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Abstract—Resource management systems like YARN or Mesos
enable users to share cluster infrastructures by running analytics
jobs in temporarily reserved containers. These containers are
typically not isolated to achieve high degrees of overall resource
utilizations despite the often fluctuating resource usage of single
analytic jobs. However, some combinations of jobs utilize the
resources better and interfere less with each others when running
on the same nodes than others.

This paper presents an approach for improving the resource
utilization and job throughput when scheduling recurring data
analysis jobs in shared cluster environments. Using a rein-
forcement learning algorithm, the scheduler continuously learns
which jobs are best executed simultaneously on the cluster. Our
evaluation of an implementation built on Hadoop YARN shows
that this approach can increase resource utilization and decrease
job runtimes. While interference between jobs can be avoided,
co-locations of jobs with complementary resource usage are not
yet always fully recognized. However, with a better measure of
co-location goodness, our solution can be used to automatically
adapt the scheduling to workloads with recurring batch jobs.

Index Terms—Scalable Data Analytics, Distributed Dataflows,
Resource Management, Cluster Scheduling, Job Interference

I. INTRODUCTION

Cloud computing has emerged as a paradigm in which
providers offer computing capabilities dynamically to an in-
creasing number of users. Data centers have grown up to tens
of thousands of nodes. These nodes are the largest fraction
of the total cost of ownership for datacenters (50-70%) [1].
Thus, it is important to use these resources efficiently for
continued scaling and cost-effectiveness. An important class
of applications that run on such clusters and clouds is dis-
tributed data analytics, using frameworks like MapReduce [2],
Spark [3], or Flink [4], which have become popular tools for
scalable processing. However, studies have shown that these
workloads often underutilize servers with resource utilization
ranging between 10% and 50% [1], [5]–[8].

Different algorithms have been proposed to increase re-
source utilization through more fine-grained sharing of cluster
resources. Some approaches model or profile resource needs
of jobs more precisely for better resource allocations [7], [9],
[10]. Other approaches schedule multiple jobs on nodes to
increase server utilization while containing interference [11],
[12]. While those approaches work well as many workloads
are overprovisioned and, thus, many resources are unused, they
ignore that different jobs can have complementary resource
needs. Yet, by favoring co-locations of complementary jobs it
is not only possible to avoid interference, but also to improve

resource utilization. The execution of workloads could, there-
fore, be improved by changing the order in which jobs are
executed in shared clusters. Furthermore, profiling, which has
been used to measure interference in different approaches [7],
[11], can be avoided as often more than 40% of jobs are
recurring [10]. Therefore, interference and overall resource
usage can be measured during the actual execution, improving
the scheduling of subsequent job runs.

The approach presented in this paper is a scheduling method
for recurring jobs that takes resource utilization and job
interference into account. To increase server utilization, our
scheduler changes the order of the job queue and selects
jobs for execution that stress different resources than the jobs
currently running on the nodes with available resources. For
this, the scheduler uses a reinforcement learning algorithm
to continuously learn which combinations of jobs should be
promoted or prevented. In particular, we use the Gradient
Bandits method, extended to a matrix of distributions, for
estimating the distribution of co-location goodness [13]. Our
metric for goodness takes CPU, disk, and network usage as
well as I/O wait into account. We implemented our approach
on top of Hadoop YARN [14]. The scheduler selects jobs for
execution on the cluster based on our reinforcement learning
approach. We evaluated our implementation on a cluster with
16 worker nodes and with two different workloads consisting
of different Flink jobs.

Contributions. The contributions of this paper are:

• Approach: We designed a reinforcement learning solution
for scheduling batch analytics workloads in shared cluster
setups based on their resource usage and interference
between jobs.

• Implementation: We implemented our solution practically
using Hadoop YARN, supporting distributed dataflow
systems that run on YARN such as Spark and Flink.

• Evaluation: We evaluated our implementation on a cluster
with 16 worker nodes and two different workloads using
Flink jobs.

Outline. The remainder of the paper is structured as follows.
Section II presents the background. Section III presents our
scheduling approach. Section IV presents the implementation
of our prototype. Section V presents our evaluation. Section VI
presents the related work, while Section VII concludes this
paper.



II. BACKGROUND

This section first describes distributed dataflow systems built
to process large datasets. It then illustrates the design of
resource management systems for such systems.

A. Distributed Dataflow Systems

Distributed dataflow systems process data through a Di-
rected Acyclic Graph (DAG), where the nodes represent a
computation task and edges the dataflow between these tasks.
In more detail, tasks are configurable versions of pre-defined
operators including Map and Reduce, which both execute user-
defined functions (UDFs). Some distributed dataflow systems
also provide specific variants of these two operators, like
Filter and pre-defined aggregations, such as, sums. Operators
like Join or Cross can be used to combine two dataflows.
Figure 1 shows an exemplary distributed dataflow program
with different data-parallel operator instances.
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Fig. 1. A distributed dataflow job with different data-parallel operators.

Data-parallel task instances process partitions of the data.
A partition can either be created by reading a fraction of the
input data in from, for example, an underlying file system
or can be received from a predecessor task in the dataflow
graph. Sometimes it is necessary that the dataflow needs to
shuffled. For example, operators for group-based aggregations
or for joining two dataflows require all elements of the same
group or identical join keys to be available at the same task
instance. In this case, all elements with the same key need to be
moved to the same task instance. Such data exchange patterns
can yield high network traffic, since the task instances run on
networked worker nodes. In addition, each worker provides
execution slots, representing compute capabilities. Such a slot
can either execute a task or a chain of tasks.

B. Resource Management Systems

Resource management systems regulate access to the re-
sources of a cluster. Figure 2 shows an overview of such
a resource-managed cluster. The system itself follows the
master-slave pattern. The cluster manager often is a central
master unit and arbitrator of all available resources. In addi-
tion, the cluster manager is responsible for scheduling work-
loads in containers on available resources. The slaves provide
compute capabilities and, thus, host execution containers, in
which the distributed analytics jobs are executed. Distributed
dataflow programs in resource management systems are run-
ning on a per-job basis, whereby the worker processes run
in containers scheduled by the cluster resource manage on to
available slave compute nodes.
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Fig. 2. Overview of a cluster running a resource management system.

Containers can be specified by the number of cores, memory
and storage. In addition, they can provide different levels
of resource isolation. Without strict resource isolation, the
container specification are only used for scheduling purposes.
Therefore, a worker process running in a container can use
more or less resources than reserved. Jobs that run in contain-
ers co-located on the same node can consequently interfere
with each other. The container placement and, therefore, which
jobs are co-located is decided by the scheduler component
of the resource manager. Often resource manager allow to
use different schedulers focusing on different goals such as
fairness, throughput, or data locality.

III. APPROACH

This section describes our approach to scheduling recurring
jobs based on their resource utilization.

A. Overview

The key idea of our scheduling approach is that it is often
beneficial for resource utilization and throughput to co-locate
jobs that stress different resources. While some jobs interfere
with each other as they compete for the same resource, others
use the different resources complementary. Thus, to increase
resource utilization in the cluster, good co-locations should be
promoted and other ones prevented.

Job Queue

Cluster Nodes

R
es

ou
rc

e
U

til
iz

at
io

n

CPU I/O

CPU

I/O
Schedule

Fig. 3. Reordering of the jobs based on resource utilization.

Information on co-location quality can be used for training
a self-learning algorithm. Such an algorithm, which is called
reinforcement learning algorithm, is used for our scheduler.

To increase server utilization over time, the algorithm
changes the queue of jobs, as presented in Figure 3. Based
on currently scheduled jobs and the information learned, the
scheduler chooses the most suitable of the n first jobs of the



queue. These jobs are regarded as independent, so interactions
between jobs is not considered here. Starvation is also not
prevented currently but could be by weighting application with
respect to the number of times they were skipped.

B. Rating the Goodness of Co-locations

As the goal is to increase server utilization, a good co-
location can be defined as one which utilizes the available
resources best. However, this overlooks that co-locations
which utilize resource well can also have negative effects, in
particular interference. Consequently, the goodness measure
needs to take this into account as well and be a trade-off
between the combined resource usage of and interference
between jobs.

In this work, server utilization is defined as the utilization
of the CPU, the disks, and the network interfaces, whereas
interference between jobs is represented by the I/O wait
metric, which indicates how long the CPU has to wait for
I/O operations to complete. These metrics are grouped into
two categories and are defined as follows: I/O and CPU.

a) I/O (disk and network): The disk and network usage
are defined by the number of bytes read r (respectively
received) and written w (respectively sent). The given values
are normalized to the relative value with respect to previously
defined maxima rmax and wmax, fixed by the physical limits
of the hardware. Those two metrics are aggregated in a non-
linear way with the function h, defined as:

h := tanh

(
r

rmax
+

w

wmax

)
(1)

The function tanh is used to increase the robustness to
errors on rmax and wmax.

b) CPU: The CPU usage ucpu simply represents the
percentage of used CPU. The CPU I/O wait metric uwait

is used as indicator that computation power is lost. So, it
is used to weigh down the I/O utilization indicators hdisk
and network hnet as they are only saturated. As a better co-
location can certainly be found, this I/O weight function is
exponentially decreasing. Finally, the function f is used to
favor high goodness. Put together, the goodness measure g is
defined as:

g := f(ucpu + (hdisk + hnet) ∗ l(uwait)),

where f(x) := exp(1 + x)

and l(x) := exp(−5x)

(2)

C. Learning the Goodness of Co-locations

The problem of scheduling jobs based on possible co-
locations can be expressed as follows: Given a set of running
jobs, select which job should be scheduled next from the queue.
Before solving this problem, a simplified version is presented
where only one job is scheduled. Furthermore, our solutions
makes three simplifying assumptions:
• The servers are considered to be homogeneous.

• The resources of a server are fairly shared among the jobs
scheduled on it. Thus, all jobs are considered equal for
the goodness of a co-location.

• The current scheduling decision has no impact on future
ones.

The first two simplifications could be addressed with
weights. The last one is more complex: scheduling a job
removes it from the queue. This can lead to less optimal
co-locations later on, which could have been partially or
entirely avoided by previously scheduling a less appropriate
job. Multiple reinforcement learning algorithms address this
problem, but are more complex and, therefore, left as future
work.

1) One Scheduled Application: In the simplified case with
only one application scheduled, the problem can be reformu-
lated as: Select the application with which the co-location is
the best, i.e. the one with the highest goodness measure, of
the queue.

One solution to this problem is the gradient bandits [13]
where the algorithm learns a preference Ht(a) for each job a
in a set of all jobs S. The probability πt(a) of taking a specific
application a at the time t is defined as follows:

πt(a) =
eHt(a)∑
b∈S e

Ht(b)
(3)

When a job α is selected at time t, the preference is then
updated by:

Ht+1(αt) = Ht(αt) + γ(Gt − Ḡt)(1− πt(αt))

Ht+1(a) = Ht(a)− γ(Gt − Ḡt)πt(a) ∀a 6= αt,
(4)

where γ is the step-size parameter and Ḡt the average of
all previous goodness measures, including Gt.

This approach tracks a non-stationary problem: As the job
can have different data or parameters for each run, it is possible
that its resource usage changes and, therefore, the goodness
of particular co-locations.

2) Multiple Scheduled Applications: In order to cope with
multiple scheduled jobs, the previous algorithm needs to be
extended. The preference is expressed as a matrix H where
Ht,i(a) is the preference of the job i of being in co-location
with the job a at time t. Similarly, the probability πt(a)
becomes πt,i(a) for the job i. The probability of taking an
action a can be constructed as:

Πt(a) =

∑
i∈C Πt,i(a)∑

j∈Q
∑

i∈C Πt,i(j)

with Πt,i(a) =
πt,i(a)∑
j∈Q πt,i(j)

,

(5)

where C is the set of the running jobs on the cluster and
Q the set of jobs that can be scheduled. Πt,i(a) is normalized
with the set of jobs Q as it needs to represent the relative
goodness of a compared to other possible choices for the job



i. Thus, Πt(a) is the normalized aggregation of the relative
goodness for each scheduled job. To update the preferences,
the Equation 6 is used:

Hi,j := α(Rn − R̄i)(1− πi(j))

−
∑

a∈Ωn\{i,j}

α(Rn − R̄i)πi(a),

∀i, j ∈ Ωn,

(6)

where i 6= j and Ωn is the set of running jobs of the node n.
Rn denotes the reward for the node n and R̄i is the average
of all rewards for which job i was updated.

IV. IMPLEMENTATION

This section describes the implementation of the proposed
job co-location scheduler for recurring jobs.

A. Overview

The implementation is designed to work with the cluster
resource management system YARN. Thus, it can co-locate
jobs of any framework that is supported by YARN, including
systems like MapReduce, Spark, and Flink. InfluxDB1 and
Telegraf2 are used to monitor and store detailed server utiliza-
tion metrics of all nodes. InfluxDB is used as central database
that stores time series monitoring data provided by Telegraf,
which runs on each slave node. Our proposed scheduler
communicates with YARN and InfluxDB. The monitoring data
from InfluxDB is used as input for the reinforcement learning
algorithm presented in the Section III-C. The output of the
algorithm is used for selecting the next job from the queue
of jobs. Afterwards, the selected job is submitted to YARN’s
ResourceManager for execution.

B. Scheduling Jobs

Our approach for scheduling a new application only takes
effect when there is a queue of jobs to be executed. Otherwise,
if there are sufficient resources for all jobs, jobs are directly
scheduled and executed on the cluster. Before selecting a
job from the queue of pending jobs with our reinforcement
learning algorithm, presented in the Section III-C, we filter
out the jobs that do not fit the available cluster resources.
The next job from the queue is selected when a job finishes.
Also, when a new job is submitted and this job’s reservation
fits the remaining available resources, it is selected as well.
Afterwards, when a job is selected, it is submitted to YARN’s
ResourceManager for execution.

C. Updating the Preferences

The goodness of currently running co-located jobs, as
presented in Section III-B, is measured periodically in our
implementation. For any interval, all system metrics of nodes
that run containers of at least two distinct jobs are queried from

1http://www.influxdata.com/time-series-platform/influxdb, accessed 2016-
09-19

2http://www.influxdata.com/time-series-platform/telegraf, accessed 2016-
09-19

InfluxDB. Afterwards, the goodness per combination of co-
located jobs is calculated with Equation 6 and used to update
the matrix of pair-wise job preferences. The result then serves
as input for any new job co-location decision.

V. EVALUATION

We evaluated our approach and implementation with two
workloads scheduled with both our algorithm as presented in
the section III and a scheduler that does not change the queue
order. First the cluster configuration is introduced, followed by
a description of the job queues used in our evaluation. Then
the results for both scheduling methods are compared and the
respective resource usage analyzed.

A. Evaluation Setup

The experiments were done with YARN (2.7.2), HDFS
(2.7.2), and Flink (1.0.0).

The cluster used in the experiments is constituted of 17
homogeneous nodes, connected through a single switch. The
configuration of each of the nodes is as follows:
• Quadcore Intel Xeon CPU E3-1230 V2 3.30GHz
• 16 GB RAM
• 3TB RAID0 (3x1TB disks, linux software RAID)
• 1 GBit Ethernet NIC
• CentOS 7
The ResourceManager of YARN and the NameNode of

HDFS run on a single node, while the remaining 16 nodes
are used as worker nodes. Containers have all a fixed size of
1 CPU core and 1.5GB RAM. Leaving space for application
master containers, a maximum of six worker containers are
placed on each node.

Only pairwise co-locations are permitted as the number of
jobs used is reduced. Each job uses a quarter of all containers
available, thus four jobs can be scheduled simultaneously.
Each job uses a different dataset. As at maximum four
applications can run simultaneously, four different datasets are
generated and used by the applications.

1) Applications: As basis four different jobs are used to
built up the two different job queues.
• Kmeans clustering algorithm with k = 50 clusters and

30 iterations. The dataset is generated using the data
generator for Kmeans provided with Flink and a standard
deviation of 0.1, providing 1.25 ∗ 108 points.

• Connected components (CC) with 12 iterations. For this
job, the first quarter of Twitter social graph from [15] is
used.

• TPC-H Query 10 and 500 GB of generated data using
DBGEN3.

• TPC-H Query 3 and 250 GB of generated data using
DBGEN4.

Two different job queues are constructed for the experi-
ments. Both queues consists of 48 jobs and alternate I/O-bound

3http://www.tpc.org/tpch/spec/tpch2.16.0v1.pdf, accessed 2016-08-25
4http://www.tpc.org/tpch/spec/tpch2.16.0v1.pdf, accessed 2016-08-25

http://www. influxdata.com/time-series-platform/influxdb
http://www. influxdata.com/time-series-platform/telegraf
http://www.tpc.org/tpch/spec/tpch2.16.0v1.pdf
http://www.tpc.org/tpch/spec/tpch2.16.0v1.pdf


applications (TPC-H Query 10 and TPC-H Query 3) and CPU-
bound applications (CC and Kmeans). They are constructed as
follows:

(m∗TPC-H10 +m∗Kmeans+m∗TPC-H3 +m∗CC)∗n (7)

Based on this construction, the two queues are defined as:
• Queue A: with n = 3 and m = 4.
• Queue B: with n = 4 and m = 3.
2) Scheduling Strategies: Three different scheduling algo-

rithms are used three times with both queues. They differ in
their management of the Queue As well as initialization, and
are defined as follows:
• FIFO: The queue is unchanged for comparison purposes.
• Resource-aware: The queue is modified according to the

algorithm described in the section III.
• Resource-aware with previous knowledge: Extension of

the Resource-aware scheduling approach by reusing the
preferences learned from a previous run to limit explo-
ration and favor the exploitation phase.

The same placement strategy is used for all scheduling
algorithms: At first triplets of containers are scheduled on
empty nodes. When containers are placed on each node, nodes
that still have available resources are picked randomly. The
reason for this strategy is that it is unlikely that an application
would be co-located with only one application in a real-world
scenario. Furthermore, it increases the algorithms learning
speed as it has more different types of co-locations.

B. Evaluation Results

First, execution time and resource usage is shown for both
job queues. Then, the learned job preferences are visualized.

1) Execution Time and Resource Usage: Table I provides
the median duration of the three tested scheduling methods
for the Queue A. It shows that both resource-aware scheduling
algorithms improve the execution time by 7-8% in contrast to
the baseline FIFO scheduling approach.

TABLE I
DURATION OF THE EXPERIMENTS WITH THE QUEUE A

Scheduling method Median
duration

(min)

Improvement
(%)

FIFO 148.5

Resource-aware 138.5 7%

Resource-aware with previous knowledge 136.5 8%

In contrast to the duration improvement for Queue A, there
is no improvement detected for Queue B, as shown in Table II.

Figure 6 shows the resource utilization for Queue A and the
FIFO as well as the resource-aware scheduler. The resource-
aware scheduler creates a more even distribution of the re-
source usage over time compared to the FIFO scheduler, where
the resource usage fluctuates more. From this, we conclude
that the improvement of duration time for Queue A is due to

TABLE II
DURATION OF THE EXPERIMENTS WITH THE QUEUE B

Scheduling method Median
duration

(min)

Improvement
(%)

FIFO 137

Resource-aware 137 0%

Resource-aware with previous knowledge 136.5 0%

the better resource usage. As the applications running have
most of the time a similar resource usage, the resources have
alternating phases of over- and under-utilization. With the
resource-aware algorithm this is avoided.
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Fig. 4. FIFO
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Fig. 6. Resource usage of the Queue A.

On the other hand, there is no improvement for Queue B
the algorithm for the same reason. As Figure 9 shows for
the FIFO scheduler, is the resource usage already quite even
distributed. Thus there not much room left for improvements
for optimizing the utilization.

Hence the resource-aware algorithms avoid bad co-
locations, which are indicated by fully saturated disks and,
therefore, lost computation power. I/O-intensive applications
are in such cases co-located with CPU-intensive applications.
Therefore, the algorithm seems especially useful in cases
where multiple similar applications are submitted in batches,
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Fig. 9. Resource usage of the Queue B.

while cases with a more mixed workload would need a more
refined goodness measure.

2) Application Preferences: The data learned from each
experiment by the resource-aware scheduler is a preference for
an application to be scheduled with another. It is expressed as
a probability of one application to be chosen for a co-location
(queued applications) when a specific application is scheduled
(scheduled applications). Figure 10 illustrates this relationship
between the already scheduled applications and the queued
applications.
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Fig. 10. Probability of queued applications to be selected to run with already
scheduled applications.

The connected components application is the favorite appli-
cation in the evaluation set. Every application would prefer it
to be scheduled over the other ones. While it is unsurprising
for TPC-H Query 3 or TPC-H Query 10, it is somewhat
unexpected for Kmeans as both Kmeans and CC are relatively
CPU-intensive. Consequently, one would expect that a co-
location with one of the TPC-H applications would have
a higher score for Kmeans due to the additional disk and
network utilization. A similarly unexpected preference is the
one of Kmeans with itself. It has approximately the same
chances of being chosen as TPC-H Query 3. TPC-H Query
10 on the other hand is the least appreciated, particularly for
both TPC-H applications where its probability of being chosen
is less than 0.1%.

However, to achieve these results multiple simplification
have been used in the evaluation which are not representative
of a real-world case:
• Small set of applications: As the algorithms update

pairwise co-location goodness measures, O(n2) values
need to be updated. While this could be acceptable
in some cases, it might have a too high computation
complexity to give real-time updates in a large scale
environment.

• Similar data: For every version of each type of applica-
tions, similar data is used. Yet, data characteristics such
as key distributions can have a significant impact on the
resource usage of a job.

• Pairwise co-locations: As a limited set of applications
is used, only pairwise co-locations are made.

VI. RELATED WORK

This section presents three categories of related work:
frameworks for general-purpose distributed analytics, resource
managers for such systems, and schedulers that take resource
usage of analytics applications into account.

A. Distributed Analytics Frameworks

The presented systems are general frameworks for scalable
data processing.

1) MapReduce: MapReduce [2] proposes a programming
model and an execution model for scalable distributed execu-
tion. Programmers provide UDFs for the operations Map and
Reduce, while the framework abstracts many of the difficulties
of distributed computing, such as inter-machine communica-
tion and failure handling. Map specifies a transformation on
each of the input key/value pairs, Reduce then aggregates
tuples grouped by key. Between these two steps a shuffle step
redistributes the tuples based on their key using a distributed
file system like Google File System (GFS) [16], which applies
replication for fault tolerance.

2) Spark: Spark [3] builds upon MapReduce, yet provides
a more general programming model and in-memory execution.
Spark’s execution model is based on Resilient Distributed
Datasets (RDDs) [17], which are distributed collections anno-
tated with enough linage information to re-compute particular
partitions efficiently in case of failures. RDDs can be cached to



support interactive and iterative workloads. Keeping the data in
memory can improve the performance considerably compared
to frameworks such as MapReduce. Moreover, Spark also
provides a more comprehensive set of data transformations
compared to MapReduce. While Spark uses a batch engine at
its core, a stream engine named Spark Streaming [18] runs on
top of it by discretizing the input stream into micro-batches.

3) Flink: Flink [4] is another general-purpose dataflow
system. Flink offers a similar programming model as Spark
does, yet provides true streaming capabilities, effectively using
a streaming engine for both batch and stream processing.
Coming from the Stratosphere [19] research project, Flink
furthermore applies techniques such as automatic query op-
timizations, managed memory, and native iterations for in-
creased scalability as well as performance. Native support
for iterations, for example, speeds up iterative processing by
allowing cyclic dataflow graphs, which then only need to be
scheduled and deployed once [20].

B. Resource Management Systems

The systems in this section manage clusters and allocate
resources to applications with respect to a scheduling policy.

1) YARN: YARN [14] is a centralized system which al-
locates resources to applications. Upon admission, if an ap-
plication is accepted, a container is allocated to host the
ApplicationMaster. This framework-specific entity handles all
communications with YARN and negotiates resources. Once
a resource request is made, YARN attempts to satisfy the
request according to availability and the scheduling policy by
launching the requested containers.

2) Mesos: Mesos [21] is comparable to YARN, yet uses
an indirect two-level approach for scheduling. Instead of
being asked for resources, Mesos makes resource offers to
application-specific schedulers. Those can either accept or wait
for a better offer, possibly taking into account framework-
and job-specific characteristics such as the locations of input
files. When accepted Mesos launches the provided application
with the offered resources. Fair scheduling and priorities
are enforced by controlling the offers. Hence high priority
applications will be proposed the most resources. To avoid
starvation, a minimum offer can be specified. Concurrency
control is pessimistic. That is, resources are only offered to
one scheduler at a time until the offer times out.

3) Omega: Omega [22] uses an approach based on op-
timistic concurrency control. Rather than making resource
offers, every scheduler has a copy of the current state of
cluster resources. A master copy is held by Omega. Conflicts
are handled through atomic commits. Thus, if two schedulers
attempt to allocate the same resource, only one will succeed.
The other one will have to re-run its scheduling algorithm. As
multiple schedulers can work independently, it is possible to
obtain better performance and scalability.

C. Resource Usage-aware Schedulers

This section presents different approaches for incorporating
the resource usage of applications into scheduling decisions.

They differ from our approach as they try either to prevent
interference or to confine it, yet do not attempt to find co-
locations that provide high overall resource utilization. They
also include low-latency user-facing applications in addition
to batch analytics. Furthermore, our solution does not use any
sort of dedicated profiling and instead learns the behavior of
recurring applications over time.

1) Quasar: Quasar [7], which is built on top of
Paragon [23], uses fast classification techniques to classify
applications with respect to different server configurations
and sources of interference. An unknown application is first
profiled on a few servers and for a short period of time. Then
collaborative filtering techniques are used, in combination with
offline characterizations and matching to previously scheduled
ones, to classify the new application. The result is a set of
estimations of the application’s performance with regard to
different resource allocations as well as co-locations with other
workloads.

2) Bubble-flux: Bubble-flux [11] measures the effect of
memory pressure on latency critical applications to predict
interference. Upon submission of a known best-effort applica-
tion, a dynamic ”bubble” is generated over a short time to find
the limit of admissible memory pressure on each node. As the
load varies, batch applications can be periodically switched
off for a small period of time to reduce their interference with
latency-critical applications, so these have an acceptable mean
latency. The same method is used to reduce the impact of
the dynamic ”bubble”. The pressure of new applications is
measured by gradually decreasing the period of the off phase.

3) Heracles: Heracles [12] guarantees the resources neces-
sary for latency constraints to user-facing applications, while
using surplus resources for co-located batch tasks. Four dif-
ferent isolation mechanisms are used to mitigate interference
as necessary: partitioning of the last-level cache as well as the
CPU cores, distribution of the power among cores to adapt
their frequency, and network bandwidth limits. Heracles needs
an offline profile of the applications DRAM bandwidth usage
as no accurate enough mechanism has been found to measure
it online. Heracles then continuously monitors whether the
latency critical application fulfills its objective. If this is the
case, best-effort tasks are allowed to grow if there is enough
slack. Otherwise they need to release resources.

VII. CONCLUSION

This paper presented an approach for scheduling distributed
dataflow jobs based on their resource usage to improve re-
source utilization and throughput. Our approach does not
profile jobs in isolation, but instead uses a reinforcement learn-
ing algorithm to capture how well different combinations of
jobs utilize resources when executed co-located. By extending
the multi-armed bandit problem to a matrix of distributions,
the algorithm effectively learns how good pairwise job co-
locations are. The measure of co-location goodness we used
takes into account both how well the different resources of a
node are utilized and how much jobs interfere with each other.
For resource usage, we considered CPU, disk, and network.



For interference, we focussed on I/O wait. We implemented
our approach on top of YARN. When a new job is scheduled,
the learning algorithm is requested and chooses a job from
the scheduling queue based on the currently running jobs. We
evaluated our solution on a cluster with 16 worker nodes and
with two different workloads, using four different Flink jobs.
Our results show a clear improvement for the first workload, in
which longer sequences of jobs with similar resource usage are
submitted to the YARN cluster. The resulting resource usage is
more even over time and the execution time of the entire queue
was shortened by around 8%. There was no change in runtime
for the second workload, however, in which a more balanced
mix of jobs is submitted to begin with. While this suggests that
jobs might need to be co-located on a finer granularity, this
also shows that in case of already more balanced workloads
our approach at least has no negative effect.

In the future, we want to improve learning by taking
similarity of jobs into account, so less job combinations have
to be run co-located before the scheduler can make effective
decisions. Furthermore, we want to improve the goodness
measure for co-location by taking more interference sources
into account, including, for example, cache metrics.
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