This shows that the
dataset size can not only change over time, but also dependent
on a freely choosable program parameter, leading to different
optimal sets of resources over time.
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Fig. 3: Elements analyzed per iteration when computing the
PageRanks from 25 GB of twitter follower relations (using
different thresholds for when a page’s rank is considered
stable).

C. Utilization Of Production Clusters

Studies show that users are not effective at allocating
appropriate sets of resources with a clear tendency to over-
provisioning. A utilization analysis for a data analysis cluster
in productive use at Twitter [8] shows, for example, that the
aggregate CPU utilization is consistently below 20%, even
though the reservations reach close to 80% of the total capa-
city. Memory utilization is between 40-50% but still differs a
lot from the reserved capacity. Similarly, a production Google
cluster managed by Google’s Borg [13] achieves aggregate cpu
utilization of 25%-35% and aggregate memory utilization of
40%, while reserved resources exceed 75% and 60% of the
available CPU and memory capacities [14].

III. CONTINUOUSLY IMPROVING THE RESOURCE
UTILIZATION OF ITERATIVE PARALLEL DATAFLOWS

This section presents our approach for improving the re-
source utilization of iterative parallel dataflows.

A. Adapting Parallel Dataflows at Iteration Barriers

As described in detail in Section II, selecting a cost-effective
set of resources upfront is inherently difficult. For this reason,
we propose to adapt reservations at runtime using the iterative
nature of many dataflow jobs. In particular, our approach is
to learn from previous parallel dataflow iterations for future
ones, as shown in Figure 4: the resource allocation for each
new iteration is done based on previously recorded system
statistics.

inactive node
active node

adapt

i. (i+1).

resource utilization
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Fig. 4: Improving the resource utilization of upcoming parallel
dataflow iterations based on statistics from previous iterations.

Using the iteration barrier for system-level reconfigurations
like resource reservations has two main advantages:

• Detailed statistics: At iteration barriers, detailed statis-
tics that reflect all elements processed in the previous
iterations can be available. In comparison to collecting
statistics in each stage of tasks for the next stage of tasks,
this approach to collecting statistics is also applicable
to execution models that execute pipelines of tasks in
parallel, not only to execution models in which tasks are
executed stage by stage.

• No intermediate task state: At iteration barriers, all tasks
of the previous iteration have finished and the tasks for the
next iteration have not been started yet. Therefore, there
is no intermediate task state that has to be migrated for
any scaling decisions. This makes the implementation of
dynamic scaling less complex and, thus, less error-prone.
Furthermore, no intermediate task state has to be sent
around and replicated, saving time and space.

Therefore, our approach allows straightforward implemen-
tations of dynamic scaling using statistics that reflect all
elements of the dataflow.

B. Computing Resource Reservations

Our approach allows to adapt resource allocations using
arbitrary statistics gathered in previous iterations. Relevant
statistics for computing appropriate resource reservations in-
clude:

• Current Resource Utilization: utilization of cores, main
memory, disks, and network interfaces.

• Dataset Characteristics: dataset size, number of ele-
ments, and key value distribution.

In general, our solution is not limited to taking only statis-
tics from the last iteration into account, but can incorporate



information from the entire iteration history. Thus, it is, for
example, possible to detect behavior like converging or oscil-
lating dataset sizes when datasets are processed incrementally
in iterations.

Currently, we compute resource allocations for each itera-
tion based on the CPU utilization during the last iteration. In
particular, we use the average CPU utilization of all involved
workers in the last iteration. Based on this average and the
current task parallelism, the parallelism for the next iteration
is computed using the following formula:

DoPi+1 =
currentCPUAvgi
targetCPUAvg

·DoPi

This DoP is then checked for sanity using the available
resources as upper bounds and a sensible minimum for parallel
execution in a cluster as lower bounds (i.e. using two full
nodes). Afterwards, the minimal set of resources is chosen
that can accommodate this number of parallel tasks. These
resources are then used for the execution of the next iteration.

IV. RESULTS

This section presents our testbed, our current Apache Flink-
based prototype, and two experiments evaluating the prototype.

A. Experimental Setup

All experiments were done using a cluster of 60 machines.
Each of the nodes is equipped with a quad-core Intel Xeon
CPU E3-1230 V2 3.30GHz (4 physical cores, 8 logical ones),
16GB RAM, and three 1 TB disks. All nodes are connected
through a single switch and 1 Gigabit Ethernet. Each node runs
Linux (kernel version 3.10.0), Java 1.8.0, and a customized
Flink 0.10.03. We configured Flink to allocate 10 GB of the
main memory, to use 2 GB for network buffers, and to provide
eight task execution slots per worker.

Every experiment was executed 7 times. We report the
median runtime.

B. Prototype Implementation

Client

TaskManager

S1 S2

S3 S4

…

Job
statistics

Job + 
DoP

TaskManager

S1 S2

S3 S4

ResourceRecommender

JobManager

InstanceManager

Scheduler

Fig. 5: The client re-computes the task parallelism between
iterations using utilization statistics from all involved worker
nodes.

We implemented our approach prototypically using Apache
Flink. The prototype automatically optimizes the resource

3http://github.com/apache/flink/tree/release-0.10.0, accessed 2016-01-21

utilization at runtime towards a specified utilization target.
For this, we instrumented Flink to periodically record the uti-
lization on all TaskManagers using the Java Management
Extensions (JMX)4. Specifically, the TaskManagers record
the recent CPU utilization every 250 milliseconds.

As shown in Figure 5, the TaskManagers send these
samples as heartbeats to the JobManager, where the uti-
lization is collected for each iteration. At the barriers between
iterations, the JobManager sends the utilization data of the
last iteration for all involved TaskManagers to the client.
The client uses the utilization data and the current DoP to
compute the task parallelism for the next iteration. For this, the
client uses the ResourceRecommender component, which
implements the formula described in Section III-B, and then
starts the next iteration with the new DoP. The DoP equals
the number of execution slots that are required to schedule
and execute the job. Our prototype allocates as few nodes as
necessary to accomodate the parallel task instances. Given,
for example, eight execution slots per TaskManager as in our
experimental setup IV-A, a DoP of 40 would result in five
nodes being used for the job.

C. Iteratively Optimizing CPU Utilization

Our current prototype iteratively optimizes the resource
utilization towards a utilization target. We set this target to
70% for the experiments presented here.
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Fig. 6: Automatic adaptation of the resource allocation for
k-means on 100 GB input data compared to static underpro-
visioning.

Figure 6 presents the results of an experiment in which
100 GB of three-dimensional points5 were clustered into 10
groups using a Flink job implementing k-means. We initially
allocated five of the sixty nodes, representing a significant

4https://docs.oracle.com/javase/7/docs/jre/api/management/extension/com/
sun/management/OperatingSystemMXBean.html, accessed 2016-01-29

5Equally many points were generated around ten randomly placed cluster
centers following a uniform distribution.

http://github.com/apache/flink/tree/release-0.10.0
https://docs.oracle.com/javase/7/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html
https://docs.oracle.com/javase/7/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html


underprovisioning for the job. The experiment shows how our
prototype dynamically adapts the resource allocation and re-
serves more nodes over time compared to the static reservation.
In the adaptive case, up to 30 nodes were used during the
execution of this job. In the static case only the five initially
reserved nodes were used. The runtime of the two median runs
were 2518.8 seconds (adaptive) compared to 5855.0 seconds
(static). Adding up how many nodes were used for how
long–yielding the areas of the jobs in Figure 6–shows that
in the adaptive case 5.4% more resources were used (30868
instead of 29276 node-seconds). However, this 5.4% increase
in resource usage coincides with the job finishing in less than
half the time (230% speedup).
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Fig. 7: Automatic adaptation of the resource allocation for k-
means on 2 GB input data compared to static overprovisiong.

Figure 7 presents the results of two experiments in which 2
GB of three-dimensional points were clustered into 10 groups
using the same k-means Flink job. We initially allocated 40 of
the 60 nodes, representing a significant overprovisioning for
the job. This experiment shows how the prototype dynamically
scales-in towards using a smaller share of the cluster. In the
adaptive case, the reservation is decreased by 16 nodes towards
24 at the end of the job since each node provides eight
execution slots. The runtime of the two median runs were
36.7 seconds (adaptive) compared to 36.3 seconds (static).
However, only two thirds of the resources were used in the
adaptive case (978 versus 1455 node-seconds).

V. RELATED WORK

This section first presents systems that support iterative
parallel dataflows, use statistics to optimize the execution at
runtime, or automatically select resources for a job.

A. System Support for Iterative Parallel Dataflows

Multiple parallel dataflow systems provide dedicated sup-
port for iterative programs. Examples include Twister [15]
and HaLoop [16], both extensions to the execution and pro-
gramming model proposed with MapReduce [17]. Systems

like Flink [1] and Naiad [2] also support cyclic task graphs
and iterative programs, but further support incremental pro-
cessing. Flink, for example, distinguishes two different types
of iterations: Bulk Iterations and Delta Iterations [18]. With
Bulk Iterations, each iteration fully consumes the previous
iteration’s result and computes a new result. In contrast,
Delta Iterations evolve the result by changing only parts
of the data between iterations. An example for a program
that can make use of these Delta Iterations is Connected
Components, in which only a change in a vertex’s component
membership requires a vertex to propagate its membership in
the next iteration. Thus, only vertices which changed in an
iteration have to be considered in the next one, saving a lot
of computation compared to always considering all vertices.
Naiad provides a special kind of incremental processing, called
Differential Dataflow [19], which is based on transferring
only and computing on differences. These differences are
also stored indexed by two-dimensional timestamps, indicating
both the iteration and the input epoch from which they stem.
By storing the differences for each iteration and epoch, Naiad
is able to quickly provide new results whenever the original
input changes.

B. Runtime Optimization of Parallel Dataflows

Many works (e.g. [3]–[6]) have investigated dynamic scal-
ing for large-scale distributed stream processing. In contrast
to the solution here, dynamic scaling for stream processing
needs to handle intermediate program state appropriately. This
increases the complexity of the systems’ implementation and
also introduces an overhead before dynamic scaling can be
done without losing intermediate state.

Also in the context of large-scale stream processing, there
is work on adaptively placing and migrating tasks at runtime
based on statistics such as to place tasks that exchange
comparably large amounts of data onto the same hosts [20].
This solution, however, does neither alter the task parallelism
nor the size of the resource reservation.

In batch processing, Scope [9], [21] is a system that alters
the task parallelism at runtime based on statistics. Furthermore,
Scope also uses these statistics to continuously optimize pro-
gram plans, to select optimal physical operators, and to adapt
the partitioning at runtime. These optimizations are, however,
only based on data statistics and the solution is assuming an
execution in stages, in which statistics about all elements of a
dataflow can be gathered before the next stage is started. This
is not the case with pipelined execution of subsequent tasks.
In contrast, our approach is based on gathering statistics for
an entire batch of elements in previous iterations.

The Jockey scheduler [22] for Scope uses a simulator
for predicting the remaining runtime at different resource
allocations and in different stages of the job. The prediction is
done using previous runs of a job and using a utility function
that links the resource allocation to job performance. The
reservation for the next stage is then computed according to
user-specified performance constraints. In contrast, our solu-
tion optimizes towards a utilization target without requiring



knowledge about previous runs of the job.

C. Automatic Resource Allocation for Large-Scale Data Anal-
ysis Jobs

Quasar [8] is a resource management systems that auto-
matically makes resource reservations. For this, Quasar uses
a model trained on the previous workload and short dedicated
sample runs. The automatic reservation is then done according
to user-defined performance constraints. Quasar considers the
number of nodes, the types of nodes, and interference between
jobs, but is dependent on the quality of the trained model.

The ThroughputScheduler [23] is a scheduler for Hadoop
workloads that uses a Bayesian learning scheme to determine
the resource requirements of jobs on the fly after probing the
capabilities of the available hardware with short sample jobs.
The scheduler, however, specifically assumes MapReduce as
execution model.

VI. CONCLUSION

In this paper, we proposed to dynamically optimize the
resource utilization of iterative parallel dataflows. Based on
runtime statistics from previous iterations, each iteration’s
resource reservation is recomputed to use resources more
efficiently. The presented prototype based on Apache Flink
shows that dynamically scaling resource allocations of iterative
dataflows based on CPU utilization is a promising approach.
The presented experiments show that overprovisioned com-
pute nodes are discarded without any significant increase in
runtime, while more compute nodes are automatically added
to the reservation in case of underprovisioning, speeding up
the execution significantly.

In the future, we want to optimize the utilization of more
resources than just compute cores. We are also planning to
use machine learning to find the most cost-effective utilization
targets for jobs. Furthermore, we want to investigate how
the internal allocation of reserved resources towards different
system functions can be improved at runtime.

ACKNOWLEDGMENTS

This work has been supported through grants by the German
Science Foundation (DFG) as FOR 1306 Stratosphere and by
the German Ministry for Education and Research (BMBF) as
Berlin Big Data Center BBDC (funding mark 01IS14013A).

REFERENCES

[1] A. Alexandrov, R. Bergmann, S. Ewen, J.-C. Freytag, F. Hueske,
A. Heise, O. Kao, M. Leich, U. Leser, V. Markl, F. Naumann, M. Peters,
A. Rheinländer, M. J. Sax, S. Schelter, M. Höger, K. Tzoumas, and
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