
Addressing Hadoop’s Small File Problem
With an Appendable Archive File Format

�omas Renner, Johannes Müller, Lauritz �amsen, Odej Kao
Technische Universität Berlin, Germany
{�rstname.lastname}@tu-berlin.de

ABSTRACT
Hadoop has been used widely for data analytic tasks in various
domains. At the same time, data volume is expected to grow even
further in the next years. Hadoop recently introduced the concept
Archival Storage, an automated tiered storage technique for in-
creasing storage capacity for long-term storage. However, Hadoop
Distributed File System’s scalability is limited by the total number
of �les that can be stored, and it is likely that the number of �les
increases fast when using it for archival purposes.

�is paper presents an approach for improving HDFS’ scalabil-
ity when using it as an archival storage. We present a tool that
extends Hadoop Archive to an appendable �le format. New �les
are appended to one of the existing archive data �les e�ciently
without rewriting the whole archive. �erefore, a �rst �t algorithm
is used to �ll up the o�en not fully utilized �xed-sized data blocks
of the archive data �les. Index �les are updated using a red-black
tree providing guaranteed fast lookup and insert performance. We
show that the tool performs well for di�erent sizes of archives and
number of �les to add. By distributing new �les e�ciently, we also
reduce the number of data blocks needed for archiving and, thus,
reduce the memory footprint on the NameNode.

KEYWORDS
File Systems, Hadoop Distributed File System, HDFS, Metadata
Management, Archival Storage

1 INTRODUCTION
As Data volume is growing, gaining insights into this data is becom-
ing increasingly relevant for more and more application domains.
One challenge is to evolve storage and processing infrastructure so
it can handle these increased quantities in an economically viable
way. In recent years, Hadoop Distributed File System (HDFS) [10]
has emerged as a commonly used system for storing and accessing
large amounts of data for analytical tasks. Key reasons for HDFS’
success are its scalability and fault tolerance while using commod-
ity hardware and its tight integration with modern distributed data
�ow engines, such as MapReduce [3], Spark [14], and Flink [1].

One technique to deal with the growing amount of data is the
use of a automated tiered storage system [6, 12]. �ereby, data
can be characterized, for instance as cold or hot data, and moved
across tiers automatically, like a processing and an archival tier,
composed of di�erent storage types. Recently, HDFS also started to
support an automated tiered storage based on user-de�ned policies
known as Archival Storage. Unlike the well-known approach of
”bringing compute to data” (i.e. data locality), the storage capacity
of an archival storage is separated from the compute capacity. �e
archival tier consists of nodes with low compute power and disks

designed for long-term storage. �ese nodes are used only for
storing cold data, which should be data that needs to be processed
less frequently, but nonetheless needs to be stored for archival
purposes. In comparison, the processing tier consists of nodes with
more compute capabilities and faster disks. Nodes of the processing
tier are used for storing and processing hot data, which needs to be
processed fast and more frequently. One advantage of the storage
separation is that the archival tier can grow independent of the
processing tier by simply adding new nodes. Another advantage is
that all data is stored in a single HDFS instance and archival data
does not need to be ingested from a separate storage system outside
of HDFS. �us, data analytic frameworks can transparently access
archival data without taking care of data ingestion.

However, when usingHDFS as an archival storage, it is likely that
more and more data is stored and the total number of �les increases,
and thus HDFS can run into scalability and performance limitations.
Currently, the total memory available on the NameNode, the central
HDFS master node responsible for metadata management, is the
primary scalability limitation of HDFS. �is is because, every �le,
directory, and block is represented as an object in the NameNode
memory. Each of these objects requires approximately 150 bytes.
Various authors have investigated this limitation in HDFS, which
is o�en referred to as the “HDFS small �le problem”. Some increase
the available memory with federated NameNodes, thereby allowing
to have multiple NameNodes, each storing a subset of metadata [9].
Others merge many �les into one archive �le, similar to a tarball
and known as Hadoop Archives (HAR). A similar approach is
called SequenceFile, which is a merged �le consisting of binary
key-value pairs that store the �lename as key and the �le contents
as value. �is is done to decrease the total number of �les and,
thus, memory footprint on the NameNode [4, 5, 7, 8]. Most of this
work focuses on increasing the performance of small �le access
through new indexing strategies or caching methods and treat an
archive as immutable. However, for an archival storage, time is not
that critical, yet we need an archiving �le format that allows to
append data to an existing HAR. �is would enable us to design
an automated archival storage, in which cold data is automatically
stored and appended to existing archives for long term storage with
a lowmemory footprint at the NameNode allowing us to store more
�les.

In this paper we present Appendable Hadoop Archives (AHAR) 1,
which extends the HAR �le format with the functionality of e�-
ciently appending new �les to an already existing HAR. HAR is
a widely used archive �le format for HDFS and �les can be ac-
cessed by many modern data analytic engines with the default
HDFS connector. In addition, the �le format allows us to merge
�les of di�erent types and sizes. New �les are appended to one

1AHAR in version 1.0, h�ps://github.com/apache/trenner/ahar, accesPsed 2017-01-03

https://github.com/apache/trenner/ahar

of the existing archive data �les e�ciently without rewriting the
whole archive. Furthermore, a �rst �t algorithm is used to �ll up the
o�en not fully utilized existing �xed-sized data blocks of archive
�les, reducing unused space between the data blocks. HAR’s index
�les for locating the data within the archive are updated using a
red-black tree providing su�cient lookup and insert performance.

We evaluated AHAR’s implementation on a 40 node cluster by
adding di�erent amounts of �les to an already existing archive with
various sizes. We compare AHAR with the currently only alter-
native strategy for appending new �les to existing HAR archives:
unarchiving and re-archiving the archives to include new �les. Ad-
ditionally, by distributing new data e�ciently, we also reduce the
number of data blocks needed for archiving, and thus can increase
scalability by reducing the memory footprint on the NameNode.

Outline. �e remainder of the paper is structured as follows.
Section 2 presents the background. Section 3 presents the approach
and implementation of AHAR. Section 4 presents our evaluation.
Section 5 presents related work. Section 6 concludes this paper.

2 BACKGROUND
�is section describes how �les in HDFS are stored and accessed.
In addition, it explains how HAR �les can be used to increase HDFS
scalability by reducing the namespace usage, and thus enabling to
store more �les.

2.1 Hadoop Distributed File System
HDFS is a distributed �le system for reliably storing large �les
across nodes in a large cluster built from commodity hardware. As
shown in Figure 1, HDFS follows a master-slave paradigm. �emas-
ter node (i.e. NameNode) is responsible for metadata management
that includes (a) maintaining the directory tree of all �les in the �le
system and (b) tracking where across the available nodes the �le
is kept. �e �le itself is stored on the slave nodes (i.e. DataNode),
which serve as a pure data storage.

Files are split into a series of blocks with a �xed size (i.e. block
size) and multiple replicas, where each replica is stored on a dif-
ferent DataNode. �us, if a node goes down, other replicas are
available on di�erent DataNodes. In Figure 1, for instance, the �le
”/usr/marc/�le.log” consists of three blocks with a replication factor
of two, labeled as 1, 2 and 4. All of these blocks are distributed on
all available DataNodes. �e block replication mechanism provides
high fault tolerance, but also good data access performance for dis-
tributed data�ow engines. �is is because data transfer bandwidth
can be increased by concurrently accessing multiple disks and by
more opportunities for data locality by placing computational tasks
on the same node they have direct access to.

HDFS keeps the entire metadata management in the memory
of the NameNode. For every �le, directory and block, an object is
stored in memory that occupies approximately 150 bytes. �erefore,
it can be ine�cient to store many small �les in HDFS. Small �les are
�les that are signi�cantly smaller than the default block size. For
example, if the default block size is 64 MB, a 64 MB �le consumes
the same amount of memory for metadata management at the
NamenNode as a 1MB �le. �erefore, a recommendation to increase
scalability is to keep the average �le size large and if possible, merge
smaller �les into larger ones.

NameNode

Metadata

/usr/marc/file.log → 1, 2, 4

/usr/peter/data.csv → 3, 5

DataNode

1

4

2

5

DataNode

2

5

3

DataNode

1

4

3

Figure 1: Exemplary HDFS setup storing two di�erent �les.

2.2 Hadoop Archive
Hadoop Archive (HAR) is a Hadoop �le format that merges a col-
lection of �les into one or more large �les, similar to tarballing.
With HAR it is possible to increase the average �le size and thus,
increase scalability of HDFS by reducing namespace usage and
memory footprint at the NameNode. Any HAR �le contains two
metadata �les, called index and masterindex, and multiple data �les,
called partn .

• partn are multiple �les that together contain all data of
the �les that are collected in the archive. An HAR consists
of multiple partn �les, because the archiving process is
done in parallel using a MapReduce job that produces the
partitioned partn �les.

• index stores location information on �les and directories
that are collected in the archive. �e location is described
through the part �le containing that �le and its speci�c
o�set and length within part �le. For instance, an entry
”/input/sub0/�leA.txt �le part-0 0 128 […]” speci�es a ”�leA”
stored in ”part0”, starting at o�set 0 with a length of 128
bytes.

• masterindex is a level of indirection into the index �le to
make look ups faster. �e index �le is sorted by hash codes
of the paths that it contains and the master index contains
pointers to the positions in index for ranges of hash codes.

However, currently, HAR archives are immutable. �us, adding
or removing �les to an already existing HAR �le can only be done
by unarchiving and re-archiving the archive including some new
�les. �is can cost a lot of processing time and occupy extra clus-
ter resources, because both functionalities are implemented as a
MapReduce Job.

3 APPENDABLE HADOOP ARCHIVE
�is section presents the design and implementation details of
Appendable Hadoop Archive (AHAR). First, an overview about
AHAR and its components is given. A�erwards, the functionality
of adding new �les to an existing HAR is discussed in more detail.

2

3.1 Overview
AHAR changes Hadoop Archive’s characteristic from being im-
mutable to be appendable. In particular, users can add a set of new
�les that is stored in HDFS to an already existing archive by using
our java-based tool. For this, AHAR automatically a) appends the
data of the new �les to the existing partn �les of the archive and b)
e�ectively updates the metadata of an archive by adding new index
entries for the new �les.

Figure 2 shows howAHAR is integratedwith theHAR�le format.
New �les that should be added to the archive can either be stored
on HDFS or on the users local �le system. First, the binary data
of new �les is appended to one or multiple partn �les stored in
HDFS. �erefore, a �rst �t algorithm is used, which appends the
binary data of a new �le to a part �le that has su�cient space to
append the additional data without the need of creating a new data
block. �e goal is to avoid the creation of new blocks to reduce the
memory footprint on the NameNode. A�erwards, the index and
masterindex �les for the new entries are updated and rewri�en to
HDFS. �erefore, the index �le is parsed into a red-black binary
tree, which allows us to quickly �nd, update and insert new index
entries.

part-n

New files
index

masterindex

HDFS

part-1
part-n

1. Append new

binary data

2. Update with

new index entries

Figure 2: AHAR main components. First, the new data is
appended to one partn �le. A�erwards, the index �les are
updated with the new entries

We implemented AHAR as an extension of HAR without chang-
ing the two-way indexing strategy. �erefore, HDFS compatible
data-analytics frameworks like MapReduce, Spark, or Flink can
access the �les of a HAR without the need of a new data format
connector. Files in a HAR can be accessed simply by using the har
pre�x, e.g. har://�lepath instead of hdfs://�lepath. Furthermore,
this design allows AHAR to be used with HDFS setups without any
source code modi�cation or additional con�guration. In addition,
the tool can be simply used by executing its jar with the argu-
ments addFiles harPath addingFilesPaths, where addinдFilePaths is
a comma-separated list of folders and �les that should be appended
to the existing archive stored under the path harPath.

3.2 Appending New Data
�e process of adding new �les to an existing HAR consists of a
data and index update step. First, the data of the new �les are
appended to one of the multiple part �les, which contain the data

of the already archived �les. A�erwards, the indexing �les are
updated and rewri�en with new entries in order to allow access to
the new �les within the archive.

3.2.1 Part File Data Update. First, the binary data of the new
�les that should be added to an existing archive is appended to
one of its archives partn �les. A partn �le, like every �le in HDFS,
is stored in series of data blocks dbn with a �xed data block size,
which are all replicatedwith a factor repn across all datanodes. �us,
formally a part �le can be de�ned as partn : {dbn1 ,dbn2 , ...,dbnm } ∗
repi . In addition, there is no free space between data blocks and
thus, only the last block dbnm may not fully utilized. Because HDFS
is appendable only �le system, new data of the new archiving �les
is always appended at the end of the data blocks chain of one of
the partn �le. �e block size of a partn �le is set to 512 MB, instead
of HDFS’ default block size of 128 MB. By choosing a larger block
size, it is possible to store more �les in an allocated data block and
thus, reduce memory footprint at the NameNode.

In AHAR, data blocks of the partn �les are appended with the bi-
nary data of new �les until the available space of the last partn data
block dbnm is fully utilized. For example, having a part1 �le with
a block size of 512 MB and current block length of 128 MB, a new
�le with a size of 128 MB would �t into this part �le. For deciding
at which partn �le the adding �les should be appended, a �rst �t
algorithm is used. For each adding �le addFilei , the algorithm �nds
the lowest numbered partn �le, in which a addFilei �le �ts �rst, or
if no partn �ts, a new partn+1 is created. If an addFilei �le �ts into
a speci�c partn �le is determined by f reeBytesn , the remaining
bytes le� until the last data block dbnm of a partn �le is fully uti-
lized. With this, we avoid that all data is appended to just one very
large partn �le with many data blocks and also �ll up other already
existing part �les. Formally, if an addFi �ts into a partn is deter-
mined by addFileBlockSizei ≤ f reeBytesn , where f reeBytesn : =
partBlockSizen - (partLenдthn mod partBlockSizen).

For example, as shown in Figure 3, the current block length (i.e.
partLenдth) of an existing part0 �le is 996 MB and of part1 �le is
448 MB. �us, part0 consists of 2 blocks and part1 of 1 block. �e
remaining space le� until all existing blocks of part0 would be 28
MB and of part1 would be 64 MB. Assuming, the size of the �le to
add is 40MB, it would not �t into part0, but in part1, because its
size is lower or equal then the le� free space in the last data block
of part1.

aFileLen ≤ le f tSpaceInBlock .
Instead of appending the data of a �le immediately to its located

partn �le, AHAR �rst determines all aFilei to partn pairs. �us,
we can append the data of multiple �les to one speci�c partn in a
batch. By appending every single new �le to one partn , the data of
the existing partn �le would be rewri�en and replicated multiple
times on the cluster, which causes a lot of unnecessary network
tra�c and thus, a higher execution time.

3.2.2 Index Update. A�er the new binary data was appended
to the existing archive, the index and masterindex �les of the HAR
archive must be updated and rewri�en. �e index �le stores the
directory structure of all �les and folders within that archive. An
index entry can either be a directory or �le entry. A directory index
entry stores the mapping between directories and subdirectories
and �les within that directory. For example, an entry /input dir sub0

3

Block size

512 MB

Free space

in last

data block

part-0 part-1 part-2

New files

x

✓

1.

2.

Figure 3: Finding a partn �le for storing the binary data of a
new �le is done using a �rst �t algorithm.

sub1 […], speci�es that under the path ”/input”, two sub folders
”/input/sub0” and ”/input/sub1” exist. A �le index entry maps a
�lename to a speci�c partn �le storing its binary data including its
o�set and length to exactly locate that data within that part �le. For
instance, the entry /input/sub0/�leA.txt �le part-0 0 128 […] speci�es
that ”�leA” is stored in part0, starting at o�set 0 with a length of
129 bytes. �e index �le is sorted by the �le or directory path
hash. Since the index can be many hundred thousand lines long,
depending on the number of �les stored in an archive, a preliminary
masterindex is kept, holding information about which part of the
index is mapped to which portion of the hash space. Both �les, the
index and masterindex needs to be updated a�er appending a new
�le to an archive.

Before adding new index �le entries or updating index directory
entries, the existing index �le is parsed and kept into a red-black
tree [2] using a java-based TreeMap implementation. �e map is,
similar to the index �le, sorted by the path hashes. We choose a
red-black tree, because it allows to lookup entries quickly with
guarantee of O (loдn). A fast search is needed, because for every
new �le that is supposed to be added, it must be checked whether
a �le is already contained to prevent duplicates as well as updat-
ing directory entries including their sub �les and directories. For
example, a �le /f oo/bar/f ile .txt that is added, e�ects three folder
entries /, f oo/ and bar/ are created, each containing a reference
to their respective subdirectories. �erefore new directory entries
following the given pa�ern have to be created or already existing
entries need to be updated.

A�er all partn�les are wri�en to HDFS both index and mas-
terindex are discarded and rewri�en in much the same way that
HAR archiving method is writing them initially. For every 1000
lines of index entries one line in the master index is wri�en, denot-
ing the bytewise location of above lines in the index and the range
they cover in the underlying hash space. By this, we can ensure
that new �les added with AHAR can be used like any other �les in
the archive.

0

50

100

150

200

250

300

350

400

100 200 300 400 500 600 700 800 900 1,000

Ex
ec
ut
io
n
tim

e
in

se
co
nd

s

Number of adding �les to existing HAR

Native
AHAR

Figure 4: Total execution time for adding a varying number
of new �les between 100 and 1,000 to an existing HAR con-
sisting of 10,000 �les, each �le was 10 MB.

4 EVALUATION
�is section presents our experimental setup, the test workload,
and benchmark results.

4.1 Experimental Setup
All experiments were done using a 40 node cluster. Each node is
equipped with a quad-core Intel Xeon CPU E3-1230 V2 3.30GHz,
16 GB RAM, and three 1 TB disks with 7200RPM organized in a
RAID-0. All nodes are connected through a single switch with a one
Gigabit Ethernet connection. Each node runs Linux (kernel version
3.10.0), Java 1.8.0, and Hadoop 2.7.1 with default con�guration.

4.2 Results for Adding Multiple Files to an
Existing HAR

�is section reports results of adding multiple �les to an exist-
ing HAR archive. We compare the execution time of AHAR ap-
pend functionality versus a native approach of unarchiving and
re-archiving all �les including the new �les. Currently, to the best
of our knowledge, this is the only possible method to add new �les
to an existing HAR archive. For all experiments, we report the
median execution time of seven runs. In addition, for every run a
new set of �les was created and put into HDFS, to force a new data
block placement distribution.

In the experiment as shown in Figure 4, we add a varying number
of �les between 100 and 1,000 to an existing HAR archive that
already contains 1,000 �les. For every run, we increased the number
of new �les to be added by 100. In addition, a �xed size of 10 MB
per �le was chosen. �us, the size of the archive was 1 GB before
the new �les were added. In another experiment, we increased the
existing HAR archive to 10,000 �les, and thus the total size was 10
GB. Again, for every run we increased the number of new �les to
add by 100. �e results for both experiment are shown in Table 1.

4

0

200

400

600

800

1000

1200

100 200 300 400 500 600 700 800 900 1,000

Ex
ec
ut
io
n
tim

e
in

se
co
nd

s

Number of adding �les to existing HAR

Native
AHAR

Figure 5: Total execution time for adding a varying number
of new �les between 100 and 1,000 to an existing HAR con-
sisting of 10,000 �les, each �le has a di�erent size between
1 and 128 MB.

In the experiment as shown in Figure 5, we changed from a
�xed to a varying �le size. �e size of every �le was choosen by
fi := 1 + (i mod 128) MB, where i is the number of �les. As a
result, we have a series of �les, where f0 is 1MB, f1 is 2MB, f2
is 3MB, and f128 starts again with 1 MB. Similar to the previous
experiments, we added a varying number of �les between 100 and
1,000 to an existing HAR archive that already consists of 1,000 �les.

Table 1 summarizes the results of our benchmarks.
Adding between 100 and 1000 �les to an archive with 1,000 �les

using AHAR, we decrease execution time varying from 96% to 71%.
By increasing the existing �les in a HAR �le to 10,000, we decrease
execution time varying from 99 to 95%. In all experiments, we
observe as more �les we add with AHAR, less speed-up is gained.
One reason for that is because the node running the tool acts as
a proxy node, which performs the part �le data update process
described in Section 3.2 locally. �e node loads the data from the
partn �le, appends the new data and uploads it back to HDFS. �us,
the network of the node can quickly become a limitation, especially
when adding large size of data. On the contrary, unarchiving and
re-archiving a �le in HDFS is implemented as a MapReduce job
that executes the job on multiple nodes in parallel.

Another �nding is that, the execution time approximately stays
the same for adding the same number of �les with the same size, e.g.
100 �les each with 10 MB, independently of the size of the existing
HAR. �e reason for that is that the same number of partn �les are
appended and the index update process only takes a few seconds
for an archive with 1,000 or 10,000 entries. For instance, adding 500
�les with the same size to an archive with 10,000 �les only takes
approximately 5 seconds more than adding the �les to the 1,000
�les sized archive. �us, AHAR is a great tool for continuously
adding small batches of �les to an existing archive.

Table 1: Benchmark overview of appending new �les with
AHAR.

Existing Adding Size Exec. Time Reduction

1,000 100 10 MB 10.7 sec 96 %
1,000 500 10 MB 52.83 sec 83 %
1,000 1,000 10 MB 106.02 sec 71 %
10,000 100 10 MB 12.04 sec 99 %
10,000 500 10 MB 56.45 sec 97 %
10,000 1,000 10 MB 113.59 sec 95 %
1,000 100 VAR 30.19 sec 96 %
1,000 500 VAR 176.09 sec 81 %
1,000 1,000 VAR 352.70 sec 68 %

5 RELATEDWORK
�ere are two categories of improving scalability focusing on allow-
ing to store more �les on HDFS: NameNode federation and merging
small �les to larger. Federated NameNodes allow to have multi-
ple NameNodes, each storing a subset of metadata [9]. Instead of
changing the number of �les directly stored in HDFS, a federation
allows to store more �les by increasing the available memory for
metadata management. �e technique of merging multiple �les to
a larger reduces the memory footprint at the NameNode. However,
an additional indexing mechanism outside of the NameNode is
needed.

AHAR relates to themerging approach, wherebyHadoopArchive
and Sequence File are �le formats that are o�cially supported by
Hadoop. Sequence File is a merged �le consisting of binary key-
value pairs that store the �lename as key and the �le contents as
value. In comparison to HAR, the retrieval of a list of �le names
within a Sequence File requires processing the entire �le. One
drawback of both approaches is that an increased access time, due
to the additional indexing step. �us, authors introduce speci�c
solutions to their application scenarios using new index strategies
[4, 5, 7, 8, 13]. Most of this work focus on increasing the per-
formance of small �le access through new indexing strategies or
caching methods and treat an merged �le as immutable. However,
for an automated storage, time is not that critical, yet we need
an archiving �le format that allows to append data to an existing
archive. We assume that archives are stored on archival disks and
over time we want to append new data to existing archives.

Similar to our approach, New Hadoop Archive (NHAR) [11] ex-
tends HAR. In addition, they introduce a mechanism to overcome
HAR immutability. �e authors redesign the indexing mechanism.
Instead of a two-way indexing, a single index mechanism without
the masterindex �le is used combined with a global hashing com-
ponent. �e approach consists of multiple �xed indexing �les per
archive. When a new �le is appended to an archive, the hash of the
�les is calculated and with a modulo function assigned and merged
to one of the index �les. For appending new �les to an archive, an
temporary HAR archive is created. �is temporary archive has a
unique names for its part �les, so that both archives including their
part �les can be merged. In addition, the entries of �xed indexing
�les are merged. A limitation is a �xed number of index �les, which

5

can be quite low or large. In addition, when merging multiple times,
you can have a lot of underutilized partn �les.

6 CONCLUSION
In this paper, we proposed a tool to append �les to an existing HAR
archive. �e tool e�ectively adapts the metadata and data �les of
an existing archive with new �les without rewriting the whole
archive. �us, �les can be managed more e�ectively for archiving
purposes, reducing the memory footprint on the NameNode to
increase scalability and to face the small �le problem. �e presented
approach is based on Java and can be simply used via its command
line interface. �e presented experiments show good speed-ups
when adding new �les of various sizes to existing archives.

In the future, we want to use AHAR to implement an automated
archive storage, which automatically stores and appends cold data
to existing archives for long term storage with a low memory foot-
print at the NameNode. �is allows us to store more �les on HDFS.
In addition, we want to implement a remove function to delete �les
from a HAR archive. We are also planning to to implement the ap-
proach in a more distributed fashion, e.g. as a MapReduce or Spark
job, to add the binary data of new �les in parallel to an existing
archive data. �is may increase execution time when adding large
amounts of �les at once.

7 ACKNOWLEDGMENTS
�is work has been supported through grants by the German Sci-
ence Foundation (DFG) as FOR 1306 Stratosphere and by the Ger-
man Ministry for Education and Research (BMBF) as Berlin Big
Data Center BBDC (funding mark 01IS14013A).

REFERENCES
[1] Paris Carbone, Stephan Ewen, Seif Haridi, Asterios Katsifodimos, Volker Markl,

and Kostas Tzoumas. 2015. Apache �ink: Stream and batch processing in a single
engine. Data Engineering (2015), 28.

[2] �omas H.. Cormen, Charles Eric Leiserson, Ronald L Rivest, and Cli�ord Stein.
2001. Introduction to algorithms. Vol. 6. MIT press Cambridge.

[3] Je�rey Dean and Sanjay Ghemawat. 2004. MapReduce: Simpli�ed Data Pro-
cessing on Large Clusters. In Proceedings of the 6th Conference on Symposium
on Operating Systems Design & Implementation (OSDI’04). USENIX Association,
10–10.

[4] B. Dong, J. Qiu, Q. Zheng, X. Zhong, J. Li, and Y. Li. 2010. A Novel Approach
to Improving the E�ciency of Storing and Accessing Small Files on Hadoop: A
Case Study by PowerPoint Files. In 2010 IEEE International Conference on Services
Computing. 65–72.

[5] Liu Jiang, Bing Li, and Meina Song. 2010. THE optimization of HDFS based on
small �les. In 2010 3rd IEEE International Conference on Broadband Network and
Multimedia Technology (IC-BNMT). 912–915.

[6] KR Krish, Ali Anwar, and Ali R Bu�. 2014. hatS: A Heterogeneity-Aware Tiered
Storage for Hadoop. In Cluster, Cloud and Grid Computing (CCGrid), 2014 14th
IEEE/ACM International Symposium on. IEEE, 502–511.

[7] X. Liu, J. Han, Y. Zhong, C. Han, and X. He. 2009. Implementing WebGIS on
Hadoop: A case study of improving small �le I/O performance on HDFS. In 2009
IEEE International Conference on Cluster Computing and Workshops. 1–8.

[8] G. Mackey, S. Sehrish, and J. Wang. 2009. Improving metadata management for
small �les in HDFS. In 2009 IEEE International Conference on Cluster Computing
and Workshops. 1–4.

[9] S. Radia and S. Srinivas. 2010. Scaling HDFS Cluster Using Namenode Federation,
HDFS-1052. (2010).

[10] K. Shvachko, Hairong Kuang, S. Radia, and R. Chansler. 2010. �e Hadoop
Distributed File System. In Mass Storage Systems and Technologies (MSST), 2010
IEEE 26th Symposium on. 1–10.

[11] C. Vorapongkitipun and N. Nupairoj. 2014. Improving performance of small-�le
accessing in Hadoop. In Computer Science and So�ware Engineering (JCSSE), 2014
11th International Joint Conference on. 200–205.

[12] Jiong Xie, Shu Yin, Xiaojun Ruan, Zhiyang Ding, Yun Tian, James Majors, Adam
Manzanares, and Xiao Qin. 2010. Improving mapreduce performance through

data placement in heterogeneous hadoop clusters. In Parallel & Distributed Pro-
cessing, Workshops and Phd Forum (IPDPSW), 2010 IEEE International Symposium
on. IEEE, 1–9.

[13] Cairong Yan, Tie Li, Yongfeng Huang, and Yanglan Gan. 2014. Hmfs: e�cient
support of small �les processing over HDFS. In International Conference on
Algorithms and Architectures for Parallel Processing. Springer, 54–67.

[14] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Sco� Shenker, and
Ion Stoica. 2013. Discretized streams: Fault-tolerant streaming computation at
scale. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles. ACM, 423–438.

6

	Abstract
	1 Introduction
	2 Background
	2.1 Hadoop Distributed File System
	2.2 Hadoop Archive

	3 Appendable Hadoop Archive
	3.1 Overview
	3.2 Appending New Data

	4 Evaluation
	4.1 Experimental Setup
	4.2 Results for Adding Multiple Files to an Existing HAR

	5 Related Work
	6 Conclusion
	7 Acknowledgments
	References

