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Abstract—The performance of scalable analytic frameworks
supporting data-intensive parallel applications often depends
significantly on the time it takes to read input data. Therefore,
existing frameworks like Spark and Flink try to achieve a high
degree of data locality by scheduling tasks on nodes where the
input data resides. However, the set of nodes running a job and
its tasks is chosen by a cluster resource management system like
YARN, which schedules containers without taking the location
of data into account. Yet, the scheduling of the frameworks is
restricted to the set of nodes the containers are running on. At
the same time, many jobs in productive clusters are recurring
with predictable characteristics. For these jobs, it is possible to
plan in advance on which nodes to place a job’s input data and
execution containers.

In this paper we present CoLoc, a lightweight data and con-
tainer scheduling assistant for recurring data-intensive analytic
jobs. CoLoc allows users to define related files that serve as
input for the same job. It colocates related files on a set of nodes
and offers this scheduling hint to the cluster manager to also
place the jobs container on these nodes. The main advantage
of CoLoc is a reduction of network transfers due to a higher
data locality and locally performed operators like grouping or
joining two or more datasets. We implement CoLoc on Hadoop
YARN and HDFS, then evaluate it on a 40 node cluster using
workloads based on Apache Flink and the TPC-H benchmark
suite. Compared to YARN’s default scheduler and HDFS’s block
placement scheduler, CoLoc reduces the execution time up to
35% for the tested data-intensive workloads.

Index Terms—Resource Management, Data Placement, Paral-
lel Dataflows, Scheduling, Data-Intensive Applications

I. INTRODUCTION

Gaining insights into the increasing volume of data is
becoming relevant for more and more applications and busi-
nesses. As a result, various scalable analytic frameworks
supporting data-intensive applications (i.e. jobs) have been
developed over the last years. Prominent examples include
MapReduce [1], Spark [2], and Flink [3], [4]. Often, jobs
of these frameworks run side-by-side in containers, managed
by a cluster resource management system like Mesos [5]
or YARN [6]. Furthermore, the data that is to be analyzed
typically resides in a colocated distributed file system such
as HDFS [7]. This design is attractive for companies and data
center providers, because it allows to run workloads consisting
of different applications and using multiple frameworks on
the same datasets. Thus, different users and organizations can
share a cluster in a cost-effective manner [8] [9].

However, when the number of nodes and data-intensive
jobs increase, the network can become a crucial factor for

various reasons. For example, data residing in a distributed file
system is stored in series of data blocks, which are distributed
across all nodes. When the number of nodes increases, these
data blocks are distributed across more nodes and thus, it
is likely that a job’s input data is not locally available and
needs to be accessed from remote disks. For instance, it was
reported that MapReduce jobs spent up to 59% of their runtime
in map stages reading input data from remote disks [10].
Thus, most frameworks try to schedule tasks on nodes stor-
ing the input data and, thereby, provide high data locality.
In cluster resource management systems, tasks are running
in distributed containers scheduled by the cluster resource
manager. However, existing cluster resource managers like
YARN [6] allocate available resources to jobs without taking
input data into account when launching containers. Therefore,
the scheduling possibilities of jobs and, thus, the level of
data locality is limited by the set of containers offered by
the resource managers. In addition, data analytic frameworks
such as Spark and Flink support data flow operations that can
be network intensive, like joining or grouping. The more the
related data is distributed across different nodes, the more data
blocks need to be shuffled across the cluster. Previous work
minimizes network demand and execution time by colocating
data blocks of related files on the the same set of nodes [11].
However, not taking into account that tasks can be executed
in containers.

At the same time, studies of productive clusters show that
up to 40% of all jobs are recurring [12]–[14]. In these jobs,
the execution logic of a job stays the same for every execution,
but the input data is changing for every run. Recurring jobs
are for instance triggered when new data becomes available or
at a discrete time for further analysis (e.g. hourly or nightly
batch jobs). In such scenarios, it is possible to decide where to
store input data as well as containers before the job execution
takes place.

In this paper we explore the problem of sharing compute and
data resources between multiple data-intensive jobs. In partic-
ular, we present CoLoc, a lightweight scheduling assistant for
Hadoop that helps to reduce the network demand of recurring
jobs that run in shared data analytic clusters. CoLoc users
can specify related files that, for instance, serve as input for
a job. CoLoc then automatically identifies cluster nodes with
sufficient resources to store all related data blocks and to host
all necessary compute containers. The proposed placement
strategy consists of two stages. First, a data colocation phase



to place job input data on a specific set of nodes, instead
of distributing them highly over all available nodes. CoLoc
thereby also places blocks of related files on the same set of
nodes, so that more operations can be performed locally. Sec-
ond, a container colocation phase to place the job containers
on the same set or subset of nodes, where most input data
blocks of the first phase are stored. As a result, these jobs
can benefit from a higher degree of data locality, so less data
needs to be shipped over the network. CoLoc is implemented
as a pluggable blockplacement policy and container scheduler
for Hadoop and, thus, can be used by the different scalable
data analytic frameworks that support YARN and HDFS.

Our evaluation is based on a 40 node cluster running
Hadoop YARN, HDFS, and Flink as exemplary scalable data
analytic framework. Our data-intensive workload is based jobs
of the Transaction Processing Performance Council (TPC)
benchmark H [15], a decision support benchmark that consists
of a suite of business-oriented queries. We evaluated two
different workload scenarios. First, a high cluster utilization
scenario with many jobs running at the same time. Second, a
mixed workload scenario consisting of different jobs submitted
with some delay between jobs. CoLoc reduces completion time
up to 34.9 percent for the first and 11.9 percent for the second
scenario.

In summary, our contributions are as follows:
• An approach to reduce network utilization and execution

time for recurring data-intensive data analytic workloads.
• An implementation of our approach as a scheduling

assistant for Hadoop, which we call CoLoc and which
provides data and container colocation.

• An evaluation using different data-intensive workloads
consisting of different TPC-H benchmark queries on
Flink.

The remainder of the paper is structured as follows. Sec-
tion II presents the background for our research. Section III
explains CoLoc’s system architecture. Section IV discusses
CoLoc’s scheduling strategies in more detail. Section V
presents results based on Flink and different workload combi-
nations. Section VI summarizes the related work. Section VII
concludes this paper.

II. BACKGROUND & MOTIVATION

This section describes the design of a data analytic cluster
based on Hadoop that allows to run different frameworks and
jobs side-by-side. Furthermore, we discuss the motivation for
our data and container colocation approach.

A. Design of a Data Analytic Cluster Based on Hadoop

Many data analytic clusters are based on Hadoop [16].
Two main components of Hadoop are the cluster resource
management system YARN [17] and the distributed file system
HDFS [7]. As shown in Figure 1, both systems typically are
running next to each other on all cluster nodes and follow the
master/slave pattern. The HDFS master node (i. e. NameNode)
monitors and coordinates data storage. YARN’s master node
(i. e. ResourceManager) monitors and coordinates computing

functionalities. The slave nodes make up the majority of hosts
and do the work of storing the data in series of distributed and
replicated blocks (i. e. DataNode) and running different data
analytic jobs within containers (i. e. NodeManager).

Fig. 1: Design of a data analytic cluster based on Hadoop [16].

In YARN, a user submits a job to the central Resource-
Manager, which is responsible for resource allocation and
container scheduling. The ResourceManager is pluggable and
allows different customizable scheduling algorithms, such as
capacity or fair schedulers [18]. A container in YARN provides
the execution environment for a job and is bound to a node
running a NodeManager. Every job consists of one container
running an ApplicationMaster (i.e. AppMstr) that coordinates
and monitors all n execution containers of a job. After a job
is finished, its containers are released and freed-up resources
are available for upcoming jobs.

Data residing in the distributed file system HDFS is stored
in series of replicated datablocks with a fixed size. The default
HDFS configuration comes with a replication factor of three
and places the first block locally on the writer node, the second
on a random node whose rack is different from replica one,
and the third on a random node who shares the same rack
with the second replica. This block placement policy results
in a high distribution of all data blocks across many nodes
and, thus, provides high fault tolerance. However, the more
the datablocks are distributed across different nodes, the more
data needs be shuffled across the cluster for data access.

Distributed data analytic frameworks such as MapRe-
duce [1], Spark [2], and Flink [3], [4] are often executed on
top of a cluster resource management system and a distributed
file system. In general, these frameworks process data through
graphs of tasks (e.g. map, reduce, filter, and join). Each task is
executed parallely and processes a partition of the data. Thus,
a lot of data is split across various nodes, processed in parallel,
transferred, and merged. Many frameworks try to exploit data
locality by scheduling tasks close to the input data to maximize
system throughput, because available network bandwidth is



often lower than the clusters disk bandwidth [19]. However,
the possibility of jobs running on top of cluster resource
management systems to achieve data locality is restricted by
the set of containers that has local access to the data.

B. Data and Container Colocation: A Motivating Example

CoLoc is a data and container placement strategy for
recurring data-intensive jobs running in shared data analytic
clusters. The main purpose is to place related files on a specific
set of nodes instead of distributing all data blocks across all
available cluster nodes. A partitioning or placing semantics for
related files can be for example ”hourly” or ”daily” folders,
which contain data with timestamps of that hour or day [20].
Afterwards, containers of a job that uses this data as input for,
for example, hourly or nightly Extraction, Transformation, and
Load (ETL) jobs are scheduled on the same set or subset of
nodes.

Figure 2 illustrates CoLoc approach and shows eight nodes
running a colocated HDFS for data block placement and
YARN for container placement as well as two different jobs.
The upper section of the figure shows the default data and
container placement without CoLoc. For this case, data and
containers of both jobs are distributed randomly across all
available cluster nodes. The bottom section shows the colo-
cation approach, where all input data and blocks of Job A are
stored on node one to four. Note that Job A has two related
files that are also colocated. Afterwards, all eight containers
of Job A are scheduled on the same nodes. As a result, it is
more likely to benefit from a higher degree of data locality,
so that containers and task operators that run inside these
containers access data from local disks. In addition, colocating
data and placing it on the same set of nodes can improve the
efficiency of dataflow operations like grouping and joining two
or more datasets, because less data needs to be shipped over
the network [11]. Also, it is more likely that containers of a
job are scheduled on the same nodes and, thus, exchange more
data locally.

III. SYSTEM OVERVIEW

This section describes the system architecture and imple-
mentation details of CoLoc, a lightweight data and container
placement assistant for Hadoop. As shown in Figure 3, CoLoc
extends Hadoop’s scheduling capabilities with a Colocation
Assistant, Block Placement Manager, and Container Placement
Manager. The Block Placement and the Container Place-
ment Manager are both implemented as pluggable Hadoop
schedulers. Thus, CoLoc can be used without source code
modification to Hadoop.

The Scheduling Assistant provides node hints as guideline
to the underlying scheduler for data block and job con-
tainer placement. Users and applications can define colocation
entries, which describe files that are related and may be
processed jointly by an upcoming job. For instance, a user
could define that the files ’users.tbl’ and ’orders.tbl’ are related
and should be stored on at least six data nodes. In addition, the
Scheduling Assistant holds information about node locations

Fig. 2: Comparison of container and data block placement with
and without colocation.

of related files that are already stored in HDFS. With this
information about related files and their locations, the Data
Manager and the Container Manager are able to colocate
related files and containers on the same set of nodes.

The Block Placement Manager is a pluggable block place-
ment policy for HDFS. Whenever a user or application stores
a file into HDFS, CoLoc’s Block Placement Manager requests
the Scheduling Assistant and checks if a colocation entry
for that file exists. If this is the case, the Block Placement
Manager will try to colocate these files on the same set of
nodes for improved efficiency. The mapping of specific nodes
to a colocation entry is done, when the first file of an entry
is stored into the system. The Block Placement Manager then
chooses nodes with sufficient storage, stores the data blocks
on it, and returns the locations as hints to the Scheduling
Assistant. If no colocation entry exists, HDFS default block
placement policy takes over. For instance, if a colocation entry
for ’users.tbl’ and ’orders.tbl’ exists and ’users.tbl’ is already
stored on HDFS, then CoLoc’s Block Placement Manager tries
to place the data blocks of ’orders’ on the same set of nodes.
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Fig. 3: System overview for distributed data and container
colocation integrated into Hadoop.

The Container Placement Manager is a pluggable scheduler
for YARN. When a job is submitted to the cluster, the Con-
tainer Placement Manager requests the Scheduling Assistant
whether a colocation entry for its job input data exists. If this is
the case, the container scheduler receives hints about the nodes
on which the data is stored and tries to place the container on
the same set or subset of nodes. Besides file colocation, this
improves data locality because most of the input data is stored
on the nodes an execution container is assigned to.

IV. COLOC PLACEMENT STRATEGY

This section describes CoLoc’s two-stage placement strat-
egy, a data and a container colocation stage, in more detail.

A. Data Colocation Stage

The general purpose of the data colocation stage is to
colocate data blocks of related files that, for instance, serve as
input for the same recurring job. In HDFS, a file fi is stored in
series of data blocks dbi with a fixed data block size, which are
all replicated with a factor repi across all datanodes. Thus, for-
mally a file can be defined as fi : {dbi1 , dbi2 , ..., dbin} ∗ repi.
For recurring jobs, users usually know the inputs (i.e. related
files) and the job size in terms of number of containers
in advance. With this motivation, CoLoc allows users and
applications to define two different colocation entries ci with
the following characteristics.

• File Colocation ci : {fli, ns}, where fli: {f1, f2, ...fn}
is a list of related files and ns is the minimum number
of nodes (i.e. node size), on which all data blocks of the
ci entry will be distributed.

• Folder Path Colocation ci : {fpi, ns}, where fpi is a
unique folder path containing files fli that are stored

under the path. These files are defined as related without
knowing in advance how many files will be stored under
this path.

The mapping of specific nodes to a colocation entry ci is
done when the first file of an entry is stored in the distributed
file system. CoLoc’s Block Placement Manager for HDFS
then chooses the ns nodes with the most remaining disk
space for balancing the cluster’s disks usage. If there is not
enough space on ns disks, the number of ns is automatically
incremented until the nodes have enough disk space available.
Afterwards, the data blocks are evenly assigned and stored on
these selected nodes. In addition, the set of nodes is saved
for upcoming files that belong to the previously stored file or
Folder Path Colocation entry as Colocation Nodes cni with
following characteristics:

• Colocation Nodes cni : {ci, nli}, where nli:
{n1, n2, ...nn} is a list of nodes, where all data blocks
and containers of colocation entry ci should be stored.

When a file fla with an existing File or Folder Path
Colocation entry ci and Colocation Nodes entry cni is put into
HDFS, CoLoc tries to maximize the colocation of fla with all
related and already stored data blocks of ci. For example, file
fla already exists in HDFS and a user stores file flb that
should be colocated with fla. First, all data block locations
of fla are requested from HDFS NameNode. Afterwards, for
every data block of fl2 that should be colocated into HDFS,
a random location of the data block pool of fl1 is selected. If
both data blocks are not already assigned to the same node, the
data block of fl1 is stored on that node. Otherwise, another
location is selected. If fl2 > fl1, the remaining data blocks
are distributed randomly over all colocation nodes cni.

Figure 4 describes the data colocation staging process in
more detail. It shows the interaction between a user that puts
data into the distributed file system, the Block Placement
Manager that is responsible for placing data blocks, and the
Colocation Assistant. First, a user creates a colocation entry
ci for the file path fp ’click-logs/2016-01’ with a node size
ns of 6. Thus, CoLoc will store all data stored under the
path on six nodes, which are determined when the first file is
stored under the path ’click-logs/2016-01’. When the user now
stores a file under the path ’/click-logs/2016-01/’, CoLoc’s
Block Placement Manager requests the Scheduling Assistant
for a colocation entry with the path ’click-logs/2016-01’. At
this step, three different cases are possible: First, there is no
colocation entry and we use the HDFS default scheduling
policy. Second, there is an entry and the assistant returns
the nodes on which the block will be stored. Third, there is
an entry but the associated nodes are not determined yet. In
this case, which is shown in Figure 4, the Block Placement
Manager will determine ns nodes with sufficient space, which
are six in this example.

B. Container Colocation Stage

YARN’s default Container Placement Manager allocates
available resource to jobs randomly when launching contain-
ers. The idea of the container colocation stage is to place a
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Fig. 4: Sequence diagram illustrating the data colocation stage
with an example.

job’s containers on the set or subset of nodes, where most
blocks of its input data are already stored. As a result, these
jobs experience a higher data locality and, thus, read more
input data from local disks, requiring fewer network transmis-
sions. In addition, jobs can exchange more data between tasks
that run within containers locally, if multiple containers of a
job run side-by-side on the same set of nodes.

When a job is submitted to the cluster, CoLoc’s container
scheduler asks the Scheduling Assistant whether a colocation
entry for its job’s input data exists. If yes, the scheduler will
receive location hints and place containers on that nodes.
Therefore, the user can specify a colocation parameter that
contains a list of files that are used by the submitted job.
The container scheduler then asks the Colocation Assistant on
which nodes these data are stored and returns node hints to
the container scheduler. Next, the container scheduler tries to
place all containers on the set of nodes. If not enough resources
are available on these nodes, the remaining containers are dis-
tributed randomly across other available nodes with sufficient
resources.

Figure 5 describes the container placement stage in more
detail. First, the user submits a job to the YARN cluster in
the default way. Afterwards, our pluggable yarn scheduler
checks the submission parameter for HDFS paths and asks the
Scheduling Assistant, if a matching colocation entry exists. If

this is the case, the containers will be placed evenly on top
of these nodes and, thus, more data can be read locality. If
not, the containers will be placed with the default scheduling
approach, similar to our HDFS block placement manager. It
is important to mention that the approach is best effort. If a
cell size is not big enough and there is not enough disk space
or compute resources available for execution, an application
can also be executed on other compute nodes or data stored
on other data nodes.
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Response node hints:
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on node hints

Submit Job with input
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Fig. 5: Sequence diagram that illustrates the container coloca-
tion stage, continuing the example of Figure 4

V. EVALUATION

This section describes the evaluation of CoLoc using two
different workload scenarios and a 40 node cluster. First, the
experimental setup is described in more detail. Afterwards,
we define the workloads and present the results of these
experiments.

A. Experimental Setup

All experiments were done using a 40 node cluster. Each
node is equipped with a quad-core Intel Xeon CPU E3-
1230 V2 3.30GHz, 16 GB RAM, and three 1 TB disks with
7200RPM organized in a RAID-0. All nodes are connected
through a single switch with a 1 Gigabit Ethernet connection.
Each node runs Linux (kernel version 3.10.0), Java 1.8.0, Flink
0.10.1 and Hadoop 2.7.1. One additional node acts as master
and the other 40 nodes as slave nodes. The master node runs
Hadoop YARN’s ResourceManager with our pluggable con-
tainer placement manager and HDFS’s NameNode with our
Block Placement Manager as well as our CoLoc Scheduling
Assistant for providing scheduling hints to both schedulers.
The 40 slaves are responsible for workload execution and
run YARN’s NodeManager and HDFS’s DataNode. We chose
Flink as scalable data analytic framework and configured
YARN to allocate 14 GB memory of a node and use 3 GB



memory and four task slots per Flink TaskManager container
as well as 1 GB per Application Master container, which runs
Flink’s JobManager.

B. Results of Different Workload Scenarios

The data-intensive workload in our experiments is based on
benchmark queries for databases and transaction processing
systems defined by the Transaction Processing Performance
Council (TPC) [15]. In particular, we chose the TPC Bench-
mark suite H (TPC-H) Query 3 and 10, which are business
oriented ad-hoc analytical queries. TPC-H examines large
volumes of data and provides a data generator tool (i.e. dbgen).
We used dbgen to generate a 250 GB input dataset for each job
that we executed. For instance, if we executed eight different
TPC-H queries, we generated eight different datasets with a
size of 250 GB and stored them into HDFS, so that multiple
jobs do not access the same dataset.

The minimum number of nodes ns per colocation entry was
set to five. Thus, all data and containers of a colocated TPC-
H job were placed on five nodes in our evaluation. Each of
the experiments was done five times. We report the median
execution time.

Scenario 1: High Cluster Utilization. In this scenario, we
execute eight TPC-H queries that use all available compute
resources of our cluster at the same time. Each job is accessing
its own dataset stored in HDFS as input. Figure 6 compares
two workload situations, (a) where all data and jobs are fully
colocated with (b) the default scheduling behavior, in which
no data and jobs are colocated. Each of the stacked boxes
in Figure 6 represents the execution time of a single job. That
is, we sum up all execution times as performance indicator. For
the TPC-H Query 3 workload CoLoc reduces the execution
time 34.88% and for the TPCH-10 workload 28.19% with
CoLoc.
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Fig. 6: Workloads consisting of eight colocated TPC-H Query
3 jobs improved by 34.88%, while workloads of eight colo-
cated TPC-H Query 3 improved by 28.19%.

Figure 7 shows results for workloads consisting only of
TPC-H Query 3 jobs (blue line) and only of TPC-H Query
10 jobs (red line). In both experiments, we changed the
ratio between colocated and not colocated jobs for every
run. For instance, in the first run, we executed eight jobs
without colocation, while, in the second, we executed one with
colocation and seven without colocation and so on. With the
default scheduling behavior, the average execution time for
a TPC-H Query 3 takes 353.38 seconds and for a TPC-H
Query 10 635.37 seconds. Considering that up to 40% of jobs
are recurring in productive clusters [12]–[14] and that in our
experiments this share of recurring jobs is roughly given when
the workload consists of three colocated and five not colocated
jobs, CoLoc can reduce the execution time for 10.49% for the
TPCH-3 and 10.86% for the TPCH-10 based workload.
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Fig. 7: Two Workloads consisting of eight TPC-H 3 and eight
TPC-H 10 queries running in parallel with a varying numbers
of colocated jobs.

Scenario 2: Delay and Mixed Workload. In this scenario,
we run a mixed workload of four TPCH-3 and TPCH-10
queries. Always starting with a TPCH-3 query that was
followed by a TPCH-10 query. In addition, we start executing a
following job with a delay of one minute. In the first scenario,
we started executing all jobs at the same time. Thus, we had
clear network-intensive phases, in which all jobs are in the
same stage such as at the beginning, when all jobs start reading
the data from HDFS. Therefore, in this scenario, we run a
more mixed workload and scheduled the jobs with delays of
one minute, which provides a more realistic workload.

The results of the delay and mixed workload scenario are
shown in Figure 8. As a performance indicator, we add up
the execution times. With the default scheduling, the average
execution time is 505.63 seconds. In the case, where all data
and containers are colocated, the execution time decreases by
19.48% to 407.12 seconds. If taking into account that up to
40% of real cluster workloads are recurring [12]–[14], we



decrease the time 7.27% to 468.88 seconds. We have less
performance gain in comparison to workload scenario one,
because less network phases are overlapping.
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Fig. 8: Workloads consisting of four TPC-H Query 3 and
four Query 10 queries running with a delay of 60 seconds and
varying numbers of colocated jobs showing an up to 19.48%
decreased execution time.

VI. RELATED WORK

The techniques we used in CoLoc draw from a range of
existing works in the context of scalable data analytic frame-
works, clusters managers, and data placement techniques.

A. Cluster Resource Management Systems

YARN is the successor of MapReduce and decouples
MapReduce’s resource management and scheduling capabil-
ities from the data processing component, enabling Hadoop to
support multiple application frameworks for data processing,
including frameworks like Spark or Flink. YARN’s design also
moves scheduling functions towards a per-job component. The
current resource manager in YARN dynamically partitions the
cluster compute resources among various jobs into different
resource pools by letting the users specifying the required
number and size of containers. Currently, YARN does not take
data locality or network metrics into account. Mesos [5] is a
similar system, also enabling users to run jobs from multiple
dataflow frameworks efficiently in a single shared cluster.
Mesos offers a scheduling mechanism, in which the central
scheduler offers individual frameworks a number of nodes,
while the frameworks decide which of these offers to accept
and which tasks to run on these resources. Therefore, Mesos
also delegates some of the scheduling logic to the frameworks.
A key advantage of delegating container placement to process-
ing systems is that the systems can optimize for goals like
data locality with considerably more assumptions regarding
the execution model. However, this leaves finding placements
with good data locality to the framework. Custody [21] is

a cluster resource management framework for Spark’s stan-
dalone cluster manager that helps to maximize data locality by
allocating Spark executors with local access to data to those
jobs in need. However, the current implementation does not
support multiple frameworks and does not take data placement
for recurring jobs into account.

B. Scheduling for Data Analytic Frameworks
Cluster scheduling for data analytic frameworks has been

an area of active research over the last years. Recent work
has proposed techniques for increasing fairness across mul-
tiple tenants [18], [22]–[24], time-predictable resource allo-
cation [25], improved data locality [8], [10], [26]–[29], or
reduced interference in virtual environments [28]. However,
most of these works focus on scheduling for a single applica-
tion framework running in standalone. In addition, they assume
data placement as given, and thus do not take data placement
into account. On the contrary, CoLoc considers task execution
in containers into account and tries to colocate them with its
input data for recurring jobs.

C. Data Placement Techniques
Similar to our approach, CoHadoop [11] aims to colocate

different datasets on the same set of nodes based on a
user-defined property. However, it is limited to MapReduce.
Techniques like Scarlett [10] and ERMS (Elastic Replica
Management system) [30] use application access patterns to
increase and decrease data replication factor in order to reduce
job execution time. Coral [12] is a scheduling framework
for recurring jobs that determines characteristics of future
workloads to jointly place data and workers and isolate jobs
by scheduling them in different parts of the cluster.

VII. CONCLUSION

In this paper we present the design, implementation and
evaluation of a lightweight data and container scheduling as-
sistant for recurring data-intensive analytic jobs called CoLoc.
The main idea of CoLoc is to colocate data and containers for
data-intensive jobs on the same set or subset of nodes. These
jobs often run in cloud data centers managed by a cluster
resource management system and read data from a distributed
file system. Based on user provided hints on related file that,
for instance, can serve as input data for a job, CoLoc first
selects data nodes to colocate these data. Afterwards CoLoc
schedules containers on these nodes, so that a job’s execution
can benefit from a higher level of data locality and, thus, less
network traffic as well as execution time.

We implemented CoLoc in Hadoop as a pluggable resource
manager for YARN and block placement policy for HDFS.
Therefore, it can be used without Hadoop source code modifi-
cation and is applicable for all application frameworks running
on top of systems like MapReduce, Spark, or Flink. Our
evaluation outperforms Hadoop’s default strategy for data-
intensive workloads based on different TPC-H benchmark
queries running on Flink. For a high cluster utilization of
simultaneously starting jobs up to 34.9% and for a workload
of various and successively scheduled jobs up to 19.4%.
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