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Abstract—Distributed dataflow systems such as Apache Spark
allow the execution of iterative programs at large scale on clus-
ters. In production use, programs are often recurring and have
strict latency requirements. Yet, choosing appropriate resource
allocations is difficult as runtimes are dependent on hard-to-
predict factors, including failures, cluster utilization and dataset
characteristics. Offline runtime prediction helps to estimate
resource requirements, but cannot take into account inherent
variance due to, for example, changing cluster states.

We present SMiPE, a system estimating the progress of itera-
tive dataflows by matching a running job to previous executions
based on similarity, capturing properties such as convergence,
hardware utilization and runtime. SMiPE is not limited to a
specific framework due to its black-box approach and is able
to adapt to changing cluster states reflected in the current job’s
statistics. SMiPE automatically adapts its similarity matching
to algorithm-specific profiles by training parameters on the job
history. We evaluated SMiPE with three iterative Spark jobs
and nine datasets. The results show that SMiPE is effective in
choosing useful historic runs and predicts runtimes with a mean
relative error of 9.1% to 13.1%.

Index Terms—Scalable Data Analysis, Distributed Dataflows,
Runtime Prediction, Progress Estimation, Iterative Algorithms

I. INTRODUCTION

As datasets have increased in size, the use of distributed
analytics systems for applications in both industry and science
has become prevalent [1], [2]. Distributed dataflow systems
like MapReduce [3] and Spark [4] execute programs at large
scales on computer clusters. Many of these programs are
iterative, including graph and machine learning algorithms
such as PageRank and k-means clustering.

Productive use of distributed analytics systems often re-
quires adherence to Service-Level Objectives (SLOs), as work-
loads often have strict latency requirements [5], [6], [7], [8].
Many production workloads are also business-critical and
missing completion deadlines can incur economic penalties
[9]. Moreover, workloads are often executed periodically. For
example, on Microsoft’s larger clusters over 60% of jobs
are recurring [5]. When submitting a distributed analytics
job, a user requests a specific amount of resources with
the goal of keeping the runtime and execution costs to a
minimum. While increasing resources often leads to a better
performance, the exact relationship is difficult to estimate.
Any gain in computational power may be offset by additional
communication. Moreover, the runtime of a job is not only
dependent on the assigned resources, but a variety of factors.

This includes, for example, interference with concurrently
running workloads [5] and failures at software or hardware
level [9]. Other factors are connected to the algorithm itself,
like the dependency between individual tasks [10] or the
impact of program parameters. Lastly, the input data influences
performance to a large extent. Even similarly sized datasets
can yield significantly different performance [6]. Choosing
a resource allocation to achieve a specific runtime goal is,
thus, not trivial and users routinely overprovision resources,
yielding poor overall cluster utilizations. To address this, many
previous efforts have focused on predicting the runtime for a
given resource configuration in order to select a configuration
that meets a given SLO. Such predictions are often based on
data from profiling runs [6], [11], [12], [13], executed on a
subset of the input or a small number of servers. However,
extrapolating from those samples is difficult and the additional
runs incur an overhead. Other systems use data from previous
executions [10], but it is not clear which previous runs can be
used for accurate estimations. Also, predicting runtimes before
the execution cannot take into account inherent variance in
runtimes due to changing cluster states. Such factors can only
be considered at runtime, using statistics collected during the
execution. Moreover, these statistics provide opportunities to
match execution properties unavailable to offline prediction.
For example, predicting the impact of changes in input datasets
or job parameters would require highly complex models and
detailed statistics. However, the impact of these factors is
reflected in current statistics, enabling online progress estima-
tion to match similar jobs more effectively and thus increase
prediction accuracy. Accurate progress estimation at runtime
then allows to dynamically adjust resources or at least notify
users when their jobs are at risk of missing targeted runtimes.

In this paper, we present SMiPE, a progress estimation sys-
tem which matches a running job to previous executions based
on similarity. SMiPE uses a black-box approach, only relies
on statistics from previous runs and is therefore generically
applicable to iterative distributed dataflows. This is in contrast
to previous work such as Jockey [9], which uses a framework-
specific job model, and efforts using profiling runs to gather
sampling information, such as Quasar [6]. SMiPE’s matching
component selects those executions from the job history with
a high similarity and uses these to predict how the current job
will behave for the remaining iterations. As the job progresses,
more statistics become available and the selection of similar



executions becomes more precise. In contrast to offline runtime
prediction systems, SMiPE is able to incorporate hard-to-
predict factors that are reflected in the statistics of the running
job. Thus, for example, the impact of changes in the cluster
state is included in SMiPE’s estimations. SMiPE can use
several similarity measures such as per-iteration runtimes,
convergence behavior or hardware utilization. As jobs have
distinct profiles that determine which similarity measures lead
to an efficient matching result SMiPE performs job-specific
parameter training. The system learns automatically which
measures are most useful for a job, eliminating the need for
manual parameter tuning.
Contributions. The contributions of this paper are:

• An approach to progress estimation for iterative dis-
tributed dataflows, which matches a running job to pre-
vious executions based on similarity.

• The definition and evaluation of five different measures
for the similarity of job runs.

• SMiPE, a practical system implementing our approach,
integrated with Spark.

• An evaluation of SMiPE using cluster experiments and
three iterative algorithms.

This paper is structured as follows. Section II provides
background on distributed data analytics, while Section VII
presents related work. Section IV presents our approach to
progress estimation for iterative distributed dataflows. Sec-
tion V explains our similarity measures. Section VI presents
our evaluation. Section III concludes this paper.

II. BACKGROUND

This section gives background on distributed dataflow sys-
tems, cluster management and iterative distributed algorithms.

A. Distributed Dataflow Systems

Distributed dataflow frameworks allow to express programs
using operators such as Map, Reduce, Filter or Join. These
operators are configured by specifying the input data and a
sequential user-defined function (UDF).

A program is an aggregation of such operators which are
combined with various degrees of freedom, depending on
the framework’s programming model. Frameworks such as
Apache Spark1 allow a distributed program to be expressed
as combinations of operators, i.e. the output of one operator
serves as the input of another operator. The result is a
pipelined dataflow. Some frameworks also have native support
for iterations, which are in turn a group of operators combined
with a defined termination condition.

Fig. 1 shows an example of a dataflow program consisting
of a Map, Join, Group and a Reduce operator. The latter three
are part of an iteration. The Join operator uses two inputs, one
coming from another operator, the other from an input file.

The framework handles the distribution and parallelization
of the dataflow program. Operators are executed in a data-
parallel fashion: Input data is split up and multiple instances

1https://spark.apache.org
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Fig. 1: Example of a dataflow program consisting of operators,
including an iteration

of a single operator process the resulting partitions in parallel
by calling the respective UDF. As a result, one operator is
executed by several execution tasks, which are distributed
across the computer cluster by the selected framework for
parallel execution.

The input of an operator can either be the contents of a
file or the output of another operator. In the first case, a file
is usually read from a distributed file system (DFS). In the
DFS, files are partitioned into blocks. As servers are used for
both storage and computation, frameworks try to place the
computation on those servers where replica of the input data
are available to avoid data transfer. This principle is called data
locality. If the input comes from another operator, the data may
have to be transferred from a remote cluster node. The nature
of this communication depends on the operator: For Map
or Filter it is a simple one-to-one communication. A Group
operator, on the other hand, requires all-to-all communication,
because data records are grouped by a key and may have to
be sent to any of the executing tasks [9].

Execution tasks of consecutive operators can be combined,
if the operator’s logic permits it. For example, it is possible to
execute consecutive filter and map operations in a single step.
The logic of other operators requires a barrier in the dataflow,
which means that the operator cannot execute until all tasks
of previous operators have completed. A Join, for example,
requires the results of the two inputs to be fully available.
Likewise, the beginning of an iteration is a natural barrier.

B. Cluster Management

Clusters are usually shared among and concurrently used by
multiple different users and processing frameworks. Resource
managing systems such as Apache Hadoop’s YARN [14] or
Apache Mesos [15] provide an abstraction layer for cluster re-
sources so they can be used by various distributed frameworks.
Typically, resource management systems provide shares of
computational power in the form of containers. These contain-
ers can be requested by the frameworks, are then scheduled
by the resource management systems, and subsequentely can
be used for executing distributed programs. Containers can
provide different levels of resource isolation, including no
isolation at all for access to resources like CPU cores and
network I/O, yet still are used for distributing workloads in
clusters.

III. RELATED WORK

We first present relevant frameworks for distributed data
analysis and then related work in the context of progress
estimation as well as dynamic resource adjustment.



A. Distributed Data Analysis Frameworks

MapReduce is a distributed programming and execution
model [3]. Its simple programming model lacks, however,
native support for iterative executions. For iterative algorithms,
multiple consecutive MapReduce jobs have to be submitted
which involves writing intermediate results to disk and leads
to significant overhead. Systems such as Apache Spark [4]
and Apache Flink [16] extend the MapReduce model with
additional operators such as Filter, Group or Join and ex-
press programs as arbitrary directed acyclic graphs of such
operators. They also provide native support for iterations.
With GraphX [17] and Gelly, both frameworks provide graph
libraries implementing the Pregel programming model [18] for
iterative graph algorithms.

B. Offline Runtime Prediction

Some work has addressed offline runtime prediction, mostly
to allocate resources for a specific runtime target.

AROMA [11] predicts the runtime of MapReduce jobs and
is similar to our approach in that it also matches a job to
previous executions. However, instead of considering multiple
different factors, including factors particular to iterative algo-
rithms, the matching is based on the jobs’ resource utilization.
Historic executions are put into groups according to similar
CPU, network and disk utilization patterns. For each group, a
prediction model is trained. A newly submitted job’s hardware
utilization is classified according to a sample run on a fraction
of the input. According to this classification, the precomputed
prediction model is used to estimate the job’s runtime.

BELL [10] uses historical data from previous executions to
model the scale-out behavior of jobs. The system uses both
parametric and non-parametric regression on runtime data of
the same job executed on similar-sized data. Then, given a
job and the number of nodes, an estimate of the total runtime
is available and BELL can select a resource configuration to
meet a user-specified runtime target. BELL does not consider
changes to program parameters or the cluster state when
predicting runtimes based on previous runs.

PREDIcT [13] also predicts runtimes for iterative algorithms
but focuses on graph algorithms. It uses sampling on the input
data: the program is run on subgraphs and execution charac-
teristics such as messages sent per iteration are extrapolated to
the whole dataset. However, this only works if the subgraph
preserves the relevant properties for the given algorithm. Also,
any algorithm parameters must be manually adjusted for the
sample run by the user.

Ernest [12] executes training runs on a small number of
servers. It captures computation and communication patterns
as a function of the number of nodes. These patterns are then
used to model the runtime for a higher number of nodes.
However, the system must be retrained if the code or the
dataset changes.

C. Dynamic Resource Adaption

Approaches for dynamically adapting a job’s resources
during its execution can make use of statistics of the currently

running job and take into account the current cluster state.
Such approaches require some form of progress estimation at
runtime, similar to our approach.

Jockey [9] is a system for SCOPE, which dynamically
adapts a job’s parallelism. It uses historical data and a simu-
lator to analyze the internal job structure. Jockey precomputes
job statistics by simulating a job’s internal dependencies.
Instead of runtime targets, a utility function is used which
denotes the economic value of a job in relation to its total ex-
ecution time. Jockey monitors a running job and dynamically
selects a resource allocation which maximizes a job’s utility
and minimizes its impact on the cluster.

Delimitrou et al. stress the need for a system which relies on
users expressing performance constraints instead of resource
reservations. They propose Quasar [6], a system which uses
classification techniques to predict how different resource
configurations impact a job’s performance, also considering
interference of currently running workloads on the cluster.
The system includes statistics from short profile runs on a
few servers. Quasar is designed to meet given performance
constraints and to improve the cluster utilization.

IV. APPROACH

This section presents our approach to progress estimation.
Fig. 2 gives a conceptual overview of the algorithm, which is
divided into three steps: 1 Similarity Matching (IV-A), 2
Estimation Inference (IV-B) and 3 Final Estimate (IV-C).
They are explained in the following sections.
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Fig. 2: Overview of the estimation approach.

A. Similarity Matching

Similarity Matching selects executions from the job history,
which are similar to the current execution. The job history
contains a range of statistical data for each execution, includ-
ing job information (e.g. executed UDF, input data), execu-
tion information (e.g. the number of iterations, per-iteration
runtimes) and hardware utilization information (e.g. periodic



values for CPU, network-io and disk-io). We define several
individual similarity measures for the matching, each of which
is defined by a function sim (excur, exprev, icur) ∈ [0, 1].
The function takes the current execution excur, the previous
execution exprev and the current iteration icur and returns a
value between zero and one. Zero represents the lowest and
one the highest possible similarity.

The goal is to combine those individual measures to a final
similarity value simfinal, which is used by the estimator to
compare two executions. Each similarity has a threshold T
and a weight w. The matching system discards executions,
when any of the given similarity values are smaller than the
threshold T . For the executions not discarded, a weighted
average simfinal is calculated from the similarity values using
the respective weights w. By testing whether simfinal is
greater than another user-defined threshold Tfinal, we verify
a high similarity. Such executions are added to the Similar
Executions Set (SES). If all executions are discarded, the
thresholds T of the similarity measures are lowered until at
least one similar job execution is found.

B. Estimation Inference

The knowledge about the remaining runtime of the similar
executions is used to estimate the remaining runtime for the
current job. An estimate for the remaining runtime is inferred
from each execution in the Similar Executions Set. We assume
that the current execution will have the same number of
executions as the similar execution. As the current job behavior
might be different than historic jobs, we adjust our prediction
by comparing the differences in runtimes of the previous
iterations of the current execution and the similar execution,
by calculating fi = runtimecurrent/ runtimesimilar for
each iteration i. We assume that the differences in runtime
up to the current iteration will propagate in the remaining
iterations. These previous differences are represented by the
average ftotal from all fi. Thus, our overall estimate for the
remaining runtime for the current job is the remaining runtime
estimation of the historic and similar jobs multiplied with the
adjustment value ftotal.

To account for the differences in resource configurations,
the runtimes of the similar execution have to be adjusted to be
comparable to the runtimes of the current execution. For this,
we use a scale-out model, which reflects how runtimes change
with the number of cluster nodes,. We use this model by
calculating the factor by which the two executions differ and
multiply the runtime of the similar execution by this factor. We
perform the adjustment iteration-wise and thus support jobs,
which have changed resource allocations during the execution.
The adjustment of the similar execution is not only necessary
for the iterations up to the current iteration, but also the
remaining iterations. Lastly, we weigh iterations, giving more
weight to more recent iterations, assuming that recent changes
in the cluster state will continue for future iterations. SMiPE
uses the inverse function 1/x for that.

C. Final Estimate

The set of estimates calculated in the previous step are now
combined to a final estimate using a weighted average. As
weights, the final similarity values of the respective executions
are used. Thus, executions more similar to the current execu-
tion contribute more to the final estimate. The final similarity
values are greater than the threshold Tfinal as per definition.
Thus, the differences of weights is relatively small. In order to
make the weighting more effective, the final similarity values
are adjusted using a transformation function of the form simb

(b > 1), increasing the difference between weights.

V. SIMILARITY MEASURES AND QUALITY

This section introduces and defines the similarity measures.
It also describes the Similarity Quality measure and explains
how the measure is used for parameter training.

A. Similarity Measures

We use the following similarity measures for SMiPE.
1) Runtime Similarity: The Runtime Similarity compares

the distribution of runtimes. It is defined as the average of
iteration-wise deviations of the previous runtimes up to the
current iteration. The runtime values are scale-out adjusted to
enable a comparison.

2) Active Data Records Similarity: The Active Data
Records Similarity is defined as the average of iteration-
wise deviations of the number of records and captures the
convergence behavior of executions.

3) Hardware Statistics Similarity: The measure captures
how executions use hardware resources. It uses statistics
of the CPU, the disk and network, which are periodically
monitored on each node. We take the average of those values
on every node from the previous iterations. Then, the values
of the sorted sequences of averages are compared pair-wise,
averaging the deviations.

4) Input Similarity: The Input Similarity models the dif-
ference of the input dataset sizes. Distributed programs often
execute input datasets recurrently. The input dataset size of
such jobs is usually the same.

5) Scale-Out Similarity: This similarity compares the num-
ber of cluster nodes of two executions. Although SMiPE ad-
justs runtimes according to their scale-out, this may introduce
inaccuracies making it worth to distinguish jobs according to
their resource configuration.

B. Similarity Quality

The similarity measures capture properties which potentially
have value to the estimation. This may or may not be the
case for actual job history data. We describe a concept called
Similarity Quality, which can be used to judge this usefulness.

We perform simulations in SMiPE using executions from
the job history. For a simulation we select an execution j as
the current execution and a value i as the current iteration.
We select another execution k and request an estimate of
SMiPE for j, based on k only. We know the actual remaining
runtime from the job history and can calculate the estimation
accuracy. Additionally, we calculate s, the value of a similarity



measure of j and k. This is repeated for all jobs k and j in
the history. As a result we get P , a set of points (s, a), where
s is the similarity value of the simulated current execution j
and the other execution k, and a is the estimation accuracy.
These points represent the relationship of a specific similarity
measure and the accuracy in the estimation algorithm. The
points can be plotted in a points chart to visualize this
relationship. Further, we define

h (t) := avg { a | (s, a) ∈ P, s ≥ t },
n (t) := 1/|P | × | { a | (s, a) ∈ P, s ≥ t } | and
q (x) := h (y) , with n (y) = 1− x .

This gives the cumulative histogram h (t), which is the aver-
age accuracy we can expect if the selection threshold for a
similarity is set to t. The value n (t) indicates the share of
selected points. Lastly, q (x) is the normalized quality which
combines the histogram and the point share into one measure
to enable the comparison of two similarities. This measure
normalizes the histogram such that the point share becomes
the same, a straight line for every Similarity Quality.

0

1

0 1

a
c
c
u
r
a
c
y

/
 s

h
a
r
e

/

similarity

a
v
e
r
a
g
e
 a

c
c
u
r
a
c
y

t2t1

Fig. 3: Similarity Quality histogram (red), point share (green)
and points (blue) of a sample measure.

We can now characterize that a similarity measure is useful
to the estimation algorithm, if it is possible to find a threshold
t for which the histogram h (t) indicates a high expected
accuracy, while share function n (t) indicates that enough
executions will be found in the similarity matching. Fig. 3
shows the histogram, the point share and the point chart of a
sample similarity measure. If the similarity threshold is set
to a high value t2, the histogram shows that an expected
average accuracy close to 1 could be reached - however the
point share would be very low. A lower value t2 still yields
accurate estimations, but is expected to match considerably
more executions in the algorithm.

C. Parameter Training

The similarity matching is influenced mainly by the thresh-
olds and the weights of the similarity measures. Instead of
setting these heuristic parameters manually, SMiPE trains them
using the job history.

1) Similarity Thresholds: From the job history we infer
the Similarity Quality charts, which are used for training
the thresholds. We set a minimum accuracy amin as well
as a minimum point share nmin to avoid the scenario that
the threshold is too high for the matching to find enough

executions. Then, for each similarity measure the highest
possible threshold t is chosen such that h (t) ≥ amin and
n (t) ≥ nmin.

2) Similarity Weights: An optimal solution must be found
for the vector w = (w1, w2, ..., wn), weighting the similarity
measures. Again, we make use of simulations: For every
execution of a job, we simulate a currently running job
using different current iterations and estimate the remaining
runtime based on all other executions of the job, matched with
different weights. To find optimal weights we use numerical
optimization: we use the mean relative error of estimations as
objective function and minimize this using Powell’s BOBYQA
algorithm [19]. We perform the optimization repeatedly using
different initial guess values for the weights. The result is a
weights vector yielding the minimum mean relative error.

VI. IMPLEMENTATION

This section describes how the SMiPE implementation
integrates with existing systems and gives an overview of its
components.
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Fig. 4: Integration with a Spark cluster.

A. Integration

SMiPE provides its functionality via interfaces which are
not dependent on a specific distributed dataflow framework.
We use Apache Spark as an example framework to illustrate
how these interfaces are used.

Fig. 4 shows how a Spark job is executed and how it
interacts with SMiPE. Spark follows the Master-Worker ar-
chitecture. On the master node, the Spark driver program is
executed, which runs and coordinates the Spark program and
schedules Spark tasks on the worker nodes. These perform the
actual processing by calling the program’s UDFs.

B. Statistics Collector

Statistical data of executing jobs is collected and persisted
to the job history repository by the Statistics Collector. This
component provides an interface which can be used by other
components to submit statistics to SMiPE. In our implemen-
tation, the Spark program calls this interface at the beginning



and at the end of each iteration, and provides the number of
data records computed in the iteration. Spark provides APIs
to retrieve such statistics for the currently executing job. For
hardware statistics, we use Dstat2, which runs on every worker
node. It collects statistics of CPU, network and IO periodically
and writes the values to a file. These are read and submitted
to the Collector.

C. Estimator

The Estimator component implements our runtime estima-
tion approach. It receives estimation requests and returns the
predicted remaining runtime. The Estimator uses the statistical
data from the Job History. SMiPE uses a scale-out model to
adjust runtimes of executions run on a different number of
cluster nodes. The BELL system [10] provides such a model
by using parametric and non-parametric regression on data
of previous run times. Originally, BELL uses the runtime of
entire executions as the training data. We adjust BELL such
that all runtimes of a particular iteration are used as training
data to support iteration-wise comparison.

D. Training

This component performs the training for the similarity
thresholds and weights (V-C). It uses the Apache Com-
mons Math library3 which provides an implementation of the
BOBYQA algorithm. The training is executed periodically
and stores the resulting parameters in a repository. The pre-
computation of parameters enables SMiPE to satisfy estima-
tion requests more efficiently.

VII. EVALUATION

This chapter evaluates SMiPE. We describe the cluster ex-
periments, analyze the similarity measures using the Similarity
Quality and finally evaluate the estimation accuracy.

A. Experiments

Table I gives an overview of all experiments and shows
algorithms, datasets and parameters. Each setting was executed
on up to 40 nodes, and repeated 4 (SGD), 6 (PageRank) or 9
(Connected Components) times.

Algorithm Input Dataset Size Parameters

PageRank

LiveJournal 1.00 GB d=.01, d=.001, d=.0001
Kronecker24 1.52 GB d=.01, d=.001
Kronecker25 3.43 GB d=.01, d=.001
Wiki 5.74 GB d=.09, d=.01

Connected
LiveJournal 1.00 GB

–Components
Kronecker24 1.52 GB
Kronecker25 3.43 GB
Wiki 5.74 GB

SGD

50-100M 99.4 GB

step size = 1.025-250M 124.1 GB

convergence delta = 0.00125-500M 247.9 GB
50-500M 497.0 GB
50-750M 745.5 GB

TABLE I: Overview of all experiments.

2http://dag.wiee.rs/home-made/dstat/
3http://commons.apache.org/proper/commons-math/

1) Cluster: We conducted experiments on a cluster con-
sisting of 40 servers, each equipped with a quad-core Intel
Xeon CPU with 3.3 GHz and 16 GB main memory, connected
through a single 1 Gigabit Ethernet switch. The servers’ oper-
ating system is Linux (Kernel 3.10.0). For the experiments, we
used Apache Spark 2.0.0 in conjunction with Apache Hadoop
2.7.1 and Java 1.8. For the collection of hardware statistics,
we used Dstat 0.7.2. During the experiments, the servers were
only used for the SMiPE evaluation, without interference with
other workloads.

2) Algorithms: We used the algorithms PageRank (PR),
Connected Components (CC) and Stochastic Gradient De-
scent (SGD) in the experiments. PageRank is a prominent
eigenvector centrality algorithm, calculating the importance
of every vertex within a graph. The Connected Components
algorithm finds all connected components of a graph using iter-
ative label propagation. Stochastic Gradient Descent iteratively
finds the minimum or maximum of an objective function,
using gradient approximation for increased efficiency. We used
Spark’s GraphX library[17] implementation for PR and CC
and Spark’s machine learning library MLlib4 for SGD. For
PR, we used different convergence deltas d.

3) Datasets: We used both real world and generated
datasets of different sizes. The Wikipedia dataset is a graph of
encyclopedia pages of the English Wikipedia.The LiveJournal
dataset is a social graph from the LiveJournal social network,
representing friendship relationships. Both datasets were taken
from the KONECT graph collection [20]. The Kronecker
datasets were generated with the graph generator of the Big
Data Generator Suite (BGDS) [21], using 24 and 25 iterations.
For SGD, features datasets were generated using our own
generator, explicitly creating a Vandermonde matrix to gen-
erate multi-dimensional feature vectors that fit a polynomial
model of a certain degree with added Gaussian noise. The
generated datasets contain 100 to 750 million points and 25
or 50 features. The dataset name 50-100M stands for a dataset
with 50 features and 100 million points.

B. Similarity Measures

We evaluate the similarity measures by using the normalized
quality chart as defined in V-B. In the following, it is simply
referred to as (similarity) quality. The quality graphs of the
measures are shown in Fig. 5.

Fig. 5a) shows that the Runtime Similarity increases the
expected accuracy significantly with an increased point share.
The differences in the accuracy are greater for PR and CC
than for SGD. The Active Data Records Similarity (5b) is
compared for PR and CC only. The similarity is effective for
both datasets, but more so for PR. We analyze the hardware
similarity in Fig. 5 c) to e) for the CPU, network and disk IO.
For the CPU, only very high point share values lead to a higher
expected accuracy. This effect is most visible for PageRank,
where the line is flat until it rises sharply for a point share
value close to 1. The network and disk IO charts perform

4http://spark.apache.org/mllib/, accessed 2017-08-17
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Fig. 5: Quality charts of the similarity measures.

better in that they achieve a higher expected accuracy also for
point share values below the top end of the scale. They are
effective for all algorithms in increasing the expected accuracy.
The Input Similarity (5d, solid lines) is able to distinguish
executions according to their accuracy for all algorithms. This
effect is more notable for CC and PR than for SGD. The
Scale-Out Similarity (5d, dotted lines) only leads to a minimal
increase in the average accuracy for higher point share values
in all three cases.
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Fig. 6: Summary of all quality charts.

Fig. 6 shows the quality charts of all similarity measures
for each algorithm. We observe that each algorithm has a
distinct profile that determines which similarity measures are
the most useful. For PR, the Active Data Records Similarity
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Fig. 8: Iteration-wise estimation accuracy.

is the most important measure while for SGD, the Network
Similarity provides the highest contribution. This highlights
the importance of the parameter training, which allows SMiPE
to adapt to those algorithm-specific profiles. Additionally,
judging the usefulness of similarities is not always intuitive,
and it proves practical to automate the analysis using the
quality measures.

C. Estimation Accuracy

For every execution in the job history, we select repre-
sentative sample iterations and calculate the relative error of
the estimate. Depending on the execution’s total number of
iterations, up to three sample iterations are chosen with equally
spaced distance and an additional padding of 15% of the total
iterations at the beginning and the end. For each selected
sample iteration, we use SMiPE to estimate the remaining
runtime using all runs done for the experiments as job history
and compare this to the known actual remaining runtime to
calculate the estimation error.

To judge the accuracy, we calculate the mean relative
estimation error. Fig. 7 shows the mean relative error by
datasets (yellow) and in total (blue) for all algorithms. The
whiskers in the graph represent the 95% confidence interval.
SGD has the lowest mean relative error with 9.1%, followed
by PR with 9.5%. The mean relative error of CC is 13.1%.
However, since the runtimes of CC are short, even estimates
with a low absolute error yield high relative errors. The mean
absolute error for CC is only 1.1 seconds. If we compare
individual datasets, for SGD the individual mean relative errors
range from 5.6% to 12.1%, while for CC the values vary
between 11.5% and 15.9 %. For PR, the values are between
8.1% and 8.6% with the exception of the Kronecker24 dataset,
which has a mean relative error of 13.9%. The reason for
this high error lies in the specific convergence behavior of
PR with Kronecker24. The number of Active Records with
this dataset remains almost the same for the entire execution,



with the values sharply decreasing towards the end. The Active
Records Similarity cannot distinguish executions with different
delta parameters until the very end of the execution. Thus,
executions with lower parameter are considered similar, but
have more iterations and a longer remaining runtime, leading
to a considerable overestimation.

Fig. 8 shows the iteration-wise relative error for all itera-
tions for SGD and PR. Each line represents executions with
the same input dataset and the same algorithm parameters.
The iteration on the x-axis is relative for the curves to be
comparable. The accuracies are mostly between 5% and 15%
in the middle of the executions. Both algorithms exhibit
considerably higher errors in the beginning and in the end
of the execution. In the beginning, only little data is available
for a running execution, thus selecting similar jobs is bound to
be inaccurate. As the execution progresses, the algorithm can
better distinguish similar jobs. It takes around 30% of the total
iterations until the the estimation reaches the peak accuracy.
The higher errors at the end are due to the remaining runtimes
becoming small, so even small absolute errors lead to higher
relative error rates.

VIII. CONCLUSION

In this paper, we presented SMiPE, a system that accu-
rately estimates the remaining runtime of recurring iterative
distributed dataflows. SMiPE’s core is a matching algorithm
which selects executions from a job history based on their
similarity to the current execution. We defined several similar-
ity measures, which are used by SMiPE. We further presented
techniques to evaluate these measures using a similarity quality
measure. Based on the finding that algorithms have distinct
profiles determining which of those measures are useful, we
use algorithm-specific training of system parameters to adapt
the similarity matching automatically to different jobs.

Currently, we include the current cluster state only implicitly
from historical data and we assume a homogeneous cluster
environment. In the future, SMiPE could explicitly incorporate
data such as cluster-wide utilization, information on concurrent
workloads or hardware specification of servers. Also, we
want to integrate SMiPE with other work. For example, the
progress estimation is useful for systems that dynamically
adjust resource allocations when detecting given runtime tar-
gets are at risk of being missed. Further, many systems infer
predictions from a job history, which can be improved by
using the presented matching techniques for filtering relevant
data. Although SMiPE is less accurate at the beginning of
executions due to the absence of current data, the matching is
already effective in selecting useful historic runs. Our cluster
experiments show that SMiPE is able to predict remaining
runtimes with a mean relative error of 9.1% to 13.1%.
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